Research Article
BibTex RIS Cite

Numerical Radius and $p$-Schatten Norm Inequalities for Analytic Functions of Operators in Hilbert Spaces

Year 2023, Volume: 11 Issue: 2, 109 - 126, 31.10.2023

Abstract

Let $H$ be a complex Hilbert space, $f:G\subset \mathbb{C}\rightarrow \mathbb{C}$ an analytic function on the domain $G$ and $A\in \mathcal{B} \left( H\right) $ with $\mbox{Sp}\left( A\right) \subset G$ and $\gamma $ a closed rectifiable path in $G$ and such that $\mbox{Sp}\left( A\right) \subset \mbox{ins}\left( \gamma \right) .$ If we denote \begin{equation*} B\left( f,\gamma ;A\right) :=\frac{1}{2\pi }\int_{\gamma }\left\vert f\left( \xi \right) \right\vert \left( \left\vert \xi \right\vert -\left\Vert A\right\Vert \right) ^{-1}\left\vert d\xi \right\vert , \end{equation*} then for $B,$ $C\in \mathcal{B}\left( H\right) $ we have \begin{equation*} \left\vert \left\langle C^{\ast }Af\left( A\right) Bx,y\right\rangle \right\vert \leq B\left( f,\gamma ;A\right) \left\langle \left\vert \left\vert A\right\vert ^{\alpha }B\right\vert ^{2}x,x\right\rangle ^{1/2}\left\langle \left\vert \left\vert A^{\ast }\right\vert ^{1-\alpha }C\right\vert ^{2}y,y\right\rangle ^{1/2} \end{equation*} for $\alpha \in \left[ 0,1\right] $ and $x,$ $y\in H.$ Some natural applications for \textit{numerical radius} and $p$-\textit{Schatten norm } are also provided.

References

  • [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standars, Applied Mathematics Series, 55, 1972.
  • [2] P. Bhunia, S. S. Dragomir, M. S. Moslehian and K. Paul, Lectures on Numerical Radius Inequalities, Springer Cham, 2022. https://doi.org/10.1007/978-3-031-13670-2.
  • [3] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz. (Italian), Rend. Sem. Mat. Univ. e Politech. Torino, 31 (1971/73), 405–409 (1974).
  • [4] J. B. Conway, A Course in Functional Analysis, Second Edition, Springer-Verlag, New York, 1990.
  • [5] R. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, 1972.
  • [6] S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, SpringerBriefs in Mathematics, 2013. https://doi.org/10.1007/978-3-319-01448-7.
  • [7] S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp.
  • [8] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia Math. 182 (2007), No. 2, 133-140
  • [9] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283–293.
  • [10] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), No. 1, 11-17.
  • [11] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), No. 1, 73-80.
  • [12] C. A. McCarthy, Cp, Israel J. Math. 5 (1967), 249–271.
  • [13] J. R. Ringrose, Compact Non-self-adjoint Operators, Van Nostrand Reinhold, New York, 1971.
  • [14] W. Rudin, Functional Analysis, McGraw Hill, 1973.
  • [15] B. Simon, Trace Ideals and Their Applications, Cambridge University Press, Cambridge, 1979.
  • [16] V. A. Zagrebnov, Gibbs Semigroups, Operator Theory: Advances and Applications, Volume 273, Birkh¨auser, 2019.
Year 2023, Volume: 11 Issue: 2, 109 - 126, 31.10.2023

Abstract

References

  • [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standars, Applied Mathematics Series, 55, 1972.
  • [2] P. Bhunia, S. S. Dragomir, M. S. Moslehian and K. Paul, Lectures on Numerical Radius Inequalities, Springer Cham, 2022. https://doi.org/10.1007/978-3-031-13670-2.
  • [3] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz. (Italian), Rend. Sem. Mat. Univ. e Politech. Torino, 31 (1971/73), 405–409 (1974).
  • [4] J. B. Conway, A Course in Functional Analysis, Second Edition, Springer-Verlag, New York, 1990.
  • [5] R. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, 1972.
  • [6] S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, SpringerBriefs in Mathematics, 2013. https://doi.org/10.1007/978-3-319-01448-7.
  • [7] S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp.
  • [8] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia Math. 182 (2007), No. 2, 133-140
  • [9] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283–293.
  • [10] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), No. 1, 11-17.
  • [11] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), No. 1, 73-80.
  • [12] C. A. McCarthy, Cp, Israel J. Math. 5 (1967), 249–271.
  • [13] J. R. Ringrose, Compact Non-self-adjoint Operators, Van Nostrand Reinhold, New York, 1971.
  • [14] W. Rudin, Functional Analysis, McGraw Hill, 1973.
  • [15] B. Simon, Trace Ideals and Their Applications, Cambridge University Press, Cambridge, 1979.
  • [16] V. A. Zagrebnov, Gibbs Semigroups, Operator Theory: Advances and Applications, Volume 273, Birkh¨auser, 2019.
There are 16 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Articles
Authors

Sever Dragomır

Publication Date October 31, 2023
Submission Date August 7, 2023
Acceptance Date October 9, 2023
Published in Issue Year 2023 Volume: 11 Issue: 2

Cite

APA Dragomır, S. (2023). Numerical Radius and $p$-Schatten Norm Inequalities for Analytic Functions of Operators in Hilbert Spaces. Konuralp Journal of Mathematics, 11(2), 109-126.
AMA Dragomır S. Numerical Radius and $p$-Schatten Norm Inequalities for Analytic Functions of Operators in Hilbert Spaces. Konuralp J. Math. October 2023;11(2):109-126.
Chicago Dragomır, Sever. “Numerical Radius and $p$-Schatten Norm Inequalities for Analytic Functions of Operators in Hilbert Spaces”. Konuralp Journal of Mathematics 11, no. 2 (October 2023): 109-26.
EndNote Dragomır S (October 1, 2023) Numerical Radius and $p$-Schatten Norm Inequalities for Analytic Functions of Operators in Hilbert Spaces. Konuralp Journal of Mathematics 11 2 109–126.
IEEE S. Dragomır, “Numerical Radius and $p$-Schatten Norm Inequalities for Analytic Functions of Operators in Hilbert Spaces”, Konuralp J. Math., vol. 11, no. 2, pp. 109–126, 2023.
ISNAD Dragomır, Sever. “Numerical Radius and $p$-Schatten Norm Inequalities for Analytic Functions of Operators in Hilbert Spaces”. Konuralp Journal of Mathematics 11/2 (October 2023), 109-126.
JAMA Dragomır S. Numerical Radius and $p$-Schatten Norm Inequalities for Analytic Functions of Operators in Hilbert Spaces. Konuralp J. Math. 2023;11:109–126.
MLA Dragomır, Sever. “Numerical Radius and $p$-Schatten Norm Inequalities for Analytic Functions of Operators in Hilbert Spaces”. Konuralp Journal of Mathematics, vol. 11, no. 2, 2023, pp. 109-26.
Vancouver Dragomır S. Numerical Radius and $p$-Schatten Norm Inequalities for Analytic Functions of Operators in Hilbert Spaces. Konuralp J. Math. 2023;11(2):109-26.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.