Research Article
BibTex RIS Cite
Year 2024, Volume: 12 Issue: 1, 55 - 61, 30.04.2024

Abstract

References

  • [1] S. Vajda, Fibonacci and Lucas numbers, and the golden section: theory and applications, Courier Corporation, 2008
  • [2] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume 2, John Wiley and Sons, 2019.
  • [3] A. F. Horadam, Jacobsthal number representation, The Fibonacci Quarterly, Vol:34, No.1 (1996), 40-54.
  • [4] Z. Cerin, Sums of squares and products of Jacobsthal numbers, Journal of Integer Sequences, Vol:10, (2007), 25.
  • [5] K. T. Atanassov, (). Short remarks on Jacobsthal numbers, Notes on Number Theory and Discrete Mathematics, Vol:18, No.2 (2012), 63-64.
  • [6] A. Das¸demir, On the Jacobsthal numbers by matrix method, Su¨leyman Demirel U¨ niversitesi Fen Edebiyat Faku¨ltesi Fen Dergisi, Vol:7, No.1 (2012), 69-76.
  • [7] A. Das¸demir, A study on the Jacobsthal and Jacobsthal–Lucas numbers by matrix method, DUFED Journal of Sciences, Vol:3, No.1 (2014), 13-18.
  • [8] S. H. J.Petroudi and M. Pirouz, On special circulant matrices with (k;h)-Jacobsthal sequence and (k;h)-Jacobsthal-like sequence, Int. J. Mathematics and scientific computation, Vol:6, No.1 (2016), 44-47.
  • [9] T. Goy, On determinants and permanents of some Toeplitz-Hessenberg matrices whose entries are Jacobsthal numbers, Eurasian Mathematical Journal, Vol:9, No.4 (2018): p. 61-67.
  • [10] A. Das¸demir, Mersene, Jacobsthal, and Jacobsthal-Lucas numbers with negative subscripts, Acta Mathematica Universitatis Comenianae, Vol:88, No.1 (2019), 142-156.
  • [11] J. L. Ram´ırez and V. F. Sirvent, A note on the k-Narayana sequence, Ann. Math. Inform, Vol:45, (2015), 91-105.
  • [12] G. Bilgici, The generalized order-k Narayana’s cows numbers, Mathematica Slovaca, Vol:66, No.4 (2016), 795-802.
  • [13] Y. Soykan, On generalized Narayana numbers, Int. J. Adv. Appl. Math. Mech, Vol:7, No.3 (2020), 43-56.
  • [14] F. Zhang, Matrix theory: basic results and techniques. New York: Springer, 2011.

On Jacobsthal–Narayana and Jacobsthal-Narayana-Lucas Sequences

Year 2024, Volume: 12 Issue: 1, 55 - 61, 30.04.2024

Abstract

This paper introduces two new integer sequences that are the third-order recurrence relations. These are called Jacobsthal–Narayana and Jacobsthal-Lucas-Narayana sequences. In particular, great attention is focused on the identification of the Binet type representations for our new sequence, including the generating functions, some important identities, and generating matrix. Finally, we consider the circulant matrix whose entries are Jacobsthal–Narayana sequence and present an appropriate formula to find eigenvalues of that matrix.

References

  • [1] S. Vajda, Fibonacci and Lucas numbers, and the golden section: theory and applications, Courier Corporation, 2008
  • [2] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume 2, John Wiley and Sons, 2019.
  • [3] A. F. Horadam, Jacobsthal number representation, The Fibonacci Quarterly, Vol:34, No.1 (1996), 40-54.
  • [4] Z. Cerin, Sums of squares and products of Jacobsthal numbers, Journal of Integer Sequences, Vol:10, (2007), 25.
  • [5] K. T. Atanassov, (). Short remarks on Jacobsthal numbers, Notes on Number Theory and Discrete Mathematics, Vol:18, No.2 (2012), 63-64.
  • [6] A. Das¸demir, On the Jacobsthal numbers by matrix method, Su¨leyman Demirel U¨ niversitesi Fen Edebiyat Faku¨ltesi Fen Dergisi, Vol:7, No.1 (2012), 69-76.
  • [7] A. Das¸demir, A study on the Jacobsthal and Jacobsthal–Lucas numbers by matrix method, DUFED Journal of Sciences, Vol:3, No.1 (2014), 13-18.
  • [8] S. H. J.Petroudi and M. Pirouz, On special circulant matrices with (k;h)-Jacobsthal sequence and (k;h)-Jacobsthal-like sequence, Int. J. Mathematics and scientific computation, Vol:6, No.1 (2016), 44-47.
  • [9] T. Goy, On determinants and permanents of some Toeplitz-Hessenberg matrices whose entries are Jacobsthal numbers, Eurasian Mathematical Journal, Vol:9, No.4 (2018): p. 61-67.
  • [10] A. Das¸demir, Mersene, Jacobsthal, and Jacobsthal-Lucas numbers with negative subscripts, Acta Mathematica Universitatis Comenianae, Vol:88, No.1 (2019), 142-156.
  • [11] J. L. Ram´ırez and V. F. Sirvent, A note on the k-Narayana sequence, Ann. Math. Inform, Vol:45, (2015), 91-105.
  • [12] G. Bilgici, The generalized order-k Narayana’s cows numbers, Mathematica Slovaca, Vol:66, No.4 (2016), 795-802.
  • [13] Y. Soykan, On generalized Narayana numbers, Int. J. Adv. Appl. Math. Mech, Vol:7, No.3 (2020), 43-56.
  • [14] F. Zhang, Matrix theory: basic results and techniques. New York: Springer, 2011.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Seyyed Hossein Jafari Petroudi 0000-0003-4127-9215

Ahmet Daşdemir 0000-0001-8352-2020

Maryam Pirouz

Early Pub Date April 29, 2024
Publication Date April 30, 2024
Submission Date December 6, 2022
Acceptance Date October 23, 2023
Published in Issue Year 2024 Volume: 12 Issue: 1

Cite

APA Jafari Petroudi, S. H., Daşdemir, A., & Pirouz, M. (2024). On Jacobsthal–Narayana and Jacobsthal-Narayana-Lucas Sequences. Konuralp Journal of Mathematics, 12(1), 55-61.
AMA Jafari Petroudi SH, Daşdemir A, Pirouz M. On Jacobsthal–Narayana and Jacobsthal-Narayana-Lucas Sequences. Konuralp J. Math. April 2024;12(1):55-61.
Chicago Jafari Petroudi, Seyyed Hossein, Ahmet Daşdemir, and Maryam Pirouz. “On Jacobsthal–Narayana and Jacobsthal-Narayana-Lucas Sequences”. Konuralp Journal of Mathematics 12, no. 1 (April 2024): 55-61.
EndNote Jafari Petroudi SH, Daşdemir A, Pirouz M (April 1, 2024) On Jacobsthal–Narayana and Jacobsthal-Narayana-Lucas Sequences. Konuralp Journal of Mathematics 12 1 55–61.
IEEE S. H. Jafari Petroudi, A. Daşdemir, and M. Pirouz, “On Jacobsthal–Narayana and Jacobsthal-Narayana-Lucas Sequences”, Konuralp J. Math., vol. 12, no. 1, pp. 55–61, 2024.
ISNAD Jafari Petroudi, Seyyed Hossein et al. “On Jacobsthal–Narayana and Jacobsthal-Narayana-Lucas Sequences”. Konuralp Journal of Mathematics 12/1 (April 2024), 55-61.
JAMA Jafari Petroudi SH, Daşdemir A, Pirouz M. On Jacobsthal–Narayana and Jacobsthal-Narayana-Lucas Sequences. Konuralp J. Math. 2024;12:55–61.
MLA Jafari Petroudi, Seyyed Hossein et al. “On Jacobsthal–Narayana and Jacobsthal-Narayana-Lucas Sequences”. Konuralp Journal of Mathematics, vol. 12, no. 1, 2024, pp. 55-61.
Vancouver Jafari Petroudi SH, Daşdemir A, Pirouz M. On Jacobsthal–Narayana and Jacobsthal-Narayana-Lucas Sequences. Konuralp J. Math. 2024;12(1):55-61.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.