Some Results of Nearly Cosymplectic Manifolds With Generalized Schouten-Van Kampen Connection
Year 2025,
Volume: 13 Issue: 1, 93 - 99, 30.04.2025
Gülhan Ayar
,
Fatma Sattuf
Abstract
In this paper, we study conharmonic curvature tensor and concircular curvatur tensor of nearly cosymplectic manifolds with generalized the Schouten-Van Kampen connection, and we give a conharmonically flat and concircularly flat nearly cosymplectic manifold with generalized SVK connection.
References
- [1] D. E. Blair, D. K. Showers, Almost contact manifolds with Killing structure tensors. II., J.Differential Geom. 9 (1974), 577–582.
- [2] D. E. Blair, Almost contact manifolds with Killing structure tensors, Pacific J. Math. 39 (1971), no. 2, 285–292.
- [3] Z. Olszak, Nearly Sasakian manifolds, Tensor (N.S.) 33 (1979), no. 3, 277–286.
- [4] Z. Olszak, Five-dimensional nearly Sasakian manifolds, Tensor (N.S.) 34 (1980), no. 3, 273–276.
- [5] Olszak, Zbigniew. ”The Schouten-van Kampen affine connection adapted to an almost (para) contact metric structure.” arXiv preprint arXiv:1402.5796
(2014).
- [6] Ghosh, Gopal. ”On Schouten-van Kampen connection in Sasakian manifolds.” Boletim da Sociedade Paranaense de Mathematica 36 (2018): 171-182.
- [7] Halammanavar, Nagaraja Gangadharappa, and Kiran Kumar Lakshmana Devasandra. ”Kenmotsu manifolds admitting Schouten-van Kampen connection.”
Facta Universitatis, Series: Mathematics and Informatics (2019): 23-34.
- [8] Siddiqi, Mohd Danish, and Ali H. Hakami. ”Optimal Inequalities on (a;b)-Type Almost Contact Manifold with the Schouten–Van Kampen Connection.”
Axioms 12.12 (2023): 1082.
- [9] Babu, S. Girish, et al. ”(e)-Kenmotsu manifold admitting Schouten-van Kampen connection.” Journal of AppliedMath 1.2 (2023).
- [10] H. Endo, On the curvature tensor of nearly cosymplectic manifolds of constant -sectional curvature, An. Stiit. Univ. “Al. I. Cuza ”Iasi. Mat. (N.S.) 51
(2005), 439–454.
- [11] H. Endo, On the first Betti number of certain compact nearly cosymplectic manifolds, J.Geom. 103 (2012), no. 2, 231–236.
- [12] Ayar, Gulhan, and H. R. Cavusoglu. ”Conharmonic curvature tensor on nearly cosymplectic manifolds with generalized tanaka-webster connection.”
Sigma J. Eng. Nat. Sci 39.5 (2021): 9-13.
- [13] Yano, K., Kon. M. (1984). Structures on Manifolds. World Scientific Publishing.Singapore.
- 14] Schouten and E. van Kampen, Zur Einbettungs-und Krummungsthorie nichtholonomer Gebilde, Math. Ann., 103 (1930) 752-783.
- [15] De, Uday Chand and Absos Ali Shaikh. “Differential Geometry of Manifolds.” (2007).
- [16] De Nicola, Antonio, Giulia Dileo, and Ivan Yudin. ”On nearly Sasakian and nearly cosymplectic manifolds.” Annali di Matematica Pura ed Applicata
(1923-) 197 (2018): 127-138.
- [17] Yıldırım, Mustafa, and G¨ulhan Ayar. ”Nearly cosymplectic manifolds with nullity conditions.” Asian-European Journal of Mathematics 12.06 (2019):
2040012.
- [18] D¨undar, Adile, and Nesip Aktan. ”Some results on nearly cosymplectic manifolds.” Universal Journal of Mathematics and Applications 2.4 (2019):
218-223.
- [19] Goldberg, Samuel, and Kentaro Yano. ”Integrability of almost cosymplectic structures.” Pacific Journal of Mathematics 31.2 (1969): 373-382.
- [20] Olszak, Zbigniew. ”Locally conformal almost cosymplectic manifolds.” Colloquium Mathematicum. Vol. 57. No. 1. Polska Akademia Nauk. Instytut
Matematyczny PAN, 1989.