Research Article
BibTex RIS Cite

PARA META-GOLDEN STATISTICAL MANIFOLDS WITH DUAL-SEMI-CONJUGATE CONNECTION

Year 2025, Volume: 13 Issue: 1, 100 - 107, 30.04.2025

Abstract

In this paper, a new class of statistical manifolds, referred to as meta-golden statistical manifolds, is defined, and the geometry of these mani- folds which have the dual-semi-conjugate connection is examined.

References

  • [1] Amari, S., Differential-geometrical Methods in statistics; Lecture Notes in Statistics, Springer-Verlag: New York, NY, USA, 28 (1985).
  • [2] Bartlett, C. Nautilus Spirals and the Meta-Golden Ratio Chi. Nexus Netw J., 21 (2019), 641–656 .
  • [3] Blaga, A.M. and Mircea, C., “Golden-Statistical Structures.” Comptes rendus de l’Academie bulgare des Sciences, 69 (2016), 1113-1120.
  • [4] Blaga, A. M. and Crasmareanu, M., The geometry of product conjugate connections. An. Stiint. Univ. Al. I. Cuza Iasi. Mat.(NS), 59(1) (2013), 73-84.
  • [5] Calin, O.; Matsuzoe, H.; Zhang J.; Generalizations of Conjugate Connections, Trends in Differential Geometry, Complex Analysis and Mathematical Physics, 2009.
  • [6] Crasmareanu M, Heratcanu CE., Golden Differential Geometry, Chaos Solitions Fractals, 38(5) (2008), 1229-1238.
  • [7] De, U.C.; Shaikh A.A., Differentil Geometry of Manifolds, Alpha Science International Ltd., Oxford, UK., 2007.
  • [8] Etayo F, Santamaria R, Upadhyay A. On the geometry of almost Golden Riemannian manifolds. Mediterranean J Math., 14(187) (2017).
  • [9] Furuhata, H., Hasegawa, I., Okuyama, Y. et al. Kenmotsu statistical manifolds and warped product. J. Geom., 108 (2017), 1175-1191.
  • [10] Furuhata, H., Hasegawa, I.,Okuyama, Y.,Sato, K., Shahidd, M.H., Sasakian statistical manifolds, Journal of Geometry and Physics, 117 (2017), 179-186.
  • [11] Gezer A, Cengiz N, Salimov A., On integrability of Golden Riemannian structures, Turkish J Math., 37 (2013), 693-703.
  • [12] Gherici B., S-Golden manifolds, Mediterr J Math., 16(56) (2019).
  • [13] Gherici B., A new class of Golden Riemannian manifold, Int. Elect. J. Geometry, 13 (2020), 1-8.
  • [14] Hretcanu CE, Crasmareanu M., Metallic structures on Riemannian manifolds. Rev Un Mat Argentina, 54 (2013), 15-27.
  • [15] Huylebrouck, D., The Meta-golden Ratio Chi, Mathematics, Music, Art, Architecture, Culture, (2014), 151-158.
  • [16] Karaman C., On metallic semi-symmetric metric F-connections. Commun Fac Sci Univ Ank S´er A1 Math Stat., 67 (2018), 242-251.
  • [17] Lone, M., Bahadir, O., Park, C. & Hwang, I.. Basic inequalities for statistical submanifolds in Golden-like statistical manifolds. Open Mathematics, 20 (2022), 153- 166.
  • [18] Mclnerney, A., First Steps in differenatial Geometry, Springer, 2013.
  • [19] O˘guzhan B., Some ˙Inequalities for Statistical Submanifolds in Metallic-like Statistical Manifolds, Turk. J. Math. Comput. Sci., 13 (2012), 348-358.
  • [20] O¨ zkan M. Prolongations of golden structures to tangent bundles. Differential Geometry - Dyn Syst., 16 (2014), 227-238.
  • [21] O¨ zkan M, Peltek B. A new structure on manifolds: silver structure. Int Elect J Geometry, 9 (2016), 59-69.
  • [22] S¸ ahin F, S¸ ahin B., Meta-Golden Riemannian manifolds, Math Meth Appl Sci., 45 (2022), 10491-10501.
  • [23] Udris¸te, C., Calin, O., Geometric Modelling in Probabilty and Statistics, Springer Interntional Publishing Switzerlaand, 2014.
  • [24] Yildirim, M., Semi-symmetric non-metric connections on statistical manifolds, J. Geom. Phys. 176(2022), 104505.
There are 24 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Naime Karakuş Bağci 0000-0002-1711-1730

Nesip Aktan 0000-0002-6825-4563

Early Pub Date April 29, 2025
Publication Date April 30, 2025
Submission Date March 19, 2025
Acceptance Date April 28, 2025
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Karakuş Bağci, N., & Aktan, N. (2025). PARA META-GOLDEN STATISTICAL MANIFOLDS WITH DUAL-SEMI-CONJUGATE CONNECTION. Konuralp Journal of Mathematics, 13(1), 100-107.
AMA Karakuş Bağci N, Aktan N. PARA META-GOLDEN STATISTICAL MANIFOLDS WITH DUAL-SEMI-CONJUGATE CONNECTION. Konuralp J. Math. April 2025;13(1):100-107.
Chicago Karakuş Bağci, Naime, and Nesip Aktan. “PARA META-GOLDEN STATISTICAL MANIFOLDS WITH DUAL-SEMI-CONJUGATE CONNECTION”. Konuralp Journal of Mathematics 13, no. 1 (April 2025): 100-107.
EndNote Karakuş Bağci N, Aktan N (April 1, 2025) PARA META-GOLDEN STATISTICAL MANIFOLDS WITH DUAL-SEMI-CONJUGATE CONNECTION. Konuralp Journal of Mathematics 13 1 100–107.
IEEE N. Karakuş Bağci and N. Aktan, “PARA META-GOLDEN STATISTICAL MANIFOLDS WITH DUAL-SEMI-CONJUGATE CONNECTION”, Konuralp J. Math., vol. 13, no. 1, pp. 100–107, 2025.
ISNAD Karakuş Bağci, Naime - Aktan, Nesip. “PARA META-GOLDEN STATISTICAL MANIFOLDS WITH DUAL-SEMI-CONJUGATE CONNECTION”. Konuralp Journal of Mathematics 13/1 (April 2025), 100-107.
JAMA Karakuş Bağci N, Aktan N. PARA META-GOLDEN STATISTICAL MANIFOLDS WITH DUAL-SEMI-CONJUGATE CONNECTION. Konuralp J. Math. 2025;13:100–107.
MLA Karakuş Bağci, Naime and Nesip Aktan. “PARA META-GOLDEN STATISTICAL MANIFOLDS WITH DUAL-SEMI-CONJUGATE CONNECTION”. Konuralp Journal of Mathematics, vol. 13, no. 1, 2025, pp. 100-7.
Vancouver Karakuş Bağci N, Aktan N. PARA META-GOLDEN STATISTICAL MANIFOLDS WITH DUAL-SEMI-CONJUGATE CONNECTION. Konuralp J. Math. 2025;13(1):100-7.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.