Research Article
BibTex RIS Cite

Symmetry and Curvature in LP-Kenmotsu Manifolds with Generalized Tanaka-Webster Connection

Year 2025, Volume: 13 Issue: 2, 190 - 197, 31.10.2025

Abstract

In this study, we investigate Lorentzian para-Kenmotsu (LP-Kenmotsu (LPK)) manifolds in the context of the generalized Tanaka-Webster connection, denoted as $\mathcal{D}^*$. Initially, we derive the formulas for the curvature tensor, Ricci tensor, and scalar curvature of an LPK manifold with respect to the connection $\mathcal{D}^*$. We analyze the geometric properties of these manifolds, including their local symmetry, Ricci semi-symmetry, and local $\psi$-symmetry. Furthermore, utilizing the $Q$-curvature tensor, we analyze conditions under which LPK manifolds exhibit ${Q^*}$-flatness, ${Q^*}$-Ricci semi-symmetry, and $\psi$-${Q^*}$-flatness concerning the connection $\mathcal{D}^*$

References

  • [1] Atceken, M., Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds, Korean J. Math., 30(1) (2022), 175–185.
  • [2] Cho, J. T., CR structures on real hypersurfaces of a complex space form, Publ. Math. Debrecen, 54(3–4) (1999), 473–487.
  • [3] Cho, J. T., Levi-parallel hypersurfaces in a complex space form, Tsukuba J. Math., 30 (2006), 329–344.
  • [4] Ghosh, G., Chand, D., Kenmotsu manifolds with generalized Tanaka-Webster connection, Publ. Inst. Math. (Beograd), 102(116) (2017), 221–230.
  • [5] Haseeb, A., Prasad, R., Some results on Lorentzian Para-Kenmotsu manifolds, Bull. Transilv. Univ. Bras¸ov Ser. III, 13(1) (2020), 185–198.
  • [6] Haseeb, A., Prasad, R., Certain results on Lorentzian Para-Kenmotsu manifolds, Bol. Soc. Paran. Mat., 39(3) (2021), 201–220.
  • [7] Haseeb, A., Almusawa, H., Some results on Lorentzian para-Kenmotsu manifolds admitting J-Ricci solitons, Palestine J. Math., 11(2) (2022), 205–213.
  • [8] Haseeb, A., Bilal, M., Chaubey, S. K., Ahmadini, A. A. H., z -conformally flat LP-Kenmotsu Manifolds and Ricci–Yamabe Solitons, Mathematics, 11(1) (2023), 212.
  • [9] Li, Y., Haseeb, A., Ali, M., LP-Kenmotsu manifolds admitting J-Ricci solitons and spacetime, J. Math., 2022(1) (2022), 6605127.
  • [10] Mantica, C. A., Molinari, L. G., Riemann compatible tensors, Colloq. Math., 128(2) (2012), 197–200.
  • [11] Mantica, C. A., Molinari, L. G., Weakly w3-symmetric manifolds, Acta Math. Hung., 135 (2012), 80–96.
  • [12] Mantica, C. A., Suh, Y. J., Pseudo Q-symmetric Riemannian manifolds, Int. J. Geom. Methods Mod. Phys., 10(5) (2013), 1–25.
  • [13] Matsumoto, K., On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci., 12(2) (1989), 151–156.
  • [14] Prakasha, D. G., Hadimani, B. S., On the conharmonic curvature tensor of Kenmotsu manifolds with generalized Tanaka-Webster connection, Miskolc Math. Notes, 19(1) (2018), 491–503.
  • [15] Prakasha, D. G., Turki, N. B., Deepika, M. V., Unal, I., On LP-Kenmotsu Manifold with Regard to Generalized Symmetric Metric Connection of Type (a;b), Mathematics, 12(18) (2024), 2915.
  • [16] Prasad, R., Haseeb, A., Gautam, U. K., On y-semisymmetric LP-Kenmotsu manifolds with a QSNM connection admitting Ricci solitons, Kragujevac J. Math., 45(5) (2021), 815–827.
  • [17] Prasad, R., Verma, A., Yadav, V. S., Characterization of y-symmetric Lorentzian para-Kenmotsu manifolds, Facta Univ., Ser. Math. Inform., 38(3) (2023), 635–647.
  • [18] Prasad, R., Haseeb, A., Verma, A., Yadav, V. S., A study of y-Ricci symmetric LP-Kenmotsu manifolds, Int. J. Maps Math., 7(1) (2024), 33–44.
  • [19] Sinha, B. B., Prasad, K. L. S., A class of almost para contact metric manifold, Bull. Calcutta Math. Soc., 87(4) (1995), 307–312.
  • [20] Sundriyal, S., Haseeb, A., Generalized Tanaka-Webster connection on b-Kenmotsu manifolds, Int. J. Maps Math., 7(2) (2024), 258–272.
  • [21] Perktas¸, S. Y., Acet, B. E., Kılıc¸, E., Kenmotsu Manifolds with Generalized Tanaka-Webster Connection, J. Univ. Math., 3(2) (2013), 79–93.
  • [22] Takahashi, T., Sasakian y-symmetric spaces, Tohoku Math. J., 29 (1977), 91–113.
  • [23] Tanaka, N., On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Jpn. J. Math. (N.S.), 2(1) (1976), 131–190.
  • [24] Tanno, S., Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc., 314(1) (1989), 349–379.
  • [25] U¨ nal, I˙., Generic submanifolds of Lorentzian para-Kenmotsu manifold, Karamanoglu Mehmetbey Univ. J. Eng. Nat. Sci., 3(2) (2021), 79–85.
  • [26] Webster, S. M., Pseudo-Hermitian structures on a real hypersurface, J. Differ. Geom., 13(1) (1978), 25–41.
  • [27] Yadav, S., Yildiz, A., Q-curvature tensor on f -Kenmotsu 3-manifolds, Univ. J. Math. Appl., 5(3) (2022), 96–106.
  • [28] Yildirim, R., Kaya, C., A note on Kenmotsu manifolds admitting generalized Tanaka Webster connection, J. Univ. Math., 5(2) (2022), 122–128.
  • [29] Yildirim, M., A new characterization of Kenmotsu manifolds with respect to Q tensor, J. Geom. Phys., 176 (2022), 104498.
  • [30] Yilmaz, B. H., Sasakian manifolds satisfying certain conditions Q tensor, J. Geom., 111 (2020), 1–10.
  • [31] U¨ nal, I˙., Altın, M., N (k)-Contact Metric Manifolds with Generalized Tanaka-Webster Connection, Filomat, 35(4) (2021), 1383–1392.
  • [32] Sari, R., Some properties curvature of Lorentzian Kenmotsu manifolds, Appl. Math. Nonlinear Sci., 5(1) (2020), 283–292.
  • [33] Ayar, G., Some Curvature Tensor Relations on Nearly Cosymplectic Manifolds with Tanaka-Webster Connection, Univ. J. Math. Appl., 5(1) (2022), 24–31.
  • [34] Yıldırım, M., A new characterization of Kenmotsu manifolds with respect to Q tensor, J. Geom. Phys., 176 (2022), 104498.

Year 2025, Volume: 13 Issue: 2, 190 - 197, 31.10.2025

Abstract

References

  • [1] Atceken, M., Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds, Korean J. Math., 30(1) (2022), 175–185.
  • [2] Cho, J. T., CR structures on real hypersurfaces of a complex space form, Publ. Math. Debrecen, 54(3–4) (1999), 473–487.
  • [3] Cho, J. T., Levi-parallel hypersurfaces in a complex space form, Tsukuba J. Math., 30 (2006), 329–344.
  • [4] Ghosh, G., Chand, D., Kenmotsu manifolds with generalized Tanaka-Webster connection, Publ. Inst. Math. (Beograd), 102(116) (2017), 221–230.
  • [5] Haseeb, A., Prasad, R., Some results on Lorentzian Para-Kenmotsu manifolds, Bull. Transilv. Univ. Bras¸ov Ser. III, 13(1) (2020), 185–198.
  • [6] Haseeb, A., Prasad, R., Certain results on Lorentzian Para-Kenmotsu manifolds, Bol. Soc. Paran. Mat., 39(3) (2021), 201–220.
  • [7] Haseeb, A., Almusawa, H., Some results on Lorentzian para-Kenmotsu manifolds admitting J-Ricci solitons, Palestine J. Math., 11(2) (2022), 205–213.
  • [8] Haseeb, A., Bilal, M., Chaubey, S. K., Ahmadini, A. A. H., z -conformally flat LP-Kenmotsu Manifolds and Ricci–Yamabe Solitons, Mathematics, 11(1) (2023), 212.
  • [9] Li, Y., Haseeb, A., Ali, M., LP-Kenmotsu manifolds admitting J-Ricci solitons and spacetime, J. Math., 2022(1) (2022), 6605127.
  • [10] Mantica, C. A., Molinari, L. G., Riemann compatible tensors, Colloq. Math., 128(2) (2012), 197–200.
  • [11] Mantica, C. A., Molinari, L. G., Weakly w3-symmetric manifolds, Acta Math. Hung., 135 (2012), 80–96.
  • [12] Mantica, C. A., Suh, Y. J., Pseudo Q-symmetric Riemannian manifolds, Int. J. Geom. Methods Mod. Phys., 10(5) (2013), 1–25.
  • [13] Matsumoto, K., On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci., 12(2) (1989), 151–156.
  • [14] Prakasha, D. G., Hadimani, B. S., On the conharmonic curvature tensor of Kenmotsu manifolds with generalized Tanaka-Webster connection, Miskolc Math. Notes, 19(1) (2018), 491–503.
  • [15] Prakasha, D. G., Turki, N. B., Deepika, M. V., Unal, I., On LP-Kenmotsu Manifold with Regard to Generalized Symmetric Metric Connection of Type (a;b), Mathematics, 12(18) (2024), 2915.
  • [16] Prasad, R., Haseeb, A., Gautam, U. K., On y-semisymmetric LP-Kenmotsu manifolds with a QSNM connection admitting Ricci solitons, Kragujevac J. Math., 45(5) (2021), 815–827.
  • [17] Prasad, R., Verma, A., Yadav, V. S., Characterization of y-symmetric Lorentzian para-Kenmotsu manifolds, Facta Univ., Ser. Math. Inform., 38(3) (2023), 635–647.
  • [18] Prasad, R., Haseeb, A., Verma, A., Yadav, V. S., A study of y-Ricci symmetric LP-Kenmotsu manifolds, Int. J. Maps Math., 7(1) (2024), 33–44.
  • [19] Sinha, B. B., Prasad, K. L. S., A class of almost para contact metric manifold, Bull. Calcutta Math. Soc., 87(4) (1995), 307–312.
  • [20] Sundriyal, S., Haseeb, A., Generalized Tanaka-Webster connection on b-Kenmotsu manifolds, Int. J. Maps Math., 7(2) (2024), 258–272.
  • [21] Perktas¸, S. Y., Acet, B. E., Kılıc¸, E., Kenmotsu Manifolds with Generalized Tanaka-Webster Connection, J. Univ. Math., 3(2) (2013), 79–93.
  • [22] Takahashi, T., Sasakian y-symmetric spaces, Tohoku Math. J., 29 (1977), 91–113.
  • [23] Tanaka, N., On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Jpn. J. Math. (N.S.), 2(1) (1976), 131–190.
  • [24] Tanno, S., Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc., 314(1) (1989), 349–379.
  • [25] U¨ nal, I˙., Generic submanifolds of Lorentzian para-Kenmotsu manifold, Karamanoglu Mehmetbey Univ. J. Eng. Nat. Sci., 3(2) (2021), 79–85.
  • [26] Webster, S. M., Pseudo-Hermitian structures on a real hypersurface, J. Differ. Geom., 13(1) (1978), 25–41.
  • [27] Yadav, S., Yildiz, A., Q-curvature tensor on f -Kenmotsu 3-manifolds, Univ. J. Math. Appl., 5(3) (2022), 96–106.
  • [28] Yildirim, R., Kaya, C., A note on Kenmotsu manifolds admitting generalized Tanaka Webster connection, J. Univ. Math., 5(2) (2022), 122–128.
  • [29] Yildirim, M., A new characterization of Kenmotsu manifolds with respect to Q tensor, J. Geom. Phys., 176 (2022), 104498.
  • [30] Yilmaz, B. H., Sasakian manifolds satisfying certain conditions Q tensor, J. Geom., 111 (2020), 1–10.
  • [31] U¨ nal, I˙., Altın, M., N (k)-Contact Metric Manifolds with Generalized Tanaka-Webster Connection, Filomat, 35(4) (2021), 1383–1392.
  • [32] Sari, R., Some properties curvature of Lorentzian Kenmotsu manifolds, Appl. Math. Nonlinear Sci., 5(1) (2020), 283–292.
  • [33] Ayar, G., Some Curvature Tensor Relations on Nearly Cosymplectic Manifolds with Tanaka-Webster Connection, Univ. J. Math. Appl., 5(1) (2022), 24–31.
  • [34] Yıldırım, M., A new characterization of Kenmotsu manifolds with respect to Q tensor, J. Geom. Phys., 176 (2022), 104498.
There are 34 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Article
Authors

Prakasha D. G.

M.v. Deepika

İnan Ünal 0000-0003-1318-9685

Publication Date October 31, 2025
Submission Date January 31, 2025
Acceptance Date June 30, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA D. G., P., Deepika, M., & Ünal, İ. (2025). Symmetry and Curvature in LP-Kenmotsu Manifolds with Generalized Tanaka-Webster Connection. Konuralp Journal of Mathematics, 13(2), 190-197.
AMA D. G. P, Deepika M, Ünal İ. Symmetry and Curvature in LP-Kenmotsu Manifolds with Generalized Tanaka-Webster Connection. Konuralp J. Math. October 2025;13(2):190-197.
Chicago D. G., Prakasha, M.v. Deepika, and İnan Ünal. “Symmetry and Curvature in LP-Kenmotsu Manifolds With Generalized Tanaka-Webster Connection”. Konuralp Journal of Mathematics 13, no. 2 (October 2025): 190-97.
EndNote D. G. P, Deepika M, Ünal İ (October 1, 2025) Symmetry and Curvature in LP-Kenmotsu Manifolds with Generalized Tanaka-Webster Connection. Konuralp Journal of Mathematics 13 2 190–197.
IEEE P. D. G., M. Deepika, and İ. Ünal, “Symmetry and Curvature in LP-Kenmotsu Manifolds with Generalized Tanaka-Webster Connection”, Konuralp J. Math., vol. 13, no. 2, pp. 190–197, 2025.
ISNAD D. G., Prakasha et al. “Symmetry and Curvature in LP-Kenmotsu Manifolds With Generalized Tanaka-Webster Connection”. Konuralp Journal of Mathematics 13/2 (October2025), 190-197.
JAMA D. G. P, Deepika M, Ünal İ. Symmetry and Curvature in LP-Kenmotsu Manifolds with Generalized Tanaka-Webster Connection. Konuralp J. Math. 2025;13:190–197.
MLA D. G., Prakasha et al. “Symmetry and Curvature in LP-Kenmotsu Manifolds With Generalized Tanaka-Webster Connection”. Konuralp Journal of Mathematics, vol. 13, no. 2, 2025, pp. 190-7.
Vancouver D. G. P, Deepika M, Ünal İ. Symmetry and Curvature in LP-Kenmotsu Manifolds with Generalized Tanaka-Webster Connection. Konuralp J. Math. 2025;13(2):190-7.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.