Research Article
BibTex RIS Cite

On Binomial Transforms: A Study of All Horadam-Type Sequences

Year 2025, Volume: 13 Issue: 2, 198 - 211, 31.10.2025

Abstract

This article establishes general recurrence relations, including the binomial transform, for all integer sequences with a second-order recurrence relation commonly studied in the literature. We introduce a new generalization of binomial transforms for Horadam-type sequences and investigate the binomial, $k-$binomial, falling $% k-$binomial, and rising $k-$binomial transforms on these sequences. Additionally, we derive the corresponding recurrence relations, Binet formulas, generating functions and Pascal's triangle for each of the four transforms.

References

  • [1] S. Falcon, A. Plaza, Binomial transforms of the k􀀀Fibonacci sequence, Int. J. Nonlinear Sci. Numer. Simul., 10(11-12), (2009), 1527-1538.
  • [2] Y. Kwon, A note on the modified k􀀀Fibonacci-like sequence, Communication of the Korean Mathematical Society, 31, (2016), 1–16.
  • [3] Y. Kwon, Binomial transforms of the modified k􀀀Fibonacci-like sequence, Int. J. Math. Comput. Sci., 14(1), (2019), 47-59.
  • [4] F. Kaplan and A. Ozkoc¸ Oztu¨rk, Binomial transforms of k􀀀Narayana sequences and some properties. Fundam. J. Math. Appl. 7(3), (2024),137-46.
  • [5] S. Uygun and O. Haklıdır, The properties of binomial transforms for modified (s;t)􀀀Pell matrix sequence. Communications in Advanced Mathematical Sciences, 7(3), (2024), 168-77.
  • [6] F. Kaplan and A. Ozkoc Ozturk, On the binomial transforms of the Horadam quaternion sequence, Mathematical Methods in the Applied Sciences, 45(8), (2022),12009-12022.
  • [7] A. Ozkoc¸ Ozturk, E. Gunduz, Binomial transform for quadra Fibona-Pell sequence and Quadra Fibona-Pell quaternion, Univ. J. Math. Appl., 5(4), (2022), 145-155.
  • [8] Y. Soykan, Binomial transform of the generalized tribonacci sequence, Asian Res. J. Math., 16(10), (2020), 26-55.
  • [9] Y. Soykan, Binomial transform of the generalized third order Pell sequence, Commun. Math. Appl., 12(1), (2021), 71-94.
  • [10] Y. Soykan, Binomial transform of the generalized fourth order Pell sequence, Arch. Current Res. Internat., 21(6), (2021), 9-31.
  • [11] Y. Soykan, On binomial transform of the generalized fifth order Pell Sequence, Asian J. Adv. Res. Rep., 5(9), (2021), 18-29.
  • [12] Y. Soykan, Notes on binomial transform of the generalized Narayana sequence, Earthline J. Math. Sci., 7(1), (2021), 77-111.
  • [13] Y. Soykan, Binomial transform of the generalized pentanacci sequence, Asian Res. J. Current Sci., 3(1), (2021), 209-231.
  • [14] Y. Soykan, E. Tasdemir, N. Ozmen, On binomial transform of the generalized Jacobsthal-Padovan numbers, Int. J. Nonlinear Anal. Appl., 14(1), (2023), 643-666.
  • [15] Y. Alp, The generalized binomial transform of the bivariate Fibonacci and Lucas p􀀀polynomials, Math. Sci. Appl. E-Notes, 13(2), (2025), 65-72.
  • [16] A.F. Horadam, Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, 3(3), (1965), 161-176.
  • [17] A.F. Horadam, Generating functions for powers of a certain generalized sequence of numbers, Duke Math J.,32(3), (1965), 437-446.
  • [18] P. Bhadouria, D. Jhala, B. Singh, Binomial transforms of the k-Lucas sequence, J. Math. Comput. Sci., 8(1), (2014), 81-92.
  • [19] S. Uygun, A. Erdogdu, Binomial transforms of k-Jacobsthal sequences, J. Math. Comput. Sci., 7(6), (2017), 1100-1114.
  • [20] M.Z. Spivey, L.L. Steil, The k􀀀binomial transforms and the Hankel transform, Journal of Integer Sequences. 9(1), (2006), 1-19.

Year 2025, Volume: 13 Issue: 2, 198 - 211, 31.10.2025

Abstract

References

  • [1] S. Falcon, A. Plaza, Binomial transforms of the k􀀀Fibonacci sequence, Int. J. Nonlinear Sci. Numer. Simul., 10(11-12), (2009), 1527-1538.
  • [2] Y. Kwon, A note on the modified k􀀀Fibonacci-like sequence, Communication of the Korean Mathematical Society, 31, (2016), 1–16.
  • [3] Y. Kwon, Binomial transforms of the modified k􀀀Fibonacci-like sequence, Int. J. Math. Comput. Sci., 14(1), (2019), 47-59.
  • [4] F. Kaplan and A. Ozkoc¸ Oztu¨rk, Binomial transforms of k􀀀Narayana sequences and some properties. Fundam. J. Math. Appl. 7(3), (2024),137-46.
  • [5] S. Uygun and O. Haklıdır, The properties of binomial transforms for modified (s;t)􀀀Pell matrix sequence. Communications in Advanced Mathematical Sciences, 7(3), (2024), 168-77.
  • [6] F. Kaplan and A. Ozkoc Ozturk, On the binomial transforms of the Horadam quaternion sequence, Mathematical Methods in the Applied Sciences, 45(8), (2022),12009-12022.
  • [7] A. Ozkoc¸ Ozturk, E. Gunduz, Binomial transform for quadra Fibona-Pell sequence and Quadra Fibona-Pell quaternion, Univ. J. Math. Appl., 5(4), (2022), 145-155.
  • [8] Y. Soykan, Binomial transform of the generalized tribonacci sequence, Asian Res. J. Math., 16(10), (2020), 26-55.
  • [9] Y. Soykan, Binomial transform of the generalized third order Pell sequence, Commun. Math. Appl., 12(1), (2021), 71-94.
  • [10] Y. Soykan, Binomial transform of the generalized fourth order Pell sequence, Arch. Current Res. Internat., 21(6), (2021), 9-31.
  • [11] Y. Soykan, On binomial transform of the generalized fifth order Pell Sequence, Asian J. Adv. Res. Rep., 5(9), (2021), 18-29.
  • [12] Y. Soykan, Notes on binomial transform of the generalized Narayana sequence, Earthline J. Math. Sci., 7(1), (2021), 77-111.
  • [13] Y. Soykan, Binomial transform of the generalized pentanacci sequence, Asian Res. J. Current Sci., 3(1), (2021), 209-231.
  • [14] Y. Soykan, E. Tasdemir, N. Ozmen, On binomial transform of the generalized Jacobsthal-Padovan numbers, Int. J. Nonlinear Anal. Appl., 14(1), (2023), 643-666.
  • [15] Y. Alp, The generalized binomial transform of the bivariate Fibonacci and Lucas p􀀀polynomials, Math. Sci. Appl. E-Notes, 13(2), (2025), 65-72.
  • [16] A.F. Horadam, Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, 3(3), (1965), 161-176.
  • [17] A.F. Horadam, Generating functions for powers of a certain generalized sequence of numbers, Duke Math J.,32(3), (1965), 437-446.
  • [18] P. Bhadouria, D. Jhala, B. Singh, Binomial transforms of the k-Lucas sequence, J. Math. Comput. Sci., 8(1), (2014), 81-92.
  • [19] S. Uygun, A. Erdogdu, Binomial transforms of k-Jacobsthal sequences, J. Math. Comput. Sci., 7(6), (2017), 1100-1114.
  • [20] M.Z. Spivey, L.L. Steil, The k􀀀binomial transforms and the Hankel transform, Journal of Integer Sequences. 9(1), (2006), 1-19.
There are 20 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Faruk Kaplan 0000-0002-6860-1553

Arzu Özkoç Öztürk 0000-0002-2196-3725

Publication Date October 31, 2025
Submission Date May 23, 2025
Acceptance Date September 19, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Kaplan, F., & Özkoç Öztürk, A. (2025). On Binomial Transforms: A Study of All Horadam-Type Sequences. Konuralp Journal of Mathematics, 13(2), 198-211.
AMA Kaplan F, Özkoç Öztürk A. On Binomial Transforms: A Study of All Horadam-Type Sequences. Konuralp J. Math. October 2025;13(2):198-211.
Chicago Kaplan, Faruk, and Arzu Özkoç Öztürk. “On Binomial Transforms: A Study of All Horadam-Type Sequences”. Konuralp Journal of Mathematics 13, no. 2 (October 2025): 198-211.
EndNote Kaplan F, Özkoç Öztürk A (October 1, 2025) On Binomial Transforms: A Study of All Horadam-Type Sequences. Konuralp Journal of Mathematics 13 2 198–211.
IEEE F. Kaplan and A. Özkoç Öztürk, “On Binomial Transforms: A Study of All Horadam-Type Sequences”, Konuralp J. Math., vol. 13, no. 2, pp. 198–211, 2025.
ISNAD Kaplan, Faruk - Özkoç Öztürk, Arzu. “On Binomial Transforms: A Study of All Horadam-Type Sequences”. Konuralp Journal of Mathematics 13/2 (October2025), 198-211.
JAMA Kaplan F, Özkoç Öztürk A. On Binomial Transforms: A Study of All Horadam-Type Sequences. Konuralp J. Math. 2025;13:198–211.
MLA Kaplan, Faruk and Arzu Özkoç Öztürk. “On Binomial Transforms: A Study of All Horadam-Type Sequences”. Konuralp Journal of Mathematics, vol. 13, no. 2, 2025, pp. 198-11.
Vancouver Kaplan F, Özkoç Öztürk A. On Binomial Transforms: A Study of All Horadam-Type Sequences. Konuralp J. Math. 2025;13(2):198-211.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.