Research Article
BibTex RIS Cite

Year 2025, Volume: 13 Issue: 2, 264 - 269, 31.10.2025

Abstract

References

  • [1] Akram M. Bipolar fuzzy soft Lie algebras. Quasigroups and related systems 2013; 21(1): 1–10.
  • [2] Akram M, Feng F. Soft intersection Lie algebras. Quasigroups and Related Systems 2013; 21(1): 11–18.
  • [3] Aktas H, Cagman N. Soft sets and soft groups. Information Sciences 2007; 77(13): 2726–2735. https://doi.org/10.1016/j.ins.2006.12.008
  • [4] Amini M, Heydari A, Toomanian M. Lie hypergroups. Journal of Lie Theory 2013; 23(1): 127–142. [5] Belinfante JGF, Kolman B. A survey of Lie groups and Lie algebras with applications and computational methods. Second Edition, 1989.
  • [6] Coelho P, Nunes U. Lie algebra application to mobile robot control : a tutorial. Robotica 2003; 21(5): 483 – 493.
  • [7] Cagman N, Citak F, Aktas H. Soft int-group and its applications to group theory. Neural Computing and Applications 2012; 21(1) : 151–158.10. https://doi.org/10.1007/s00521-011-0752-x
  • [8] Cagman N, Enginoglu S. Soft set theory and uniint decision making. European journal of operational research 2010; 207(2): 848–855. https://doi.org/10.1016/j.ejor.2010.05.004
  • [9] Estaji AA, Eghdami H, Haghdadi T. Category of soft Lie algebra. Soft Computing 2020; 24(5): 3067–3076. https://doi.org/10.1007/s00500-019-04583-2.
  • [10] Gilmore R. Lie groups, Lie algebras, and some of their applications. Courier Corporation, 2006.
  • [11] Carinena, J. F., Ramos, A. Applications of Lie systems in quantum mechanics and control theory. arXiv preprint math-ph/0305021, 2003.
  • [12] Kazanci O, Yilmaz S, Yamak S. Soft sets and soft BCH-algebras. Hacettepe Journal of Mathematics and Statistics 2010; 39(2) : 205–217.
  • [13] Maji PK, Biswas R, Roy AR. Soft set theory, Computers and Mathematics with Applications 2003; 45(4-5): 555–562. https://doi.org/10.1016/S0898- 1221(03)00016-6.
  • [14] Molodtsov DA. Soft set theory-First results. Computers and Mathematics with Applications 1999; 37(4-5): 19–31.
  • [15] Nazmul S, Samanta SK. Soft topological groups, Kochi Journal of Mathematics 2010; 5: 151–161.
  • [16] Oguz G, Icen I, Gursoy MH. Actions of soft groups. Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics 2019; 68(1): 1163–1174.
  • [17] Oguz G, Gursoy MH, Icen I. On soft topological categories. Hacettepe Journal of Mathematics and Statistics 2019; 48(6): 1675–1681. https://doi.org/10.15672/HJMS.2018.600
  • [18] Oguz G. Soft topological transformation groups. Mathematics 2020; 8(9) : 1545. https://doi.org/10.3390/math8091545
  • [19] Oguz G. On soft topological hypergroups. Journal of Hyperstructures 2020; 9(2): 81–95.
  • [20] Shabir M, Naz M. On soft topological spaces. Computers and Mathematics with Applications 2011; 61(7): 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006.
  • [21] Oguz G, Icen I, Gursoy M.H, Lie Rough Groups, Filomat,32:16 (2018), 57355741
  • [22] Toomanian M, Amini M, Heydari A. Representations of double coset Lie hypergoups, Iranian Journal of Mathematical Sciences and Informatics 2016; 11: 87–96. https://doi.org/10.7508/ijmsi.2016.02.006.
  • [23] Oguz G, Icen I, Gursoy M.H, A new concept in the soft theory: soft groupoids, Southeast Asian Bulletin of Mathematics 44 (4), 555-565
  • [24] Zou Y, Xiao Z. Data analysis approaches of soft sets under incomplete information. Knowledge-Based Systems 2008; 21(8): 941–945. https://doi.org/10.1016/j.knosys.2008.04.004.
  • [25] Oguz G, Gursoy M.H, Icen I, A soft approach to ring-groupoids,ITM Web of Conferences (Vol. 22, p. 01012). EDP Sciences, 2018.

A Soft View on Lie Groups and Lie Hypergroups

Year 2025, Volume: 13 Issue: 2, 264 - 269, 31.10.2025

Abstract

The aim of this paper is to conclude and investigate the concepts of soft Lie groups over a Lie group and soft Lie hypergroups over a Lie hypergroup. Some important soft Lie constructions are suggested, several results and examples are obtained. Morever, two new categories of the soft Lie groups and soft Lie hypergroups are presented, and substructures of these concepts are studied in detail. Finally, relations between different soft algebraic structures of the soft Lie groups and soft Lie hypergroups are examined.

References

  • [1] Akram M. Bipolar fuzzy soft Lie algebras. Quasigroups and related systems 2013; 21(1): 1–10.
  • [2] Akram M, Feng F. Soft intersection Lie algebras. Quasigroups and Related Systems 2013; 21(1): 11–18.
  • [3] Aktas H, Cagman N. Soft sets and soft groups. Information Sciences 2007; 77(13): 2726–2735. https://doi.org/10.1016/j.ins.2006.12.008
  • [4] Amini M, Heydari A, Toomanian M. Lie hypergroups. Journal of Lie Theory 2013; 23(1): 127–142. [5] Belinfante JGF, Kolman B. A survey of Lie groups and Lie algebras with applications and computational methods. Second Edition, 1989.
  • [6] Coelho P, Nunes U. Lie algebra application to mobile robot control : a tutorial. Robotica 2003; 21(5): 483 – 493.
  • [7] Cagman N, Citak F, Aktas H. Soft int-group and its applications to group theory. Neural Computing and Applications 2012; 21(1) : 151–158.10. https://doi.org/10.1007/s00521-011-0752-x
  • [8] Cagman N, Enginoglu S. Soft set theory and uniint decision making. European journal of operational research 2010; 207(2): 848–855. https://doi.org/10.1016/j.ejor.2010.05.004
  • [9] Estaji AA, Eghdami H, Haghdadi T. Category of soft Lie algebra. Soft Computing 2020; 24(5): 3067–3076. https://doi.org/10.1007/s00500-019-04583-2.
  • [10] Gilmore R. Lie groups, Lie algebras, and some of their applications. Courier Corporation, 2006.
  • [11] Carinena, J. F., Ramos, A. Applications of Lie systems in quantum mechanics and control theory. arXiv preprint math-ph/0305021, 2003.
  • [12] Kazanci O, Yilmaz S, Yamak S. Soft sets and soft BCH-algebras. Hacettepe Journal of Mathematics and Statistics 2010; 39(2) : 205–217.
  • [13] Maji PK, Biswas R, Roy AR. Soft set theory, Computers and Mathematics with Applications 2003; 45(4-5): 555–562. https://doi.org/10.1016/S0898- 1221(03)00016-6.
  • [14] Molodtsov DA. Soft set theory-First results. Computers and Mathematics with Applications 1999; 37(4-5): 19–31.
  • [15] Nazmul S, Samanta SK. Soft topological groups, Kochi Journal of Mathematics 2010; 5: 151–161.
  • [16] Oguz G, Icen I, Gursoy MH. Actions of soft groups. Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics 2019; 68(1): 1163–1174.
  • [17] Oguz G, Gursoy MH, Icen I. On soft topological categories. Hacettepe Journal of Mathematics and Statistics 2019; 48(6): 1675–1681. https://doi.org/10.15672/HJMS.2018.600
  • [18] Oguz G. Soft topological transformation groups. Mathematics 2020; 8(9) : 1545. https://doi.org/10.3390/math8091545
  • [19] Oguz G. On soft topological hypergroups. Journal of Hyperstructures 2020; 9(2): 81–95.
  • [20] Shabir M, Naz M. On soft topological spaces. Computers and Mathematics with Applications 2011; 61(7): 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006.
  • [21] Oguz G, Icen I, Gursoy M.H, Lie Rough Groups, Filomat,32:16 (2018), 57355741
  • [22] Toomanian M, Amini M, Heydari A. Representations of double coset Lie hypergoups, Iranian Journal of Mathematical Sciences and Informatics 2016; 11: 87–96. https://doi.org/10.7508/ijmsi.2016.02.006.
  • [23] Oguz G, Icen I, Gursoy M.H, A new concept in the soft theory: soft groupoids, Southeast Asian Bulletin of Mathematics 44 (4), 555-565
  • [24] Zou Y, Xiao Z. Data analysis approaches of soft sets under incomplete information. Knowledge-Based Systems 2008; 21(8): 941–945. https://doi.org/10.1016/j.knosys.2008.04.004.
  • [25] Oguz G, Gursoy M.H, Icen I, A soft approach to ring-groupoids,ITM Web of Conferences (Vol. 22, p. 01012). EDP Sciences, 2018.
There are 24 citations in total.

Details

Primary Language English
Subjects Operations Research İn Mathematics
Journal Section Articles
Authors

Gülay Oğuz

Ercan Celık 0000-0001-5971-7653

Publication Date October 31, 2025
Submission Date June 10, 2025
Acceptance Date October 30, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Oğuz, G., & Celık, E. (2025). A Soft View on Lie Groups and Lie Hypergroups. Konuralp Journal of Mathematics, 13(2), 264-269.
AMA Oğuz G, Celık E. A Soft View on Lie Groups and Lie Hypergroups. Konuralp J. Math. October 2025;13(2):264-269.
Chicago Oğuz, Gülay, and Ercan Celık. “A Soft View on Lie Groups and Lie Hypergroups”. Konuralp Journal of Mathematics 13, no. 2 (October 2025): 264-69.
EndNote Oğuz G, Celık E (October 1, 2025) A Soft View on Lie Groups and Lie Hypergroups. Konuralp Journal of Mathematics 13 2 264–269.
IEEE G. Oğuz and E. Celık, “A Soft View on Lie Groups and Lie Hypergroups”, Konuralp J. Math., vol. 13, no. 2, pp. 264–269, 2025.
ISNAD Oğuz, Gülay - Celık, Ercan. “A Soft View on Lie Groups and Lie Hypergroups”. Konuralp Journal of Mathematics 13/2 (October2025), 264-269.
JAMA Oğuz G, Celık E. A Soft View on Lie Groups and Lie Hypergroups. Konuralp J. Math. 2025;13:264–269.
MLA Oğuz, Gülay and Ercan Celık. “A Soft View on Lie Groups and Lie Hypergroups”. Konuralp Journal of Mathematics, vol. 13, no. 2, 2025, pp. 264-9.
Vancouver Oğuz G, Celık E. A Soft View on Lie Groups and Lie Hypergroups. Konuralp J. Math. 2025;13(2):264-9.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.