Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 61 - 72, 31.12.2021
https://doi.org/10.53410/koufbd.904836

Öz

Kaynakça

  • [1] Ayati B., Molineux C., Newport,D., Cheeseman C., 2019. Manufacture and performance of lightweight aggregate from waste drill cuttings. Journal of Cleaner Production, 208, 252-260.
  • [2] Kalpana M., Tayu A., 2020. Experimental investigation on lightweight concrete added with industrial waste (steel waste). Materials Today: Proceedings, 22, 887-889.
  • [3] Aslam M., Shafigh P., Nomeli M. A., Jumaat M., Z., 2017. Manufacturing of high-strength lightweight aggregate concrete using blended coarse lightweight aggregates. Journal of Building Engineering, 13, 53-62.
  • [4] Gündüz L., Şapcı N., Bekar M., Yorgun S., 2006. Genleşmiş kilin hafif agrega olarak kullanılabilirliği. Kil Bilimi ve Teknolojisi Dergisi, 1(2), 43-49.
  • [5] Arıöz Ö., Karasu B., Korkut M., Tuncan A., Tuncan M., 2005. Genleştirilmiş kil agregası üretimi Expanded Clay Aggregate Productıon.
  • [6] Ahmad M. R., Chen B., Shah S. F. A., 2019. Investigate the influence of expanded clay aggregate and silica fume on the properties of lightweight concrete. Construction and Building Materials, 220, 253-266.
  • [7] Chung S. Y., Elrahman M. A., Kim J. S., Han T. S., Stephan D., Sikora P., 2019. Comparison of lightweight aggregate and foamed concrete with the same density level using image-based characterizations. Construction and Building Materials, 211, 988-999
  • [8] Napolano L., Menna C., Graziano S. F., Asprone D., D’Amore M., de Gennaro R., Dondi M., 2016. Environmental life cycle assessment of lightweight concrete to support recycled materials selection for sustainable design. Construction and Building Materials, 119, 370-384.
  • [9] Yıldırım S. T., BABA E., 2018. Bims agregalı ve genleştirilmiş perlit agregalı hafif kompozit harçların özelliklerinin deneysel olarak incelenmesi. Kocaeli Üniversitesi Fen Bilimleri Dergisi, 1(1), 47-52.
  • [10] Styron R. W., 1986. U.S. Patent No. 4,624,711. Washington DC: U.S. Patent and Trademark Office.
  • [11] Yang K. H., Song J. K., Lee J. S. 2010. Properties of alkali-activated mortar and concrete using lightweight aggregates. Materials and structures, 43(3), 403-416.
  • [12] Tang X., Zhao C., Yang Y., Dong F., Lu X. 2020. Amphoteric polycarboxylate superplasticizers with enhanced clay tolerance: Preparation performance and mechanism. Construction and Building Materials, 252, 119052.
  • [13] Ardakani A., Yazdani M., 2014. The relation between particle density and static elastic moduli of lightweight expanded clay aggregates. Applied Clay Science, 93, 28-34.
  • [14] Rashad A. M., 2018. Lightweight expanded clay aggregate as a building material–an overview. Construction and Building Materials, 170, 757-775.
  • [15] Ozguven A., Gunduz L., 2012. Examination of effective parameters for the production of expanded clay aggregate. Cement and Concrete composites, 34(6), 781-787.
  • [16] Kalhori E. M., Yetilmezsoy K., Uygur N., Zarrabi M., Shmeis R. M. A., 2013. Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA). Applied Surface Science, 287, 428-442.
  • [17] Janowska-Renkas E., 2015. The influence of the chemical structure of polycarboxylic superplasticizers on their effectiveness in cement pastes. Procedia Engineering, 108, 575-583.
  • [18] Kismi M., Saint-Arroman J. C., Mounanga P., 2012. Minimizing water dosage of superplasticized mortars and concretes for a given consistency. Construction and Building Materials, 28(1), 747-758.
  • [19] Adhikary S. K., Rudzionis Z., 2020. Influence of expanded glass aggregate size, aerogel and binding materials volume on the properties of lightweight concrete. Materials Today: Proceedings.
  • [20] Kawai T., Okada T., 1989. Effect of superplasticizer and viscosity-increasing admixture on properties of lightweight aggregate concrete. Special Publication, 119, 583-604.
  • [21] Bogas J. A., Nogueira R., Almeida N. G., 2014. Influence of mineral additions and different compositional parameters on the shrinkage of structural expanded clay lightweight concrete. Materials & Design, (1980-2015) 56, 1039-1048.
  • [22] Şimşek O., Aruntaş H., Demir İ., 2007. Beton üretiminde süper akışkanlaştırıcı çeşitive oranının belirlenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 22(4).
  • [23] Duyar O., Aykan G., Tezel O. O., 2005. Akışkanlaştırıcı katkı teknolojisinin yeni sınırları ve uygulama örnekleri. 1. Yapılarda Kimyasal Katkılar Sempozyumu Sempozyum Bildiriler Kitabı, 233-246.
  • [24] Peng J., Deng D., Huang H., Yuan Q., Peng J., (2015). Influence of superplasticizer on the rheology of fresh cement asphalt paste. Case studies in construction materials, 3, 9-18.
  • [25] Yang K. H., Kim G. H., Choi Y. H., 2014. An initial trial mixture proportioning procedure for structural lightweight aggregate concrete. Construction and Building Materials, 55, 431-439.
  • [26] Nepomuceno M. C., Pereira-de-Oliveira L. A., Pereira S. F., 2018. Mix design of structural lightweight self-compacting concrete incorporating coarse lightweight expanded clay aggregates. Construction and Building Materials, 166, 373-385.
  • [27] Bogas J. A., de Brito J., Figueiredo J. M., 2015. Mechanical characterization of concrete produced with recycled lightweight expanded clay aggregate concrete. Journal of Cleaner Production, 89, 187-195.
  • [28] Le Roy, R., Parant E., Boulay C., 2005. Taking into account the inclusions' size in lightweight concrete compressive strength prediction. Cement and Concrete Research, 35(4), 770-775.
  • [29] Lo T. Y., Cui H. Z., 2004. Effect of porous lightweight aggregate on strength of concrete. Materials Letters, 58(6), 916-919.
  • [30] Shafigh P., Ghafari H., Mahmud H. B., Jumaat M. Z., 2014. A comparison study of the mechanical properties and drying shrinkage of oil palm shell and expanded clay lightweight aggregate concretes. Materials & Design, 60, 320-327.
  • [31] Nahhab A. H., Ketab A. K., 2020. Influence of content and maximum size of light expanded clay aggregate on the fresh, strength, and durability properties of self-compacting lightweight concrete reinforced with micro steel fibers. Construction and Building Materials, 233, 117922.
  • [32] Sousa H., Carvalh, A., Melo A., 2004, July. A new sound insulation lightweight concrete masonry block. Design and experimental characterization. In Proceedings of the 13th International Brick and Block Masonry Conference.
  • [33] Zach J., Hubertova M., Hroudova J., 2009. Possibilities of determination of thermal conductivity of lightweight concrete with utilization of non stationary hot-wire method. In The 10th İnternational Conference Of The Slovenian Society For Non-Destructive Testing, Ljubljana, Slovenia. Citeseer.
  • [34] Bastos A. M., Sousa H., Melo A. F., 2005. Methodology for the design of lightweight concrete with expanded clay aggregates. The Masonry Society Journal, 23(1), 73-84.
  • [35] Hubertova M., Hela R., 2009. Ultra light-weight self consolidating concrete. In Challenges, Opportunities and Solutions in Structural Engineering and Construction, (pp. 597-602). CRC Press
  • [36] Bogas J. A., Gomes M. G., Real S., 2015. Capillary absorption of structural lightweight aggregate concrete. Materials and Structures, 48(9), 2869-2883.
  • [37] Real S., Bogas J. A., Pontes J., 2015. Chloride migration in structural lightweight aggregate concrete produced with different binders. Construction and Building Materials, 98, 425-436.
  • [38] El-Gamal S. M., Al-Nowaiser F. M., Al-Baity A. O., 2012. Effect of superplasticizers on the hydration kinetic and mechanical properties of Portland cement pastes. Journal of Advanced Research, 3(2), 119-124.
  • [39] Fuller W.B., Thompson S.E., 1907. The laws of proportioning concrete. Asian Journal Of Civil Engineering Transport Volume, 59, Pages 67-14.
  • [40] Guardia, C., Schicchi, D. S., Caggiano, A., Barluenga, G., Koenders, E. (2020, February). On the capillary water absorption of cement-lime mortars containing phase change materials: Experiments and simulations. In Building Simulation, (Vol. 13, No. 1, pp. 19-31). Tsinghua University Press.

Genleştirilmiş Kil İle Yapılan Hafif Agregalı Harçta Süperakışkanlaştırıcı Katkı Kullanımının Araştırılması

Yıl 2021, , 61 - 72, 31.12.2021
https://doi.org/10.53410/koufbd.904836

Öz

Hafif agregalarla yapılan hafif betonlar genel olarak; geleneksel betona göre daha düşük birim hacim ağırlığa, daha iyi ısı yalıtım ve yangın direnci özelliklerine sahiptirler. Önemli hafif agregalar arasında yer alan genleştirilmiş kil agregası (GKA) en iyi basınç değeri veren hafif agregalar arasında yer almaktadır. Bu çalışmada agrega olarak 0-500 µm, 0-3 mm, 3-8 mm, 8-16 mm ebatlarında GKA ve 4 farklı süperakışkanlaştırıcı katkı malzemesi (SA) kullanılarak, su/çimento (S/C) oranı 0.40, 0.45, 0.50 oranlarında hazırlanan numuneler üzerinde fiziksel ve mekanik deneyler yapılmıştır. Yapılan yayılma, basınç dayanımı, birim ağırlık, su emme ve kılcal su emme deneylerinin sonuçları değerlendirildiğinde, çalışmada kullanılan süperakışkanlaştırıcı katkıların bu hafif agregalı beton için uygun tipte olduğu anlaşılmıştır.

Kaynakça

  • [1] Ayati B., Molineux C., Newport,D., Cheeseman C., 2019. Manufacture and performance of lightweight aggregate from waste drill cuttings. Journal of Cleaner Production, 208, 252-260.
  • [2] Kalpana M., Tayu A., 2020. Experimental investigation on lightweight concrete added with industrial waste (steel waste). Materials Today: Proceedings, 22, 887-889.
  • [3] Aslam M., Shafigh P., Nomeli M. A., Jumaat M., Z., 2017. Manufacturing of high-strength lightweight aggregate concrete using blended coarse lightweight aggregates. Journal of Building Engineering, 13, 53-62.
  • [4] Gündüz L., Şapcı N., Bekar M., Yorgun S., 2006. Genleşmiş kilin hafif agrega olarak kullanılabilirliği. Kil Bilimi ve Teknolojisi Dergisi, 1(2), 43-49.
  • [5] Arıöz Ö., Karasu B., Korkut M., Tuncan A., Tuncan M., 2005. Genleştirilmiş kil agregası üretimi Expanded Clay Aggregate Productıon.
  • [6] Ahmad M. R., Chen B., Shah S. F. A., 2019. Investigate the influence of expanded clay aggregate and silica fume on the properties of lightweight concrete. Construction and Building Materials, 220, 253-266.
  • [7] Chung S. Y., Elrahman M. A., Kim J. S., Han T. S., Stephan D., Sikora P., 2019. Comparison of lightweight aggregate and foamed concrete with the same density level using image-based characterizations. Construction and Building Materials, 211, 988-999
  • [8] Napolano L., Menna C., Graziano S. F., Asprone D., D’Amore M., de Gennaro R., Dondi M., 2016. Environmental life cycle assessment of lightweight concrete to support recycled materials selection for sustainable design. Construction and Building Materials, 119, 370-384.
  • [9] Yıldırım S. T., BABA E., 2018. Bims agregalı ve genleştirilmiş perlit agregalı hafif kompozit harçların özelliklerinin deneysel olarak incelenmesi. Kocaeli Üniversitesi Fen Bilimleri Dergisi, 1(1), 47-52.
  • [10] Styron R. W., 1986. U.S. Patent No. 4,624,711. Washington DC: U.S. Patent and Trademark Office.
  • [11] Yang K. H., Song J. K., Lee J. S. 2010. Properties of alkali-activated mortar and concrete using lightweight aggregates. Materials and structures, 43(3), 403-416.
  • [12] Tang X., Zhao C., Yang Y., Dong F., Lu X. 2020. Amphoteric polycarboxylate superplasticizers with enhanced clay tolerance: Preparation performance and mechanism. Construction and Building Materials, 252, 119052.
  • [13] Ardakani A., Yazdani M., 2014. The relation between particle density and static elastic moduli of lightweight expanded clay aggregates. Applied Clay Science, 93, 28-34.
  • [14] Rashad A. M., 2018. Lightweight expanded clay aggregate as a building material–an overview. Construction and Building Materials, 170, 757-775.
  • [15] Ozguven A., Gunduz L., 2012. Examination of effective parameters for the production of expanded clay aggregate. Cement and Concrete composites, 34(6), 781-787.
  • [16] Kalhori E. M., Yetilmezsoy K., Uygur N., Zarrabi M., Shmeis R. M. A., 2013. Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA). Applied Surface Science, 287, 428-442.
  • [17] Janowska-Renkas E., 2015. The influence of the chemical structure of polycarboxylic superplasticizers on their effectiveness in cement pastes. Procedia Engineering, 108, 575-583.
  • [18] Kismi M., Saint-Arroman J. C., Mounanga P., 2012. Minimizing water dosage of superplasticized mortars and concretes for a given consistency. Construction and Building Materials, 28(1), 747-758.
  • [19] Adhikary S. K., Rudzionis Z., 2020. Influence of expanded glass aggregate size, aerogel and binding materials volume on the properties of lightweight concrete. Materials Today: Proceedings.
  • [20] Kawai T., Okada T., 1989. Effect of superplasticizer and viscosity-increasing admixture on properties of lightweight aggregate concrete. Special Publication, 119, 583-604.
  • [21] Bogas J. A., Nogueira R., Almeida N. G., 2014. Influence of mineral additions and different compositional parameters on the shrinkage of structural expanded clay lightweight concrete. Materials & Design, (1980-2015) 56, 1039-1048.
  • [22] Şimşek O., Aruntaş H., Demir İ., 2007. Beton üretiminde süper akışkanlaştırıcı çeşitive oranının belirlenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 22(4).
  • [23] Duyar O., Aykan G., Tezel O. O., 2005. Akışkanlaştırıcı katkı teknolojisinin yeni sınırları ve uygulama örnekleri. 1. Yapılarda Kimyasal Katkılar Sempozyumu Sempozyum Bildiriler Kitabı, 233-246.
  • [24] Peng J., Deng D., Huang H., Yuan Q., Peng J., (2015). Influence of superplasticizer on the rheology of fresh cement asphalt paste. Case studies in construction materials, 3, 9-18.
  • [25] Yang K. H., Kim G. H., Choi Y. H., 2014. An initial trial mixture proportioning procedure for structural lightweight aggregate concrete. Construction and Building Materials, 55, 431-439.
  • [26] Nepomuceno M. C., Pereira-de-Oliveira L. A., Pereira S. F., 2018. Mix design of structural lightweight self-compacting concrete incorporating coarse lightweight expanded clay aggregates. Construction and Building Materials, 166, 373-385.
  • [27] Bogas J. A., de Brito J., Figueiredo J. M., 2015. Mechanical characterization of concrete produced with recycled lightweight expanded clay aggregate concrete. Journal of Cleaner Production, 89, 187-195.
  • [28] Le Roy, R., Parant E., Boulay C., 2005. Taking into account the inclusions' size in lightweight concrete compressive strength prediction. Cement and Concrete Research, 35(4), 770-775.
  • [29] Lo T. Y., Cui H. Z., 2004. Effect of porous lightweight aggregate on strength of concrete. Materials Letters, 58(6), 916-919.
  • [30] Shafigh P., Ghafari H., Mahmud H. B., Jumaat M. Z., 2014. A comparison study of the mechanical properties and drying shrinkage of oil palm shell and expanded clay lightweight aggregate concretes. Materials & Design, 60, 320-327.
  • [31] Nahhab A. H., Ketab A. K., 2020. Influence of content and maximum size of light expanded clay aggregate on the fresh, strength, and durability properties of self-compacting lightweight concrete reinforced with micro steel fibers. Construction and Building Materials, 233, 117922.
  • [32] Sousa H., Carvalh, A., Melo A., 2004, July. A new sound insulation lightweight concrete masonry block. Design and experimental characterization. In Proceedings of the 13th International Brick and Block Masonry Conference.
  • [33] Zach J., Hubertova M., Hroudova J., 2009. Possibilities of determination of thermal conductivity of lightweight concrete with utilization of non stationary hot-wire method. In The 10th İnternational Conference Of The Slovenian Society For Non-Destructive Testing, Ljubljana, Slovenia. Citeseer.
  • [34] Bastos A. M., Sousa H., Melo A. F., 2005. Methodology for the design of lightweight concrete with expanded clay aggregates. The Masonry Society Journal, 23(1), 73-84.
  • [35] Hubertova M., Hela R., 2009. Ultra light-weight self consolidating concrete. In Challenges, Opportunities and Solutions in Structural Engineering and Construction, (pp. 597-602). CRC Press
  • [36] Bogas J. A., Gomes M. G., Real S., 2015. Capillary absorption of structural lightweight aggregate concrete. Materials and Structures, 48(9), 2869-2883.
  • [37] Real S., Bogas J. A., Pontes J., 2015. Chloride migration in structural lightweight aggregate concrete produced with different binders. Construction and Building Materials, 98, 425-436.
  • [38] El-Gamal S. M., Al-Nowaiser F. M., Al-Baity A. O., 2012. Effect of superplasticizers on the hydration kinetic and mechanical properties of Portland cement pastes. Journal of Advanced Research, 3(2), 119-124.
  • [39] Fuller W.B., Thompson S.E., 1907. The laws of proportioning concrete. Asian Journal Of Civil Engineering Transport Volume, 59, Pages 67-14.
  • [40] Guardia, C., Schicchi, D. S., Caggiano, A., Barluenga, G., Koenders, E. (2020, February). On the capillary water absorption of cement-lime mortars containing phase change materials: Experiments and simulations. In Building Simulation, (Vol. 13, No. 1, pp. 19-31). Tsinghua University Press.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği, Malzeme Üretim Teknolojileri
Bölüm Makaleler
Yazarlar

Berivan Örüç 0000-0001-9489-1083

Salih Yıldırım 0000-0003-0021-0625

Kübra Demir 0000-0001-8215-5767

Yayımlanma Tarihi 31 Aralık 2021
Kabul Tarihi 19 Temmuz 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Örüç, B., Yıldırım, S., & Demir, K. (2021). Genleştirilmiş Kil İle Yapılan Hafif Agregalı Harçta Süperakışkanlaştırıcı Katkı Kullanımının Araştırılması. Kocaeli Üniversitesi Fen Bilimleri Dergisi, 4(2), 61-72. https://doi.org/10.53410/koufbd.904836