Research Article
BibTex RIS Cite

5G Baz İstasyonlarının Kapsama Alanına Yönelik Yol Kaybı Analizleri ve Konumlandırılması

Year 2021, Volume: 4 Issue: 1, 6 - 13, 30.06.2021

Abstract

5G baz istasyonu altyapısı, 4G veya daha önceki nesiller için kullanılan baz istasyonlarından oldukça farklıdır. Halen kullanılan mobil hücresel ağlar 2700MHz’e kadar frekans bantlarını desteklerken, 5G teknolojisinde çok daha yüksek frekansların kullanılacağı planlanmıştır. Kısa dalga boylarına sahip radyo frekansı sinyalleri uzun mesafelerde yüksek oranda zayıflarlar. Bu nedenle geleneksel baz istasyonlarının performans analizindeki yol kaybı modelleri değil, 5G için farklı yol kaybı modelleri incelenmelidir. 5G frekansları için elde edilen yol kaybı modelleri halen geliştirilmektedir. Bu çalışmada, 5G baz istasyonlarının kapsama alanına yönelik yol kaybı modelleri incelenmiştir. Taşıyıcı frekans değerlerine göre 5G sinyalinin çekim mesafeleri çıkarılmıştır ve 5G baz istasyonu konumlandırılması yapılmıştır. Modeller arasında CI modeli frekansa çok az bağımlılık gösterdiğinden dolayı dış ortamlarda kullanılabilir. CIF modelinin yüksek frekanslarda CI modeline göre daha düşük yol kaybı gösterirken, ABG modeli iç mekanlarda yüksek frekanslı sinyallerin modellenmesinde kullanılabilir. Son olarak grafikler MATLAB simülatörü kullanılarak çizdirilmiştir.

Supporting Institution

Recep Tayyip Erdoğan Üniversitesi

Project Number

1

References

  • [1] Al-Samman A., Rahman T., Azmi M., Hindia M., Khan I., Hanafi E., 2016. Statistical modelling and characterization of experimental mm-wave indoor channels for future 5g wireless communication networks. PloS one, 11(9): e0163034.
  • [2] “Teltonika, mobile signal strength recommendations.” [Online].Available: https://wiki.teltonika-networks.com, December 13 2019.
  • [3] Bakhtin A., Omelyanchuk E., Mikhailov V., Semenova A., 2019. 5g base station prototyping: Architectures overview. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Saint Petersburg and Moscow, Russia, pp. 1564–1568.
  • [4] Al-Samman A. M., Abd Rahman T., Azmi M. H., 2018. Indoor corridor wideband radio propagation measurements and channel models for 5g millimeter wave wireless communications at 19 ghz, 28 ghz, and 38 ghz bands. Wireless Communications and Mobile Computing, 2018.
  • [5] Haneda K., Zhang J., Tan L., Liu G., Zheng Y., Asplund H., Li J., Wang Y., Steer D., Li C., et al., 2016. 5g 3gpp-like channel models for outdoor urban microcellular and macrocellular environments. 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, pp. 1-7.
  • [6] Sun S., Rappaport T. S., Thomas T. A., Ghosh A., Nguyen H. C., Kovács I. Z., Rodriguez I., Koymen O., Partyka A., 2016. Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5g wireless communications. IEEE Transactions on Vehicular Technology, 65(5), 2843–2860.
  • [7] Al-Samman A., Rahman T., Azmi M., Nasir J., 2018. Path loss model for indoor emergency stairwell environment at millimeter wave band for 5g network. Turkish Journal of Electrical Engineering and Computer Science, 26(6), 3024–3032.
  • [8] T. Nguyen, “Small cell networks and the evolution of 5g.” [Online].Available: "https://www.qorvo.com/, December 13 2019.
  • [9] “What is a mobile base station.” [Online].Available: "https://www.mobilenetworkguide.com.au/, February 9 2020.
  • [10] “How big of an area and how many people does one cell tower usually cover?.” [Online].Available: "https://www.quora.com/, February 9 2020.
  • [11] Oughton E. J., Frias Z., van der Gaast S., van der Berg R., 2019. Assessing the capacity, coverage and cost of 5g infrastructure strategies: Analysis of the netherlands. Telematics and Informatics, 37, 50–69.
  • [12] Sun S., Rappaport T. S., Rangan S., Thomas T. A., Ghosh A., Kovacs I. Z., Rodriguez I., Koymen O., Partyka A., Jarvelainen J., 2016. Propagation path loss models for 5g urban micro-and macro-cellular scenarios. 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, pp. 1–6.
  • [13] Nassar A. T., Sulyman A. I., Alsanie A., 2015. Radio capacity estimation for millimeter wave 5g cellular networks using narrow beamwidth antennas at the base stations. International Journal of Antennas and Propagation, vol. 2015.
Year 2021, Volume: 4 Issue: 1, 6 - 13, 30.06.2021

Abstract

Project Number

1

References

  • [1] Al-Samman A., Rahman T., Azmi M., Hindia M., Khan I., Hanafi E., 2016. Statistical modelling and characterization of experimental mm-wave indoor channels for future 5g wireless communication networks. PloS one, 11(9): e0163034.
  • [2] “Teltonika, mobile signal strength recommendations.” [Online].Available: https://wiki.teltonika-networks.com, December 13 2019.
  • [3] Bakhtin A., Omelyanchuk E., Mikhailov V., Semenova A., 2019. 5g base station prototyping: Architectures overview. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Saint Petersburg and Moscow, Russia, pp. 1564–1568.
  • [4] Al-Samman A. M., Abd Rahman T., Azmi M. H., 2018. Indoor corridor wideband radio propagation measurements and channel models for 5g millimeter wave wireless communications at 19 ghz, 28 ghz, and 38 ghz bands. Wireless Communications and Mobile Computing, 2018.
  • [5] Haneda K., Zhang J., Tan L., Liu G., Zheng Y., Asplund H., Li J., Wang Y., Steer D., Li C., et al., 2016. 5g 3gpp-like channel models for outdoor urban microcellular and macrocellular environments. 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, pp. 1-7.
  • [6] Sun S., Rappaport T. S., Thomas T. A., Ghosh A., Nguyen H. C., Kovács I. Z., Rodriguez I., Koymen O., Partyka A., 2016. Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5g wireless communications. IEEE Transactions on Vehicular Technology, 65(5), 2843–2860.
  • [7] Al-Samman A., Rahman T., Azmi M., Nasir J., 2018. Path loss model for indoor emergency stairwell environment at millimeter wave band for 5g network. Turkish Journal of Electrical Engineering and Computer Science, 26(6), 3024–3032.
  • [8] T. Nguyen, “Small cell networks and the evolution of 5g.” [Online].Available: "https://www.qorvo.com/, December 13 2019.
  • [9] “What is a mobile base station.” [Online].Available: "https://www.mobilenetworkguide.com.au/, February 9 2020.
  • [10] “How big of an area and how many people does one cell tower usually cover?.” [Online].Available: "https://www.quora.com/, February 9 2020.
  • [11] Oughton E. J., Frias Z., van der Gaast S., van der Berg R., 2019. Assessing the capacity, coverage and cost of 5g infrastructure strategies: Analysis of the netherlands. Telematics and Informatics, 37, 50–69.
  • [12] Sun S., Rappaport T. S., Rangan S., Thomas T. A., Ghosh A., Kovacs I. Z., Rodriguez I., Koymen O., Partyka A., Jarvelainen J., 2016. Propagation path loss models for 5g urban micro-and macro-cellular scenarios. 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, pp. 1–6.
  • [13] Nassar A. T., Sulyman A. I., Alsanie A., 2015. Radio capacity estimation for millimeter wave 5g cellular networks using narrow beamwidth antennas at the base stations. International Journal of Antennas and Propagation, vol. 2015.
There are 13 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Makaleler
Authors

Mehmet Ali Özaslan 0000-0002-8721-601X

Yasin Karan 0000-0002-9148-1000

Project Number 1
Publication Date June 30, 2021
Acceptance Date January 14, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Özaslan, M. A., & Karan, Y. (2021). 5G Baz İstasyonlarının Kapsama Alanına Yönelik Yol Kaybı Analizleri ve Konumlandırılması. Kocaeli Üniversitesi Fen Bilimleri Dergisi, 4(1), 6-13.