Research Article
BibTex RIS Cite

Kalsiyum Sülfonat Bazlı Kompleks Grese Katkı Maddeleri İlave Ederek Performans Özelliklerinin İyileştirilmesi

Year 2022, Volume: 5 Issue: 2, 41 - 49, 31.12.2022
https://doi.org/10.53410/koufbd.899858

Abstract

Kalsiyum sülfonat bazlı kompleks gresler, üstün organik ve oksidasyon kararlılıkları, kimyasal olarak dayanıklı olmaları, suya, buhara, pasa, korozyona ve ısıya karşı dirençli yapısı ve yüksek damlama noktası özelliklerine sahip olmaları sebebiyle endüstriyel makinelerde yaygın bir şekilde tercih edilmektedir. Türkiye'de başta demir-çelik sektörü olmak üzere, ağır sanayi ve milli üretim hamlesi büyük bir ivme kazanmıştır. Özellikle çelik sektöründe yassı mamule geçiş günden güne artmaktadır. Karadeniz (Karabük, Zonguldak), Doğu Akdeniz (Hatay, Osmaniye), Marmara (Bursa, Kocaeli ve İstanbul), Ege (İzmir), İç Anadolu (Sivas, Kırıkkale) Bölgelerinde kurulan ve kurulması planlanan ark ocaklı tesis ve sürekli döküm makinelerinde kullanımı zorunlu olan kalsiyum sülfonat bazlı kompleks greslerinin, yüksek performanslı ve farklı kullanım amaçlarına uygun çeşitlilikte geliştirilerek, ağır sanayilerin ihtiyacına cevap verebilecek uygun ve ekonomik forma ulaştırılması amaçlanmıştır.
Yapılan bu çalışmada, kalsiyum sülfonat bazlı kompleks greslerin geliştirilebilir özellikleri göz önünde bulundurularak, greslere performans arttırıcı katkı maddeleri ilave edilmiştir. Bu sayede greslerin kullanım ömrü, suya dayanıklılığı, pompalanabilirlik değerleri isteğe yönelik olarak ayarlanabilmiş ve farklı performansta gres elde edilmiştir. Elde edilen optimum oranların kontrolünü sağlamak amacıyla ASTM, TSE Standartlarına uygun olarak Damlama Noktası Analizi, Penetrasyon Testi, Dört Bilya Testi gibi analizler gerçekleştirilmiştir. Penetrasyon analizi sonuçları 275-340 mm/10 aralığında bulunmuş ancak en iyi gres kıvamı 285 mm/10 değerinde elde edilmiştir. Damlama noktası sıcaklığı 300-350 oC arasında tespit edilerek ve demir-çelik sektörü için en iyi sonuç 350 oC olarak kaydedilmiştir. 4 bilyalı aşınma testinde en iyi sonuç 0,55-0,8 mm aralığında 0,8 mm ve bilye kaynak yükü 400-620 N arasında bulunmuştur.

References

  • [1] Bosman, R., Lugt, P.M., 2018. The Microstructure of Calcium Sulfonate Complex Lubricating Grease and Its Change in the Presence of Water. Tribology Transactions 61(5), 842–9.
  • [2] Lubratech., 2019. Kalsiyum sulfunat bazli nanotanecik iceren agir sanayi kompleks gresler. Kocaeli.
  • [3] Triboscience and Tribotechnology: Superior Friction and Wear Control in Engines and Transmissions | Project | Fact Sheet | IC-COST | CORDIS | European Commission. https://cordis.europa.eu/project/id/532/de. [Erişim tarihi 16 Şubat 2022].
  • [4] Kobylyanskii, E. v., Kravchuk, G.G., Makedonskii, O.A., Ishchuk, Y.L., 2002. Structure of Ultrabasic Sulfonate Greases. Chemistry and Technology of Fuels and Oils 2002 38:2 38(2), 110–4.
  • [5] Lorimor, J.J., Americas, A., Kansas, L., Kay, J.S., n.d. “The STRATCO ® Contactor TM reactor and its use in the production of calcium sulfonate based greases.”
  • [6] Elalan, N.T., Tüken, T., 2014. Metilendifenildiizosiyanat-primer amin reaksiyonları ile sabunsuz gres eldesi. Ç. U. Fen ve Mühendislik Bilimleri Dergisi 31(3).
  • [7] Fan, X., Li, W., Li, H., Zhu, M., Xia, Y., Wang, J., 2018. Probing the effect of thickener on tribological properties of lubricating greases. Tribology International 118, 128–39.
  • [8] Choosing the Right Grease Thickening System. https://www.nyelubricants.com/choosing-the-right-grease-thickening-system. [Erişim tarihi 16 Şubat 2022].
  • [9] Mackwood, W., 2016. Meet The Presenter Classifying Greases.
  • [10] NSK Avrupa., 2021. Gres Uyumsuzluğu. https://www.nskeurope.com.tr/content/dam/nskcmsr/downloads/literature_bearing/P_TI-0002_TR.pdf. [Erişim tarihi 3 Mart 2021].
  • [11] Dresel, W., 2014. Lubricating Greases. Encyclopedia of Lubricants and Lubrication, 1076–96.
  • [12] Rounds, F., 1993. Effects of hydroperoxides on wear as measured in four-ball wear tests. Tribology Transactions 36(2), 297–303.
  • [13] ASTM, I., 2002. Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Grease (Four-Ball Method).
  • [14] Klueber., 2021. Lubricating Testing - Focussing on mechanico-dynamical tests. http://www.klueber.co.kr/index/images/pdf/Lubricant-testing.pdf. [Erişim tarihi 27 Ocak 2021].
  • [15] ASTM, D., 2019. 19b Standard Test Methods for Cone Penetration of Lubricating Grease. https://www.astm.org/Standards/D217.htm. [Erişim tarihi 27 Ocak 2021].
  • [16] Al-Mosawi, Z.H.A., 2009. Influence of Some Additives on Properties of Greases.
  • [17] Soltanahmadi, S., 2017. Tribochemical investigation of micropitting in rolling-element bearing applications: the influence of lubricant additives and water contamination, Doktora Tezi, Leeds Üniversitesi.
  • [18] Brizmer, V., Pasaribu, H.R., Morales-Espejel, G.E., 2013. Micropitting Performance of Oil Additives in Lubricated Rolling Contacts. Tribology Transactions 56(5), 739–48.
  • [19] Soltanahmadi, S., Morina, A., Van Eijk, M.C.P., Nedelcu, I., Neville, A., 2017. Tribochemical study of micropitting in tribocorrosive lubricated contacts: The influence of water and relative humidity. Tribology International 107, 184–98.
  • [20] Gurt, A., Khonsari, M., 2020. An Overview of Grease Water Resistance. Lubricants 8(9), 86.
  • [21] Fitch, J., 2008. How Water Causes Bearing Failure. Machinery Lubrication Magazine.
  • [22] Duncanson, M., 2005. Detecting and Controlling Water in Oil. Machinery Lubrication Magazine.
  • [23] 2021. Grease Penetration Tests. https://www.machinerylubrication.com/Read/30271/test-grease-consistency. [Erişim tarihi 27 Ocak 2021].
  • [24] Water Resistance. https://www.nlgi.org/grease-glossary/water-resistance/. [Erişim tarihi 6 Aralık 2021].
  • [25] Wang, Z., Xia, Y., Liu, Z., 2015. The rheological and tribological properties of calcium sulfonate complex greases. Friction 3(1), 28–35.
  • [26] Saal, R.N.J., Labout, J.W.A., 1936. The relation between absolute viscosity and penetration of asphaltic bitumens. Journal of Applied Physics 7(11), 408–12.
  • [27] Suetsugu, Y., Sekiguchi, H., Nakanishi, Y., Fujinami, Y., Ohno, T., 2013. Basic study of grease rheology and correlation with grease properties. Tribology Online 8(1), 83–9.
  • [28] Kamel, B.M., Mohamed, A., El Sherbiny, M., Abed, K.A., 2016. Rheology and thermal conductivity of calcium grease containing multi-walled carbon nanotube. Fullerenes Nanotubes and Carbon Nanostructures 24(4), 260–5.
Year 2022, Volume: 5 Issue: 2, 41 - 49, 31.12.2022
https://doi.org/10.53410/koufbd.899858

Abstract

References

  • [1] Bosman, R., Lugt, P.M., 2018. The Microstructure of Calcium Sulfonate Complex Lubricating Grease and Its Change in the Presence of Water. Tribology Transactions 61(5), 842–9.
  • [2] Lubratech., 2019. Kalsiyum sulfunat bazli nanotanecik iceren agir sanayi kompleks gresler. Kocaeli.
  • [3] Triboscience and Tribotechnology: Superior Friction and Wear Control in Engines and Transmissions | Project | Fact Sheet | IC-COST | CORDIS | European Commission. https://cordis.europa.eu/project/id/532/de. [Erişim tarihi 16 Şubat 2022].
  • [4] Kobylyanskii, E. v., Kravchuk, G.G., Makedonskii, O.A., Ishchuk, Y.L., 2002. Structure of Ultrabasic Sulfonate Greases. Chemistry and Technology of Fuels and Oils 2002 38:2 38(2), 110–4.
  • [5] Lorimor, J.J., Americas, A., Kansas, L., Kay, J.S., n.d. “The STRATCO ® Contactor TM reactor and its use in the production of calcium sulfonate based greases.”
  • [6] Elalan, N.T., Tüken, T., 2014. Metilendifenildiizosiyanat-primer amin reaksiyonları ile sabunsuz gres eldesi. Ç. U. Fen ve Mühendislik Bilimleri Dergisi 31(3).
  • [7] Fan, X., Li, W., Li, H., Zhu, M., Xia, Y., Wang, J., 2018. Probing the effect of thickener on tribological properties of lubricating greases. Tribology International 118, 128–39.
  • [8] Choosing the Right Grease Thickening System. https://www.nyelubricants.com/choosing-the-right-grease-thickening-system. [Erişim tarihi 16 Şubat 2022].
  • [9] Mackwood, W., 2016. Meet The Presenter Classifying Greases.
  • [10] NSK Avrupa., 2021. Gres Uyumsuzluğu. https://www.nskeurope.com.tr/content/dam/nskcmsr/downloads/literature_bearing/P_TI-0002_TR.pdf. [Erişim tarihi 3 Mart 2021].
  • [11] Dresel, W., 2014. Lubricating Greases. Encyclopedia of Lubricants and Lubrication, 1076–96.
  • [12] Rounds, F., 1993. Effects of hydroperoxides on wear as measured in four-ball wear tests. Tribology Transactions 36(2), 297–303.
  • [13] ASTM, I., 2002. Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Grease (Four-Ball Method).
  • [14] Klueber., 2021. Lubricating Testing - Focussing on mechanico-dynamical tests. http://www.klueber.co.kr/index/images/pdf/Lubricant-testing.pdf. [Erişim tarihi 27 Ocak 2021].
  • [15] ASTM, D., 2019. 19b Standard Test Methods for Cone Penetration of Lubricating Grease. https://www.astm.org/Standards/D217.htm. [Erişim tarihi 27 Ocak 2021].
  • [16] Al-Mosawi, Z.H.A., 2009. Influence of Some Additives on Properties of Greases.
  • [17] Soltanahmadi, S., 2017. Tribochemical investigation of micropitting in rolling-element bearing applications: the influence of lubricant additives and water contamination, Doktora Tezi, Leeds Üniversitesi.
  • [18] Brizmer, V., Pasaribu, H.R., Morales-Espejel, G.E., 2013. Micropitting Performance of Oil Additives in Lubricated Rolling Contacts. Tribology Transactions 56(5), 739–48.
  • [19] Soltanahmadi, S., Morina, A., Van Eijk, M.C.P., Nedelcu, I., Neville, A., 2017. Tribochemical study of micropitting in tribocorrosive lubricated contacts: The influence of water and relative humidity. Tribology International 107, 184–98.
  • [20] Gurt, A., Khonsari, M., 2020. An Overview of Grease Water Resistance. Lubricants 8(9), 86.
  • [21] Fitch, J., 2008. How Water Causes Bearing Failure. Machinery Lubrication Magazine.
  • [22] Duncanson, M., 2005. Detecting and Controlling Water in Oil. Machinery Lubrication Magazine.
  • [23] 2021. Grease Penetration Tests. https://www.machinerylubrication.com/Read/30271/test-grease-consistency. [Erişim tarihi 27 Ocak 2021].
  • [24] Water Resistance. https://www.nlgi.org/grease-glossary/water-resistance/. [Erişim tarihi 6 Aralık 2021].
  • [25] Wang, Z., Xia, Y., Liu, Z., 2015. The rheological and tribological properties of calcium sulfonate complex greases. Friction 3(1), 28–35.
  • [26] Saal, R.N.J., Labout, J.W.A., 1936. The relation between absolute viscosity and penetration of asphaltic bitumens. Journal of Applied Physics 7(11), 408–12.
  • [27] Suetsugu, Y., Sekiguchi, H., Nakanishi, Y., Fujinami, Y., Ohno, T., 2013. Basic study of grease rheology and correlation with grease properties. Tribology Online 8(1), 83–9.
  • [28] Kamel, B.M., Mohamed, A., El Sherbiny, M., Abed, K.A., 2016. Rheology and thermal conductivity of calcium grease containing multi-walled carbon nanotube. Fullerenes Nanotubes and Carbon Nanostructures 24(4), 260–5.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Ezgi Güneş Gürdal 0000-0002-0311-1350

Nazli Çalışkan Güven 0000-0001-5751-2638

Early Pub Date December 27, 2022
Publication Date December 31, 2022
Acceptance Date February 27, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Güneş Gürdal, E., & Çalışkan Güven, N. (2022). Kalsiyum Sülfonat Bazlı Kompleks Grese Katkı Maddeleri İlave Ederek Performans Özelliklerinin İyileştirilmesi. Kocaeli Üniversitesi Fen Bilimleri Dergisi, 5(2), 41-49. https://doi.org/10.53410/koufbd.899858