Research Article
BibTex RIS Cite

Asfalt Beton Malzemelerin Karma Mod (I-II) Kırılma Özelliklerinin Araştırılması

Year 2023, Volume: 6 Issue: 1, 36 - 46, 31.07.2023
https://doi.org/10.53410/koufbd.1185096

Abstract

Bu çalışmada, asfalt beton (AC) numunelerinde çatlak oluşumunu ve yayılmasını araştırmak için Yarı Dairesel Disk Eğilme (SCB) numuneleri ile deneysel, analitik ve sayısal analiz araştırmaları yapılmıştır. Bu çalışmanın amacı, AC malzemelerin karma mod I-II (çekme ve kesme) kırılmasını analiz etmek için ASTMD8044 standardının sadece mod I için değil karma modu test etmede uygulanabilirliğini araştırmaktır. Gerilme dağılımı ve çatlak ilerleme sayısal analizleri, kırılma mekaniği programı FRANC2D kullanılarak yapıldı. AC numunelerinin mod I (çekme) kırılma tokluğu (KIC) değerinin 0.45 MPa√m olduğu bulunmuştur. Öte yandan, β= 30 için mod II kırılma tokluğu (KIIC) değeri 0.17 MPa√m ve β=45 için mod II değeri ise 0,19 MPa√m olarak bulunmuştur.
Sayısal analizlerle Kritik Çatlak Eşiği (CCT) çatlak uzunluğu 2-3 mm olarak bulunmuştur. Bu sonuç, hem deneysel bulgular hem de CCT analitik analiz sonuçları ile uyumludur. FRANC2D analizlerinde kohezif çatlak yüzeyleri arasında en belirgin kayma 30 eğimli çatlak ile gözlenmiştir. AC numunelerinde ‘kanat çatlak’ büyümesi literatürde ilk kez hem deneysel hem de sayısal analizlerle bu çalışma ile elde edilmiştir. Elde edilen deneysel, analitik ve sayısal sonuçlara göre, bu çalışmanın sadece mod I için önerilen ASTMD8044 test standardının AC malzemelerin karma mod I-II kırılma tokluğunun belirlenmesi için yeni bir uluslararası standart çalışmalarına yol göstereceğine inanılmaktadır.

Supporting Institution

-

Project Number

-

Thanks

Yazar, bu araştırmada numune temininde yardımcı olan ve desteklerini esirgemeyen Karayolları 2.Bölge Müdürlüğü-İzmir ve Ar-Ge Başmühendisi Kanat Uğur Aydın Bey’e ve deneyler sırasında yardımcı olan İzmir Demokrasi Üniversitesi Yüksek Lisans öğrencisi Mehmet Kartal’a teşekkürlerini sunar.

References

  • [1] Li, X., Marasteanu, M.O., 2004. Evaluation of the Low Temperature Fracture Resistance of Asphalt Mixtures Using the Semi-Circular Bend Test, Journal of Asphalt Pavement Technology, 73, 401-426.
  • [2] Kuruppu, M., Obara, Y., Ayatollahi, M.R., Chong, K.P., Funatsu, T., 2014. ISRM-Suggested Method for Determining the Mode I Static Fracture Toughness Using Semi-Circular Bend Specimen. Rock Mechanics Rock Engineering, 47, 267–274.
  • [3] Ling, M., Luo, X., Chen, Y., Hu, S., Lytton, R., 2019. A calibrated mechanics-based model for top-down cracking of asphalt pavements. Construction and Building Materials, 48, 102-112.
  • [4] Wang, H., Wang, J., Chen, J.Q., 2014. Micromechanical Analysis of Asphalt Mixture Fracture with Adhesive and Cohesive Failure. Engineering Fracture Mechanics, 132, 104–119.
  • [5] Zhang, Y., Luo, Z., Luo, R., Lytton, R., (2014). Crack initiation in asphalt mixtures under external compressive loads. Construction and Building Materials, 72, 94-103.
  • [6] Ling, M., Zhang, Y., Kaseer, F., Martin, A.E., Lytton, R., 2020. Investigation of fracture behavior of asphalt mixture composite using energy-based approach. Composites Part B: Engineering, 181, 107324
  • [7] Si, Z., Little, D.N., Lytton, R., 2002. Characterization of Microdamage and Healing of Asphalt Concrete Mixtures. Journal of Materials in Civil Engineering, 14 (6), 461-470
  • [8] Marasteanu, M.O., Dai, S., Labuz, J.F., Li, X., 2002. Determining the Low-Temperature Fracture Toughness of Asphalt Mixtures. Transportation Research Board, 1789, 191–199
  • [9] Aliha, M.R.M., Fazaeli, H., Aghajani, S., Nejad, F.M., 2015 Effect of temperature and air void on mixed mode fracture toughness of modified asphalt mixtures. Construction and Building Materials, 95, 545–555
  • [10] Aliha, M.R.M., Pour, P.J.H., 2020. Fracture resistance study for hot mix asphalt mixture under out of plane sliding mode. Engineering Fracture Mechanics, 238, 107230.
  • [11] Mirsayar, M.M., Shi, X., Zollinger, D.G., 2017. Evaluation of interfacial bond strength between Portland cement concrete and asphalt concrete layers using bi-material SCB test specimen. Engineering Solid Mechanics, 65, 293–306
  • [12] AASHTO. Guide for Design of Pavement Structures, 4th ed.; American Association of State Highway and Transportation Officials,Washington, DC, USA, 1993; pp. 1–640.
  • [13] ASTM D8044, 2016. Standard Test Method For Evaluation Of Asphalt Mixture Cracking Resistance Using The Semi-Circular Bend Test (SCB) At Intermediate Temperatures.
  • [14] Wagnoner, M.P., Buttlar, W., Paulino, G.H., 2005. Disk-shaped compact tension test for asphalt concrete fracture. Experimental Mechanics, 45(3), 270-277.
  • [15] Li, C., Guo, J., (2019). Cracking simulation of asphalt concrete beam specimen using cohesive zone model. Construction and Building Materials, 214, 49-60.
  • [16] Song, S.H., Wagnoner, M.P., Pagulino, W., Buttlar, G., 2008. Crack opening displacement parameter in cohesive zone models: experiments and simulations in asphalt concrete fatigue. Fracture of Engineering Materials and Structure, 31 (10), 850-856.
  • [17] Yin, A., Yang, X., Zeng, G., Gao, H., 2015. Experimental and numerical investigation of fracture behavior of asphalt mixture under direct shear loading. Construction and Building Materials, 86, 21–32.
  • [18] Im, S., Ban, H., Kim, Y.R. 2014. Characterization of mode-I and mode-II fracture properties of fine aggregate matrix using a semicircular specimen geometry. Construction and Building Materials, 52, 413-421.
  • [19] Ayetollahi, M.R. and Pirmohammad, S., 2013. Temperature effects on brittle fracture in cracked asphalt concretes. Structural Engineering Mechanics, 45(1),19-32
  • [20] NRC, 2004. Guide for mechanistic – empirical design of new and rehabilitated pavement structures. Transportation Research Board, NCHRP 1-37A Final report.
  • [21] Sulaiman, S.J., Stock, A.F 199). The use of fracture mechanics for the evaluation of asphalt mixes. Journal of the Association of Asphalt Paving Technologists, 64, 500-531
  • [22] Shenoy, A., 2002. Stress relaxation can perturb and prevent physical hardening in a constrained binder at low temperature. Road Materials and Pavement Design, 3, 87-94.
  • [23] Erdogan, F., Sih, G.C., 1963. On the Crack Extension in Plates under Plane Loading and Transverse Shear, ASME Journal of Basic Engineering, 10, 25–37
  • [24] Al-Shayea N.N., 2005. Crack propagation trajectories for rocks under mixed mode I–II fracture. Engineering Geology, 81(1), 84-97
  • [25] Evans, M., Hesp, S.A.M., 2011. Physical hardening effects on stress relaxation in asphalt cements and implications for pavement performance. Transportation Research Records, 2207, 34-42.
  • [26] Saha, G., Biligiri, K.P., 2015. Fracture damage evaluation of asphalt mixtures using Semi-Circular Bending test based on fracture energy approach. Engineering Fracture Mechanics, 142, 154-169.
  • [27] Romero, P., Youtcheff, J., Stuart, K., 1999. Low-temperature physical hardening of hot-mix asphalt. Transportation Research, 1661, 22-26.
  • [28] Atkinson, C., Smelser, R., Sanchez, J., 1982. Combined mode fracture via the cracked Brazilian disk test. International Journal of Fracture, 18, 279–291.
  • [29] Dugdale D.S., (1960). Yielding of Steel Sheets Containing Slits. Journal of the Mechanics and Physics of Solids, 8, 100–104.
  • [30] Barenblatt G.I., 1962. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Advances in Applied Mechanics, 7, 55–129.
  • [31] Hillerborg, A., Modeer, M., and Petersson, P.E., 1976. Analysis of crack formation and crack growth in concrete by m eans of fracture mechanics and finite elements, Cement and Concrete Research, 6 ,773-782.
  • [32] Petersson, P.E., 1981. Crack growth and development of fracture zones in plain concrete and similar materials, Report TVBM -1006/1-174, Division of Building Materials, Lund Institute of Technology, Lund, Sweden
  • [33] Kim M, Hussein H., 1987. Variation of fracture toughness of asphalt concrete under low temperatures. Construction and Building Materials, 11 (7-8), 403-411.
Year 2023, Volume: 6 Issue: 1, 36 - 46, 31.07.2023
https://doi.org/10.53410/koufbd.1185096

Abstract

Project Number

-

References

  • [1] Li, X., Marasteanu, M.O., 2004. Evaluation of the Low Temperature Fracture Resistance of Asphalt Mixtures Using the Semi-Circular Bend Test, Journal of Asphalt Pavement Technology, 73, 401-426.
  • [2] Kuruppu, M., Obara, Y., Ayatollahi, M.R., Chong, K.P., Funatsu, T., 2014. ISRM-Suggested Method for Determining the Mode I Static Fracture Toughness Using Semi-Circular Bend Specimen. Rock Mechanics Rock Engineering, 47, 267–274.
  • [3] Ling, M., Luo, X., Chen, Y., Hu, S., Lytton, R., 2019. A calibrated mechanics-based model for top-down cracking of asphalt pavements. Construction and Building Materials, 48, 102-112.
  • [4] Wang, H., Wang, J., Chen, J.Q., 2014. Micromechanical Analysis of Asphalt Mixture Fracture with Adhesive and Cohesive Failure. Engineering Fracture Mechanics, 132, 104–119.
  • [5] Zhang, Y., Luo, Z., Luo, R., Lytton, R., (2014). Crack initiation in asphalt mixtures under external compressive loads. Construction and Building Materials, 72, 94-103.
  • [6] Ling, M., Zhang, Y., Kaseer, F., Martin, A.E., Lytton, R., 2020. Investigation of fracture behavior of asphalt mixture composite using energy-based approach. Composites Part B: Engineering, 181, 107324
  • [7] Si, Z., Little, D.N., Lytton, R., 2002. Characterization of Microdamage and Healing of Asphalt Concrete Mixtures. Journal of Materials in Civil Engineering, 14 (6), 461-470
  • [8] Marasteanu, M.O., Dai, S., Labuz, J.F., Li, X., 2002. Determining the Low-Temperature Fracture Toughness of Asphalt Mixtures. Transportation Research Board, 1789, 191–199
  • [9] Aliha, M.R.M., Fazaeli, H., Aghajani, S., Nejad, F.M., 2015 Effect of temperature and air void on mixed mode fracture toughness of modified asphalt mixtures. Construction and Building Materials, 95, 545–555
  • [10] Aliha, M.R.M., Pour, P.J.H., 2020. Fracture resistance study for hot mix asphalt mixture under out of plane sliding mode. Engineering Fracture Mechanics, 238, 107230.
  • [11] Mirsayar, M.M., Shi, X., Zollinger, D.G., 2017. Evaluation of interfacial bond strength between Portland cement concrete and asphalt concrete layers using bi-material SCB test specimen. Engineering Solid Mechanics, 65, 293–306
  • [12] AASHTO. Guide for Design of Pavement Structures, 4th ed.; American Association of State Highway and Transportation Officials,Washington, DC, USA, 1993; pp. 1–640.
  • [13] ASTM D8044, 2016. Standard Test Method For Evaluation Of Asphalt Mixture Cracking Resistance Using The Semi-Circular Bend Test (SCB) At Intermediate Temperatures.
  • [14] Wagnoner, M.P., Buttlar, W., Paulino, G.H., 2005. Disk-shaped compact tension test for asphalt concrete fracture. Experimental Mechanics, 45(3), 270-277.
  • [15] Li, C., Guo, J., (2019). Cracking simulation of asphalt concrete beam specimen using cohesive zone model. Construction and Building Materials, 214, 49-60.
  • [16] Song, S.H., Wagnoner, M.P., Pagulino, W., Buttlar, G., 2008. Crack opening displacement parameter in cohesive zone models: experiments and simulations in asphalt concrete fatigue. Fracture of Engineering Materials and Structure, 31 (10), 850-856.
  • [17] Yin, A., Yang, X., Zeng, G., Gao, H., 2015. Experimental and numerical investigation of fracture behavior of asphalt mixture under direct shear loading. Construction and Building Materials, 86, 21–32.
  • [18] Im, S., Ban, H., Kim, Y.R. 2014. Characterization of mode-I and mode-II fracture properties of fine aggregate matrix using a semicircular specimen geometry. Construction and Building Materials, 52, 413-421.
  • [19] Ayetollahi, M.R. and Pirmohammad, S., 2013. Temperature effects on brittle fracture in cracked asphalt concretes. Structural Engineering Mechanics, 45(1),19-32
  • [20] NRC, 2004. Guide for mechanistic – empirical design of new and rehabilitated pavement structures. Transportation Research Board, NCHRP 1-37A Final report.
  • [21] Sulaiman, S.J., Stock, A.F 199). The use of fracture mechanics for the evaluation of asphalt mixes. Journal of the Association of Asphalt Paving Technologists, 64, 500-531
  • [22] Shenoy, A., 2002. Stress relaxation can perturb and prevent physical hardening in a constrained binder at low temperature. Road Materials and Pavement Design, 3, 87-94.
  • [23] Erdogan, F., Sih, G.C., 1963. On the Crack Extension in Plates under Plane Loading and Transverse Shear, ASME Journal of Basic Engineering, 10, 25–37
  • [24] Al-Shayea N.N., 2005. Crack propagation trajectories for rocks under mixed mode I–II fracture. Engineering Geology, 81(1), 84-97
  • [25] Evans, M., Hesp, S.A.M., 2011. Physical hardening effects on stress relaxation in asphalt cements and implications for pavement performance. Transportation Research Records, 2207, 34-42.
  • [26] Saha, G., Biligiri, K.P., 2015. Fracture damage evaluation of asphalt mixtures using Semi-Circular Bending test based on fracture energy approach. Engineering Fracture Mechanics, 142, 154-169.
  • [27] Romero, P., Youtcheff, J., Stuart, K., 1999. Low-temperature physical hardening of hot-mix asphalt. Transportation Research, 1661, 22-26.
  • [28] Atkinson, C., Smelser, R., Sanchez, J., 1982. Combined mode fracture via the cracked Brazilian disk test. International Journal of Fracture, 18, 279–291.
  • [29] Dugdale D.S., (1960). Yielding of Steel Sheets Containing Slits. Journal of the Mechanics and Physics of Solids, 8, 100–104.
  • [30] Barenblatt G.I., 1962. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Advances in Applied Mechanics, 7, 55–129.
  • [31] Hillerborg, A., Modeer, M., and Petersson, P.E., 1976. Analysis of crack formation and crack growth in concrete by m eans of fracture mechanics and finite elements, Cement and Concrete Research, 6 ,773-782.
  • [32] Petersson, P.E., 1981. Crack growth and development of fracture zones in plain concrete and similar materials, Report TVBM -1006/1-174, Division of Building Materials, Lund Institute of Technology, Lund, Sweden
  • [33] Kim M, Hussein H., 1987. Variation of fracture toughness of asphalt concrete under low temperatures. Construction and Building Materials, 11 (7-8), 403-411.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Makaleler
Authors

Nazife Erarslan 0000-0002-5202-9644

Project Number -
Publication Date July 31, 2023
Acceptance Date June 8, 2023
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Erarslan, N. (2023). Asfalt Beton Malzemelerin Karma Mod (I-II) Kırılma Özelliklerinin Araştırılması. Kocaeli Üniversitesi Fen Bilimleri Dergisi, 6(1), 36-46. https://doi.org/10.53410/koufbd.1185096