Research Article
BibTex RIS Cite

Anadolu Yer Sincaplarının (Spermophilus xanthoprymnus) Testis ve Epididimisinde TLR4 Ekspresyonundaki Dönemsel Değişiklikler: Üreme Dışı pre-Hibernasyon ve Hibernasyon Dönemlerinden Elde Edilen Bulgular

Year 2024, , 280 - 288, 30.09.2024
https://doi.org/10.30607/kvj.1499739

Abstract

Bu çalışma, üreme dışı dönemde pre-hibernasyon ve hibernasyon süresince Anadolu yer sincaplarının (Spermophilus xanthoprymnus) testis ve epididimis dokularında Toll-like reseptör 4 (TLR4) ekspresyonunun regülasyonunu araştırmaktadır. İmmünohistokimyasal inceleme, TLR4'ün pre-hibernasyon döneminde testis dokusundaki germ hücreleri, Leydig hücreleri ve Sertoli hücrelerinde tespit edilmediğini göstermiştir. Bununla birlikte, intertubuler alandaki damar duvarlarında ve bazı interstisyel hücrelerde TLR4 mevcuttur. Epididimisin kaput, korpus ve kauda bölgelerindeki epitel hücrelerinde TLR4 ekspresyonu gözlenmemiştir. Ancak, damar duvarlarında, düz kas ve bazı interstisyel hücrelerde TLR4 mevcuttur. Hibernasyon sırasında, spermatogonyum ve primer spermatositlerde TLR4 ekspresyonu gözlenmiş olup, tübüller arası alanın damar duvarlarında güçlü bir immun reaksiyon görülmüştür. Buna karşılık, epididimisin bütün bölümlerindeki epitelinde, düz kas hücrelerinde ve damar duvarlarında TLR4 tespit edilmiştir. Hibernasyon döneminde, pre-hibernasyona kıyasla testiste TLR4 ekspresyonunda anlamlı bir artış, kantitatif görüntü analizi ile tespit edilmiştir. Pre-hibernasyon döneminde epididimisin kauda segmenti en yüksek TLR4 ekspresyonunu gösterirken, hibernasyon sırasında korpus segmenti en yüksek ekspresyonu göstermiştir. Bu bulgular, hibernasyona yanıt olarak TLR4'ün dinamik bir şekilde düzenlendiğini göstermekte olup, bu reseptörün üreme fonksiyonu ve bağışıklık adaptasyonundaki potansiyel rolüne işaret etmektedir.

References

  • Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124(4), 783–801. https://doi.org/10.1016/J.CELL.2006.02.015
  • Beutler, B. (2009). Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases. Immunological Reviews, 227(1), 248–263. https://doi.org/10.1111/J.1600-065X.2008.00733.X
  • Bouma, H. R., Carey, H. V, & Kroese, F. G. M. (2010). Hibernation: the immune system at rest? Journal of Leukocyte Biology, 88(4), 619–624. https://doi.org/10.1189/JLB.0310174
  • Carey, H. V., Andrews, M. T., & Martin, S. L. (2003). Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiological Reviews, 83(4), 1153–1181. https://doi.org/10.1152/PHYSREV.00008.2003
  • Fijak, M., & Meinhardt, A. (2006). The testis in immune privilege. Immunological Reviews, 213(1), 66–81. https://doi.org/10.1111/J.1600-065X.2006.00438.X
  • Giroud, S., Habold, C., Nespolo, R. F., Mejías, C., Terrien, J., Logan, S. M., Henning, R. H., & Storey, K. B. (2020). The Torpid State: Recent Advances in Metabolic Adaptations and Protective Mechanisms†. Frontiers in Physiology, 11. https://doi.org/10.3389/FPHYS.2020.623665
  • Gu, X., Li, S. Y., & DeFalco, T. (2022). Immune and vascular contributions to organogenesis of the testis and ovary. The FEBS Journal, 289(9), 2386–2408. https://doi.org/10.1111/FEBS.15848
  • Gür, H., & Kart Gür, M. (2005). Annual Cycle of Activity, Reproduction, and Body Mass of Anatolian Ground Squirrels (Spermophilus xanthoprymnus) in Turkey. Journal of Mammalogy, 86(1), 7–14. https://doi.org/https://doi.org/10.1644/1545-1542(2005)086<0007:ACOARA>2.0.CO;2
  • Hargreaves, D. C., & Medzhitov, R. (2005). Innate sensors of microbial infection. Journal of Clinical Immunology, 25(6), 503–510. https://doi.org/10.1007/S10875-005-8065-4
  • Hedger, M. P. (2011a). Immunophysiology and Pathology of Inflammation in the Testis and Epididymis. Journal of Andrology, 32(6), 625–640. https://doi.org/10.2164/JANDROL.111.012989
  • Hedger, M. P. (2011b). Toll-like receptors and signalling in spermatogenesis and testicular responses to inflammation—a perspective. Journal of Reproductive Immunology, 88(2), 130. https://doi.org/10.1016/J.JRI.2011.01.010
  • Hedger, M. P. (2015). The Immunophysiology of Male Reproduction. Knobil and Neill’s Physiology of Reproduction, 1, 805. https://doi.org/10.1016/B978-0-12-397175-3.00019-3
  • Heinrich, A., & DeFalco, T. (2020). Essential roles of interstitial cells in testicular development and function. Andrology, 8(4), 903–914. https://doi.org/10.1111/ANDR.12703
  • Hermo, L., & Robaire, B. (2002). Epididymal Cell Types and Their Functions. The Epididymis: From Molecules to Clinical Practice, 81–102. https://doi.org/10.1007/978-1-4615-0679-9_5
  • Hu, L., Li, Q., Yang, P., Gandahi, J. A., Arain, T. S., Le, Y., Zhang, Q., Liu, T., Y. Waqas, M., Ahmad, N., Liu, Y., & Chen, Q. (2016). Expression of TLR2/4 on Epididymal Spermatozoa of the Chinese Soft-Shelled Turtle Pelodiscus sinensis During the Hibernation Season. The Anatomical Record, 299(11), 1578–1584. https://doi.org/10.1002/AR.23463
  • Iwasaki, A., & Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nature Immunology, 5(10), 987–995. https://doi.org/10.1038/NI1112
  • Janeway, C. A., & Medzhitov, R. (2002). Innate immune recognition. Annual Review of Immunology, 20, 197–216. https://doi.org/10.1146/ANNUREV.IMMUNOL.20.083001.084359
  • Jensen, K., Krusenstjerna-Hafstrøm, R., Lohse, J., Petersen, K. H., & Derand, H. (2017). A novel quantitative immunohistochemistry method for precise protein measurements directly in formalin-fixed, paraffin-embedded specimens: analytical performance measuring HER2. Modern Pathology, 30(2), 180–193. https://doi.org/10.1038/MODPATHOL.2016.176
  • Kart Gür, M., Refinetti, R., & Gür, H. (2009). Daily rhythmicity and hibernation in the Anatolian ground squirrel under natural and laboratory conditions. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 179(2), 155–164. https://doi.org/10.1007/S00360-008-0298-0/FIGURES/8
  • Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology, 11(5), 373–384. https://doi.org/10.1038/NI.1863
  • Kawasaki, T., & Kawai, T. (2014). Toll-like receptor signaling pathways. Frontiers in Immunology, 5(SEP). https://doi.org/10.3389/FIMMU.2014.00461
  • Li, N., Wang, T., & Han, D. (2012). Structural, cellular and molecular aspects of immune privilege in the testis. Frontiers in Immunology, 3(JUN). https://doi.org/10.3389/FIMMU.2012.00152
  • Li, Q., Hu, L., Yang, P., Zhang, Q., Waqas, Y., Liu, T., Zhang, L., Wang, S., Chen, W., Le, Y., Ullah, S., & Chen, Q. (2015). Expression of TLR2/4 in the sperm-storing oviduct of the Chinese soft-shelled turtle Pelodiscus sinensis during hibernation season. Ecology and Evolution, 5(19), 4466–4479. https://doi.org/10.1002/ECE3.1726
  • Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nature Reviews. Immunology, 1(2), 135–145. https://doi.org/10.1038/35100529
  • Meinhardt, A., & Hedger, M. P. (2011). Immunological, paracrine and endocrine aspects of testicular immune privilege. Molecular and Cellular Endocrinology, 335(1), 60–68. https://doi.org/10.1016/J.MCE.2010.03.022
  • Olson, M. E., & McCabe, K. (1986). Anesthesia in the Richardson’s ground squirrel: comparison of ketamine, ketamine and xylazine, droperidol and fentanyl, and sodium pentobarbital. Journal of the American Veterinary Medical Association, 189(9), 1035–1037. https://europepmc.org/article/med/3505921
  • O’Neill, L. A. J., & Bowie, A. G. (2007). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Reviews. Immunology, 7(5), 353–364. https://doi.org/10.1038/NRI2079
  • Özbek, M., Hitit, M., Öztop, M., Beyaz, F., Ergün, E., & Ergün, L. (2019). Spatiotemporal expression patterns of natriuretic peptides in rat testis and epididymis during postnatal development. Andrologia, 51(10), e13387. https://doi.org/10.1111/AND.13387 Öztop, M., Özbek, M., Liman, N., Beyaz, F., Ergün, E., & Ergün, L. (2019). Localization profiles of natriuretic peptides in hearts of pre-hibernating and hibernating Anatolian ground squirrels (Spermophilus xanthoprymnus). Veterinary Research Communications, 43(2), 45–65. https://doi.org/10.1007/S11259-019-9745-5/FIGURES/14 Saeidi, S., Shapouri, F., Amirchaghmaghi, E., Hoseinifar, H., Sabbaghian, M., Sadighi Gilani, M. A., Pacey, A. A., & Aflatoonian, R. (2014). Sperm protection in the male reproductive tract by Toll-like receptors. Andrologia, 46(7), 784–790. https://doi.org/10.1111/AND.12149
  • Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805–820. https://doi.org/10.1016/J.CELL.2010.01.022
  • Tung, K. S. K., Han, D., & Duan, Y. G. (2022). Editorial: The immunology of the male genital tract. Frontiers in Immunology, 13. https://doi.org/10.3389/FIMMU.2022.1042468
  • van Breukelen, F., & Martin, S. L. (2015). The Hibernation Continuum: Physiological and Molecular Aspects of Metabolic Plasticity in Mammals. Physiology (Bethesda, Md.), 30(4), 273–281. https://doi.org/10.1152/PHYSIOL.00010.2015
  • Wang, F., Chen, R., Han, D., Wang, F., Chen, R., & Han, D. (2019). Innate Immune Defense in the Male Reproductive System and Male Fertility. Innate Immunity in Health and Disease. https://doi.org/10.5772/INTECHOPEN.89346
  • Zhao, S., Zhu, W., Xue, S., & Han, D. (2014). Testicular defense systems: immune privilege and innate immunity. Cellular and Molecular Immunology, 11(5), 428. https://doi.org/10.1038/CMI.2014.38

Seasonal Variation in TLR4 Expression in The Testis and Epididymis of Anatolian Ground Squirrels (Spermophilus xanthoprymnus): Insights from Non-Breeding Period of Pre-Hibernation and Hibernation

Year 2024, , 280 - 288, 30.09.2024
https://doi.org/10.30607/kvj.1499739

Abstract

This study investigates the modulation of Toll-like receptor 4 (TLR4) expression within the testis and epididymis of Anatolian ground squirrels (Spermophilus xanthoprymnus) during the non-breeding period of pre-hibernation and hibernation. Immunohistochemical investigation showed that TLR4 was not detected in germ cells, Leydig cells, or Sertoli cells in the testicular tissue during the pre-hibernation period. Nevertheless, there was a presence of TLR4 in the vessels walls and certain interstitial cells within the intertubular regions. Epithelial cells in the caput, corpus, and cauda regions of the epididymis showed no TLR4 expression. However, it was observed in the vessel walls, smooth muscle layers, and some interstitial cells. TLR4 expression was seen in spermatogonia and primary spermatocytes during hibernation, with strong labeling observed in the vessel walls of the intertubular area. In contrast, TLR4 was detected in the epididymal epithelium, as well as in the smooth muscle layers and vessel walls throughout all segments. A notable upregulation in the expression of TLR4 in the testis was identified through quantitative image analysis during hibernation as compared to pre-hibernation. During pre-hibernation, the cauda segment of the epididymis exhibited the highest expression of TLR4, whereas during hibernation, the corpus segment demonstrated the highest expression. These findings suggest a dynamic modulation of TLR4 in response to hibernation, highlighting its potential role in reproductive function and immune adaptation.

References

  • Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124(4), 783–801. https://doi.org/10.1016/J.CELL.2006.02.015
  • Beutler, B. (2009). Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases. Immunological Reviews, 227(1), 248–263. https://doi.org/10.1111/J.1600-065X.2008.00733.X
  • Bouma, H. R., Carey, H. V, & Kroese, F. G. M. (2010). Hibernation: the immune system at rest? Journal of Leukocyte Biology, 88(4), 619–624. https://doi.org/10.1189/JLB.0310174
  • Carey, H. V., Andrews, M. T., & Martin, S. L. (2003). Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiological Reviews, 83(4), 1153–1181. https://doi.org/10.1152/PHYSREV.00008.2003
  • Fijak, M., & Meinhardt, A. (2006). The testis in immune privilege. Immunological Reviews, 213(1), 66–81. https://doi.org/10.1111/J.1600-065X.2006.00438.X
  • Giroud, S., Habold, C., Nespolo, R. F., Mejías, C., Terrien, J., Logan, S. M., Henning, R. H., & Storey, K. B. (2020). The Torpid State: Recent Advances in Metabolic Adaptations and Protective Mechanisms†. Frontiers in Physiology, 11. https://doi.org/10.3389/FPHYS.2020.623665
  • Gu, X., Li, S. Y., & DeFalco, T. (2022). Immune and vascular contributions to organogenesis of the testis and ovary. The FEBS Journal, 289(9), 2386–2408. https://doi.org/10.1111/FEBS.15848
  • Gür, H., & Kart Gür, M. (2005). Annual Cycle of Activity, Reproduction, and Body Mass of Anatolian Ground Squirrels (Spermophilus xanthoprymnus) in Turkey. Journal of Mammalogy, 86(1), 7–14. https://doi.org/https://doi.org/10.1644/1545-1542(2005)086<0007:ACOARA>2.0.CO;2
  • Hargreaves, D. C., & Medzhitov, R. (2005). Innate sensors of microbial infection. Journal of Clinical Immunology, 25(6), 503–510. https://doi.org/10.1007/S10875-005-8065-4
  • Hedger, M. P. (2011a). Immunophysiology and Pathology of Inflammation in the Testis and Epididymis. Journal of Andrology, 32(6), 625–640. https://doi.org/10.2164/JANDROL.111.012989
  • Hedger, M. P. (2011b). Toll-like receptors and signalling in spermatogenesis and testicular responses to inflammation—a perspective. Journal of Reproductive Immunology, 88(2), 130. https://doi.org/10.1016/J.JRI.2011.01.010
  • Hedger, M. P. (2015). The Immunophysiology of Male Reproduction. Knobil and Neill’s Physiology of Reproduction, 1, 805. https://doi.org/10.1016/B978-0-12-397175-3.00019-3
  • Heinrich, A., & DeFalco, T. (2020). Essential roles of interstitial cells in testicular development and function. Andrology, 8(4), 903–914. https://doi.org/10.1111/ANDR.12703
  • Hermo, L., & Robaire, B. (2002). Epididymal Cell Types and Their Functions. The Epididymis: From Molecules to Clinical Practice, 81–102. https://doi.org/10.1007/978-1-4615-0679-9_5
  • Hu, L., Li, Q., Yang, P., Gandahi, J. A., Arain, T. S., Le, Y., Zhang, Q., Liu, T., Y. Waqas, M., Ahmad, N., Liu, Y., & Chen, Q. (2016). Expression of TLR2/4 on Epididymal Spermatozoa of the Chinese Soft-Shelled Turtle Pelodiscus sinensis During the Hibernation Season. The Anatomical Record, 299(11), 1578–1584. https://doi.org/10.1002/AR.23463
  • Iwasaki, A., & Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nature Immunology, 5(10), 987–995. https://doi.org/10.1038/NI1112
  • Janeway, C. A., & Medzhitov, R. (2002). Innate immune recognition. Annual Review of Immunology, 20, 197–216. https://doi.org/10.1146/ANNUREV.IMMUNOL.20.083001.084359
  • Jensen, K., Krusenstjerna-Hafstrøm, R., Lohse, J., Petersen, K. H., & Derand, H. (2017). A novel quantitative immunohistochemistry method for precise protein measurements directly in formalin-fixed, paraffin-embedded specimens: analytical performance measuring HER2. Modern Pathology, 30(2), 180–193. https://doi.org/10.1038/MODPATHOL.2016.176
  • Kart Gür, M., Refinetti, R., & Gür, H. (2009). Daily rhythmicity and hibernation in the Anatolian ground squirrel under natural and laboratory conditions. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 179(2), 155–164. https://doi.org/10.1007/S00360-008-0298-0/FIGURES/8
  • Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology, 11(5), 373–384. https://doi.org/10.1038/NI.1863
  • Kawasaki, T., & Kawai, T. (2014). Toll-like receptor signaling pathways. Frontiers in Immunology, 5(SEP). https://doi.org/10.3389/FIMMU.2014.00461
  • Li, N., Wang, T., & Han, D. (2012). Structural, cellular and molecular aspects of immune privilege in the testis. Frontiers in Immunology, 3(JUN). https://doi.org/10.3389/FIMMU.2012.00152
  • Li, Q., Hu, L., Yang, P., Zhang, Q., Waqas, Y., Liu, T., Zhang, L., Wang, S., Chen, W., Le, Y., Ullah, S., & Chen, Q. (2015). Expression of TLR2/4 in the sperm-storing oviduct of the Chinese soft-shelled turtle Pelodiscus sinensis during hibernation season. Ecology and Evolution, 5(19), 4466–4479. https://doi.org/10.1002/ECE3.1726
  • Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nature Reviews. Immunology, 1(2), 135–145. https://doi.org/10.1038/35100529
  • Meinhardt, A., & Hedger, M. P. (2011). Immunological, paracrine and endocrine aspects of testicular immune privilege. Molecular and Cellular Endocrinology, 335(1), 60–68. https://doi.org/10.1016/J.MCE.2010.03.022
  • Olson, M. E., & McCabe, K. (1986). Anesthesia in the Richardson’s ground squirrel: comparison of ketamine, ketamine and xylazine, droperidol and fentanyl, and sodium pentobarbital. Journal of the American Veterinary Medical Association, 189(9), 1035–1037. https://europepmc.org/article/med/3505921
  • O’Neill, L. A. J., & Bowie, A. G. (2007). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Reviews. Immunology, 7(5), 353–364. https://doi.org/10.1038/NRI2079
  • Özbek, M., Hitit, M., Öztop, M., Beyaz, F., Ergün, E., & Ergün, L. (2019). Spatiotemporal expression patterns of natriuretic peptides in rat testis and epididymis during postnatal development. Andrologia, 51(10), e13387. https://doi.org/10.1111/AND.13387 Öztop, M., Özbek, M., Liman, N., Beyaz, F., Ergün, E., & Ergün, L. (2019). Localization profiles of natriuretic peptides in hearts of pre-hibernating and hibernating Anatolian ground squirrels (Spermophilus xanthoprymnus). Veterinary Research Communications, 43(2), 45–65. https://doi.org/10.1007/S11259-019-9745-5/FIGURES/14 Saeidi, S., Shapouri, F., Amirchaghmaghi, E., Hoseinifar, H., Sabbaghian, M., Sadighi Gilani, M. A., Pacey, A. A., & Aflatoonian, R. (2014). Sperm protection in the male reproductive tract by Toll-like receptors. Andrologia, 46(7), 784–790. https://doi.org/10.1111/AND.12149
  • Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805–820. https://doi.org/10.1016/J.CELL.2010.01.022
  • Tung, K. S. K., Han, D., & Duan, Y. G. (2022). Editorial: The immunology of the male genital tract. Frontiers in Immunology, 13. https://doi.org/10.3389/FIMMU.2022.1042468
  • van Breukelen, F., & Martin, S. L. (2015). The Hibernation Continuum: Physiological and Molecular Aspects of Metabolic Plasticity in Mammals. Physiology (Bethesda, Md.), 30(4), 273–281. https://doi.org/10.1152/PHYSIOL.00010.2015
  • Wang, F., Chen, R., Han, D., Wang, F., Chen, R., & Han, D. (2019). Innate Immune Defense in the Male Reproductive System and Male Fertility. Innate Immunity in Health and Disease. https://doi.org/10.5772/INTECHOPEN.89346
  • Zhao, S., Zhu, W., Xue, S., & Han, D. (2014). Testicular defense systems: immune privilege and innate immunity. Cellular and Molecular Immunology, 11(5), 428. https://doi.org/10.1038/CMI.2014.38
There are 33 citations in total.

Details

Primary Language English
Subjects Veterinary Histology and Embryology
Journal Section RESEARCH ARTICLE
Authors

Mehmet Özbek 0000-0002-2274-5359

Early Pub Date September 9, 2024
Publication Date September 30, 2024
Submission Date June 11, 2024
Acceptance Date September 6, 2024
Published in Issue Year 2024

Cite

APA Özbek, M. (2024). Seasonal Variation in TLR4 Expression in The Testis and Epididymis of Anatolian Ground Squirrels (Spermophilus xanthoprymnus): Insights from Non-Breeding Period of Pre-Hibernation and Hibernation. Kocatepe Veterinary Journal, 17(3), 280-288. https://doi.org/10.30607/kvj.1499739
AMA Özbek M. Seasonal Variation in TLR4 Expression in The Testis and Epididymis of Anatolian Ground Squirrels (Spermophilus xanthoprymnus): Insights from Non-Breeding Period of Pre-Hibernation and Hibernation. kvj. September 2024;17(3):280-288. doi:10.30607/kvj.1499739
Chicago Özbek, Mehmet. “Seasonal Variation in TLR4 Expression in The Testis and Epididymis of Anatolian Ground Squirrels (Spermophilus xanthoprymnus): Insights from Non-Breeding Period of Pre-Hibernation and Hibernation”. Kocatepe Veterinary Journal 17, no. 3 (September 2024): 280-88. https://doi.org/10.30607/kvj.1499739.
EndNote Özbek M (September 1, 2024) Seasonal Variation in TLR4 Expression in The Testis and Epididymis of Anatolian Ground Squirrels (Spermophilus xanthoprymnus): Insights from Non-Breeding Period of Pre-Hibernation and Hibernation. Kocatepe Veterinary Journal 17 3 280–288.
IEEE M. Özbek, “Seasonal Variation in TLR4 Expression in The Testis and Epididymis of Anatolian Ground Squirrels (Spermophilus xanthoprymnus): Insights from Non-Breeding Period of Pre-Hibernation and Hibernation”, kvj, vol. 17, no. 3, pp. 280–288, 2024, doi: 10.30607/kvj.1499739.
ISNAD Özbek, Mehmet. “Seasonal Variation in TLR4 Expression in The Testis and Epididymis of Anatolian Ground Squirrels (Spermophilus xanthoprymnus): Insights from Non-Breeding Period of Pre-Hibernation and Hibernation”. Kocatepe Veterinary Journal 17/3 (September 2024), 280-288. https://doi.org/10.30607/kvj.1499739.
JAMA Özbek M. Seasonal Variation in TLR4 Expression in The Testis and Epididymis of Anatolian Ground Squirrels (Spermophilus xanthoprymnus): Insights from Non-Breeding Period of Pre-Hibernation and Hibernation. kvj. 2024;17:280–288.
MLA Özbek, Mehmet. “Seasonal Variation in TLR4 Expression in The Testis and Epididymis of Anatolian Ground Squirrels (Spermophilus xanthoprymnus): Insights from Non-Breeding Period of Pre-Hibernation and Hibernation”. Kocatepe Veterinary Journal, vol. 17, no. 3, 2024, pp. 280-8, doi:10.30607/kvj.1499739.
Vancouver Özbek M. Seasonal Variation in TLR4 Expression in The Testis and Epididymis of Anatolian Ground Squirrels (Spermophilus xanthoprymnus): Insights from Non-Breeding Period of Pre-Hibernation and Hibernation. kvj. 2024;17(3):280-8.

13520    13521       13522   1352314104

14105         14106        14107       14108