Research Article
BibTex RIS Cite

Glifosat-Bazlı Herbisite Prenatal ve Neonatal Dönemde Maruziyet Yenidoğan Rat Ovaryumunda Primordiyalden Primer Foliküle Geçişi Azaltır: Bir Ön Çalışma

Year 2019, , 168 - 177, 30.06.2019
https://doi.org/10.30607/kvj.543261

Abstract

Yapılan bu çalışmada
glifosat bazlı herbisit (GBH)'in yenidoğan dişi sıçanlarda embriyo döneminin
18. gününden (E18) doğum sonrası 7.gün (PND7) arasında gelişmekte olan ovaryum
foliküllerinin oransal dağılımını nasıl etkilediği araştırılmıştır. Çalışmada
kullanılan toplam 6 gebe sıçan; 3 gebe sıçan kontrol grubunda, 3 gebe sıçan GBH
grubunda olacak şekilde 2 gruba ayrıldı. Gebe sıçanlara E18’den başlayarak E21.
güne kadar günlük subkutan olarak (s.c.) deney grubuna 50 mg/kg/gün GBH ve
kontrol grubuna ise taşıt madde FTS (fizyolojik tuzlu su) uygulandı. Daha sonra
yenidoğan dişi yavru sıçanlara PND1’den PND7’ye kadar 2 mg/kg dozunda GBH ve
taşıt madde uygulamasına devam edildi. Son ilaç uygulamadan bir gün sonra
PND8’de (neonatal periyot, 6 dişi yavru/her grupta) yavru dişi sıçanlar hafif
eter anestezi ile sakrifiye edildi. Diseke edilen ovaryumların histolojik
incelemesi için Crossman’ın modifiye üçlü boyama yöntemi ve Periodic Acid-Shiff
(PAS) boyama yöntemleri kullanılarak primordial, primer, sekonder ve preantral
folikül sayıları belirlendi. GBH’ye maruz kalan dişi yavru sıçanların
ovaryumları kontrol grubuna göre karşılaştırıldığında primordial foliküllerin
yüzdesi önemli derecede fazla bulundu. Bununla birlikte primer, sekonder ve
preantral folikül yüzdesinin ise azlığı dikkat çekti. Sonuç olarak prenatal ve
neonatal GBH maruziyetinin primordial-primer folikül geçişini azalttığı
gözlenmiştir.

References

  • Acquavella JF, Alexander BH, Mandel JS, Gustin C, Baker B, Chapman P. Glyphosate biomonitoring for farmers and their families: Results from the farm family exposure study. Environ Health Perspect. 2004;112(3):321–6.
  • Aktar MW, Sengupta D, Chowdhury A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol. Slovak Toxicology Society; 2009;2(1):1–12.
  • Avdatek F, Birdane YO, Türkmen R, Demirel HH. Ameliorative effect of resveratrol on testicular oxidative stress, spermatological parameters and DNA damage in glyphosate-based herbicide-exposed rats. Andrologia. 2018a;50(7):e13036.
  • Avdatek F, Türkmen R, Demirel HH, Birdane YO. Glifosat Bazlı Herbisite Maruz Kalan Sıçanlarda N-Asetilsisteinin Testis Oksidatif Hasarı, Spermatolojik Parametreler ve DNA Hasarı Üzerindeki Koruyucu Etkisi. Kocatepe Vet J. 2018b;11(3):1–9.
  • Bai SH, Ogbourne SM. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environ Sci Pollut Res. 2016;23(19):18988–9001.
  • Benachour N, Séralini G-E. Glyphosate Formulations Induce Apoptosis and Necrosis in Human Umbilical, Embryonic, and Placental Cells. Chem Res Toxicol. 2009;22(1):97–105.
  • Benachour N, Sipahutar H, Moslemi S, Gasnier C, Travert C, Séralini GE. Time- and Dose-Dependent Effects of Roundup on Human Embryonic and Placental Cells. Arch Environ Contam Toxicol. 2007;53(1):126–33.
  • Van Bruggen AHC, He MM, Shin K, Mai V, Jeong KC, Finckh MR, Morris JG. Environmental and health effects of the herbicide glyphosate. Sci Total Environ. Elsevier; 2018;616–617:255–68.
  • Cassault-Meyer E, Gress S, Séralini GÉ, Galeraud-Denis I. An acute exposure to glyphosate-based herbicide alters aromatase levels in testis and sperm nuclear quality. Environ Toxicol Pharmacol. Elsevier B.V.; 2014;38(1):131–40.
  • Clair É, Mesnage R, Travert C, Séralini G-É. A glyphosate-based herbicide induces necrosis and apoptosis in mature rat testicular cells in vitro, and testosterone decrease at lower levels. Toxicol Vitr. 2012;26(2):269–79.
  • Cox E, Takov V. Embryology, Ovarian Follicle Development. StatPearls. StatPearls Publishing; 2018.
  • Dallegrave E, Mantese FD, Oliveira RT, Andrade AJM, Dalsenter PR, Langeloh A. Pre- and postnatal toxicity of the commercial glyphosate formulation in Wistar rats. Arch Toxicol. 2007;81(9):665–73.
  • Defarge N, Takács E, Lozano VL, Mesnage R, de Vendômois JS, Séralini GE, Székács A. Co-formulants in glyphosate-based herbicides disrupt aromatase activity in human cells below toxic levels. Int J Environ Res Public Health. 2016;13(3).
  • Diel P, Schmidt S, Vollmer G, Janning P, Upmeier A, Michna H, Bolt HM, Degen GH. Comparative responses of three rat strains (DA/Han, Sprague-Dawley and Wistar) to treatment with environmental estrogens. Arch Toxicol. 2004;78(4):183–93.
  • Drašar P, Poc P, Stárka L. Glyphosate, an important endocrine disruptor. Diabetol Metab Endokrinol Vyziv. 2018;21(2):93–6.
  • Gasnier C, Dumont C, Benachour N, Clair E, Chagnon MC, Séralini GE. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology. 2009;262(3):184–91.
  • Gillezeau C, Van Gerwen M, Shaffer RM, Rana I, Zhang L, Sheppard L, Taioli E. The evidence of human exposure to glyphosate: A review. Environ. Heal. A Glob. Access Sci. Source. BioMed Central; 2019. p. 2.
  • Hamdaoui L, Naifar M, Rahmouni F, Harrabi B, Ayadi F, Sahnoun Z, Rebai T. Subchronic exposure to kalach 360 SL-induced endocrine disruption and ovary damage in female rats. Arch Physiol Biochem. 2018;124(1):27–34.
  • Haverfield JT, Ham S, Brown KA, Simpson ER, Meachem SJ. Teasing out the role of aromatase in the healthy and diseased testis. Spermatogenesis. Taylor & Francis; 2011;1(3):240–9.
  • Hirshfield AN, DeSanti AM. Patterns of ovarian cell proliferation in rats during the embryonic period and the first three weeks postpartum. Biol Reprod. 1995;53(5):1208–21. Kezele P, Skinner MK. Regulation of Ovarian Primordial Follicle Assembly and Development by Estrogen and Progesterone: Endocrine Model of Follicle Assembly. Endocrinology. 2003;144(8):3329–37.
  • Kongtip P, Nankongnab N, Phupancharoensuk R, Palarach C, Sujirarat D, Sangprasert S, Sermsuk M, Sawattrakool N, Woskie SR. Glyphosate and Paraquat in Maternal and Fetal Serums in Thai Women. J Agromedicine. Taylor & Francis; 2017;22(3):282–9.
  • Landrigan PJ, Belpoggi F. The need for independent research on the health effects of glyphosate-based herbicides. Environ Heal. 2018;17(1):51.
  • Malekinejad H, Hamidi M, Sadrkhanloo R-A, Ahmadi A. The Effect of Tamoxifen on the Fetal and Neonatal Ovarian Follicles Development in Rats. Iran. J. Basic Med. Sci. Mashhad University of Medical Sciences; 2011 May.
  • McGee EA, Hsueh AJW. Initial and cyclic recruitment of ovarian follicles. Endocr. Rev. 2000. p. 200–14.
  • Mesnage R, Bernay B, Séralini G-E. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology. 2013;313(2–3):122–8.
  • Mesnage R, Defarge N, Spiroux de Vendômois J, Séralini GE. Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem Toxicol. 2015;84:133–53.
  • Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, Hansen M, Landrigan PJ, Lanphear BP, Mesnage R, Vandenberg LN, vom Saal FS, Welshons W V., Benbrook CM. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Heal. 2016;15(1):19.
  • Nilsson E, Rogers N, Skinner MK. Actions of anti-Müllerian hormone on the ovarian transcriptome to inhibit primordial to primary follicle transition. Reproduction. 2007;134(2):209–21. Ozden-Akkaya O, Altunbas K, Yagcı A. Biotechnic & Histochemistry Effects of methoxychlor on IGF-I signaling pathway in rat ovary Effects of methoxychlor on IGF-I signaling pathway in rat ovary. Biotech Histochem. Taylor & Francis; 2017;92(3):230–42.
  • Parvez S, Gerona RR, Proctor C, Friesen M, Ashby JL, Reiter JL, Lui Z, Winchester PD. Glyphosate exposure in pregnancy and shortened gestational length: A prospective Indiana birth cohort study. Environ Heal A Glob Access Sci Source. Environmental Health; 2018;17(1):1–12.
  • Pedersen T, Peters H. PROPOSAL FOR A CLASSIFICATION OF OOCYTES AND FOLLICLES IN THE MOUSE OVARY. Reproduction. 2007;17(3):555–7.
  • Pepling ME, Spradling AC. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol. 2001;234(2):339–51.
  • Picut CA, Dixon D, Simons ML, Stump DG, Parker GA, Remick AK. Postnatal Ovary Development in the Rat:Morphologic Study and Correlation of Morphology to Neuroendocrine Parameters. Toxicol Pathol. 2015;43(3):343–53.
  • Poulsen MS, Rytting E, Mose T, Knudsen LE. Modeling placental transport: Correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion. Toxicol Vitr. 2009;23(7):1380–6.
  • Ratia K, Light SH, Antanasijevic A, Anderson WF, Caffrey M, Lavie A. Discovery of Selective Inhibitors of the Clostridium difficile Dehydroquinate Dehydratase. Popoff MR, editor. PLoS One. Public Library of Science; 2014;9(2):e89356. Ren X, Li R, Liu J, Huang K, Wu S, Li Y, Li C. Effects of glyphosate on the ovarian function of pregnant mice, the secretion of hormones and the sex ratio of their fetuses. Environ Pollut. 2018;243(Pt B):833–41.
  • Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini GE. Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect. 2005;113(6):716–20.
  • Romano MA, Romano RM, Santos LD, Wisniewski P, Campos DA, de Souza PB, Viau P, Bernardi MM, Nunes MT, de Oliveira CA. Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression. Arch Toxicol. 2012;86(4):663–73.
  • Samsel A, Seneff S. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance. Interdiscip Toxicol. 2013;6(4):159–84.
  • Samsel A, Seneff S, Samsel A, Seneff S. Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases. Entropy. Multidisciplinary Digital Publishing Institute; 2013;15(12):1416–63.
  • Scognamiglio V, Antonacci A, Patrolecco L, Ghuge SA, Lambreva MD, Rea G, Litescu SC. Analytical tools monitoring endocrine disrupting chemicals. TrAC Trends Anal Chem. Elsevier; 2016;80:555–67.
  • Seneff S, Swanson N, Li C. Aluminum and Glyphosate Can Synergistically Induce Pineal Gland Pathology: Connection to Gut Dysbiosis and Neurological Disease. Agric Sci. 2015;6:42–70.
  • Stefansdottir A, Fowler PA, Powles-Glover N, Anderson RA, Spears N. Use of ovary culture techniques in reproductive toxicology. Reprod Toxicol. Elsevier Inc.; 2014;49:117–35.
  • T.C. Tarım ve Orman Bakanlığı. Bitki Koruma Ürünleri Veri Tabanı. 2019.
  • USEPA. EPA 738-F-93-011. Registration Eligibility Decision (RED) for Glyphosate. Reregistration Eligibility Decis. Glyphosate. 1993. USEPA. Revised Glyphosate Issue Paper: Evaluation of Carcinogenic Potential.EPA’s Office of Pesticide Programs. 2017.

Prenatal and Neonatal Exposure to Glyphosate-Based Herbicide Reduces The Primordial to Primary Follicle Transition in The Newborn Rat Ovary: A Preliminary Study

Year 2019, , 168 - 177, 30.06.2019
https://doi.org/10.30607/kvj.543261

Abstract

This study investigated how a glyphosate-based
herbicide (GBH) affects the proportional distribution of ovarian follicles that
develop from the 18th day of the embryo period (E18) to the 7th
postnatal day (PND7) in newborn female rats. A total of 6 pregnant rats
that were used in the study were divided into two groups so that there would be
3 pregnant rats in the control group and 3 pregnant rats in the GBH group.
Starting from E21 to E18 the pregnant rats in the experimental group were
administered at 50 mg/kg/day GBH subcutaneously (s.c.) and the physiological
saline was administered as vehicle to the control group. Subsequently, female
pups received vehicle or 2 mg/kg GBH from PND1 to PND7. On PND8, all female
offspring (neonatal period, 6 newborn female rats from each group) were
sacrificed by light ether anesthesia. For the histological examination of the
dissected ovaries, the primordial, primary, secondary and preantral follicle
numbers were determined using Crossman's modified triple staining method and
Periodic Acid-Shiff (PAS) staining methods. The percentage of primordial
follicles was significantly higher in the ovaries of female rats in GBH exposed
group compare to the control group. However, the percentage of primary,
secondary and preantral follicles was lower. Thus, it was observed that
prenatal and neonatal GBH exposure decreased the transition of primordial
follicle to primary follicle.

References

  • Acquavella JF, Alexander BH, Mandel JS, Gustin C, Baker B, Chapman P. Glyphosate biomonitoring for farmers and their families: Results from the farm family exposure study. Environ Health Perspect. 2004;112(3):321–6.
  • Aktar MW, Sengupta D, Chowdhury A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol. Slovak Toxicology Society; 2009;2(1):1–12.
  • Avdatek F, Birdane YO, Türkmen R, Demirel HH. Ameliorative effect of resveratrol on testicular oxidative stress, spermatological parameters and DNA damage in glyphosate-based herbicide-exposed rats. Andrologia. 2018a;50(7):e13036.
  • Avdatek F, Türkmen R, Demirel HH, Birdane YO. Glifosat Bazlı Herbisite Maruz Kalan Sıçanlarda N-Asetilsisteinin Testis Oksidatif Hasarı, Spermatolojik Parametreler ve DNA Hasarı Üzerindeki Koruyucu Etkisi. Kocatepe Vet J. 2018b;11(3):1–9.
  • Bai SH, Ogbourne SM. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environ Sci Pollut Res. 2016;23(19):18988–9001.
  • Benachour N, Séralini G-E. Glyphosate Formulations Induce Apoptosis and Necrosis in Human Umbilical, Embryonic, and Placental Cells. Chem Res Toxicol. 2009;22(1):97–105.
  • Benachour N, Sipahutar H, Moslemi S, Gasnier C, Travert C, Séralini GE. Time- and Dose-Dependent Effects of Roundup on Human Embryonic and Placental Cells. Arch Environ Contam Toxicol. 2007;53(1):126–33.
  • Van Bruggen AHC, He MM, Shin K, Mai V, Jeong KC, Finckh MR, Morris JG. Environmental and health effects of the herbicide glyphosate. Sci Total Environ. Elsevier; 2018;616–617:255–68.
  • Cassault-Meyer E, Gress S, Séralini GÉ, Galeraud-Denis I. An acute exposure to glyphosate-based herbicide alters aromatase levels in testis and sperm nuclear quality. Environ Toxicol Pharmacol. Elsevier B.V.; 2014;38(1):131–40.
  • Clair É, Mesnage R, Travert C, Séralini G-É. A glyphosate-based herbicide induces necrosis and apoptosis in mature rat testicular cells in vitro, and testosterone decrease at lower levels. Toxicol Vitr. 2012;26(2):269–79.
  • Cox E, Takov V. Embryology, Ovarian Follicle Development. StatPearls. StatPearls Publishing; 2018.
  • Dallegrave E, Mantese FD, Oliveira RT, Andrade AJM, Dalsenter PR, Langeloh A. Pre- and postnatal toxicity of the commercial glyphosate formulation in Wistar rats. Arch Toxicol. 2007;81(9):665–73.
  • Defarge N, Takács E, Lozano VL, Mesnage R, de Vendômois JS, Séralini GE, Székács A. Co-formulants in glyphosate-based herbicides disrupt aromatase activity in human cells below toxic levels. Int J Environ Res Public Health. 2016;13(3).
  • Diel P, Schmidt S, Vollmer G, Janning P, Upmeier A, Michna H, Bolt HM, Degen GH. Comparative responses of three rat strains (DA/Han, Sprague-Dawley and Wistar) to treatment with environmental estrogens. Arch Toxicol. 2004;78(4):183–93.
  • Drašar P, Poc P, Stárka L. Glyphosate, an important endocrine disruptor. Diabetol Metab Endokrinol Vyziv. 2018;21(2):93–6.
  • Gasnier C, Dumont C, Benachour N, Clair E, Chagnon MC, Séralini GE. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology. 2009;262(3):184–91.
  • Gillezeau C, Van Gerwen M, Shaffer RM, Rana I, Zhang L, Sheppard L, Taioli E. The evidence of human exposure to glyphosate: A review. Environ. Heal. A Glob. Access Sci. Source. BioMed Central; 2019. p. 2.
  • Hamdaoui L, Naifar M, Rahmouni F, Harrabi B, Ayadi F, Sahnoun Z, Rebai T. Subchronic exposure to kalach 360 SL-induced endocrine disruption and ovary damage in female rats. Arch Physiol Biochem. 2018;124(1):27–34.
  • Haverfield JT, Ham S, Brown KA, Simpson ER, Meachem SJ. Teasing out the role of aromatase in the healthy and diseased testis. Spermatogenesis. Taylor & Francis; 2011;1(3):240–9.
  • Hirshfield AN, DeSanti AM. Patterns of ovarian cell proliferation in rats during the embryonic period and the first three weeks postpartum. Biol Reprod. 1995;53(5):1208–21. Kezele P, Skinner MK. Regulation of Ovarian Primordial Follicle Assembly and Development by Estrogen and Progesterone: Endocrine Model of Follicle Assembly. Endocrinology. 2003;144(8):3329–37.
  • Kongtip P, Nankongnab N, Phupancharoensuk R, Palarach C, Sujirarat D, Sangprasert S, Sermsuk M, Sawattrakool N, Woskie SR. Glyphosate and Paraquat in Maternal and Fetal Serums in Thai Women. J Agromedicine. Taylor & Francis; 2017;22(3):282–9.
  • Landrigan PJ, Belpoggi F. The need for independent research on the health effects of glyphosate-based herbicides. Environ Heal. 2018;17(1):51.
  • Malekinejad H, Hamidi M, Sadrkhanloo R-A, Ahmadi A. The Effect of Tamoxifen on the Fetal and Neonatal Ovarian Follicles Development in Rats. Iran. J. Basic Med. Sci. Mashhad University of Medical Sciences; 2011 May.
  • McGee EA, Hsueh AJW. Initial and cyclic recruitment of ovarian follicles. Endocr. Rev. 2000. p. 200–14.
  • Mesnage R, Bernay B, Séralini G-E. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology. 2013;313(2–3):122–8.
  • Mesnage R, Defarge N, Spiroux de Vendômois J, Séralini GE. Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem Toxicol. 2015;84:133–53.
  • Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, Hansen M, Landrigan PJ, Lanphear BP, Mesnage R, Vandenberg LN, vom Saal FS, Welshons W V., Benbrook CM. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Heal. 2016;15(1):19.
  • Nilsson E, Rogers N, Skinner MK. Actions of anti-Müllerian hormone on the ovarian transcriptome to inhibit primordial to primary follicle transition. Reproduction. 2007;134(2):209–21. Ozden-Akkaya O, Altunbas K, Yagcı A. Biotechnic & Histochemistry Effects of methoxychlor on IGF-I signaling pathway in rat ovary Effects of methoxychlor on IGF-I signaling pathway in rat ovary. Biotech Histochem. Taylor & Francis; 2017;92(3):230–42.
  • Parvez S, Gerona RR, Proctor C, Friesen M, Ashby JL, Reiter JL, Lui Z, Winchester PD. Glyphosate exposure in pregnancy and shortened gestational length: A prospective Indiana birth cohort study. Environ Heal A Glob Access Sci Source. Environmental Health; 2018;17(1):1–12.
  • Pedersen T, Peters H. PROPOSAL FOR A CLASSIFICATION OF OOCYTES AND FOLLICLES IN THE MOUSE OVARY. Reproduction. 2007;17(3):555–7.
  • Pepling ME, Spradling AC. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol. 2001;234(2):339–51.
  • Picut CA, Dixon D, Simons ML, Stump DG, Parker GA, Remick AK. Postnatal Ovary Development in the Rat:Morphologic Study and Correlation of Morphology to Neuroendocrine Parameters. Toxicol Pathol. 2015;43(3):343–53.
  • Poulsen MS, Rytting E, Mose T, Knudsen LE. Modeling placental transport: Correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion. Toxicol Vitr. 2009;23(7):1380–6.
  • Ratia K, Light SH, Antanasijevic A, Anderson WF, Caffrey M, Lavie A. Discovery of Selective Inhibitors of the Clostridium difficile Dehydroquinate Dehydratase. Popoff MR, editor. PLoS One. Public Library of Science; 2014;9(2):e89356. Ren X, Li R, Liu J, Huang K, Wu S, Li Y, Li C. Effects of glyphosate on the ovarian function of pregnant mice, the secretion of hormones and the sex ratio of their fetuses. Environ Pollut. 2018;243(Pt B):833–41.
  • Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini GE. Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect. 2005;113(6):716–20.
  • Romano MA, Romano RM, Santos LD, Wisniewski P, Campos DA, de Souza PB, Viau P, Bernardi MM, Nunes MT, de Oliveira CA. Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression. Arch Toxicol. 2012;86(4):663–73.
  • Samsel A, Seneff S. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance. Interdiscip Toxicol. 2013;6(4):159–84.
  • Samsel A, Seneff S, Samsel A, Seneff S. Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases. Entropy. Multidisciplinary Digital Publishing Institute; 2013;15(12):1416–63.
  • Scognamiglio V, Antonacci A, Patrolecco L, Ghuge SA, Lambreva MD, Rea G, Litescu SC. Analytical tools monitoring endocrine disrupting chemicals. TrAC Trends Anal Chem. Elsevier; 2016;80:555–67.
  • Seneff S, Swanson N, Li C. Aluminum and Glyphosate Can Synergistically Induce Pineal Gland Pathology: Connection to Gut Dysbiosis and Neurological Disease. Agric Sci. 2015;6:42–70.
  • Stefansdottir A, Fowler PA, Powles-Glover N, Anderson RA, Spears N. Use of ovary culture techniques in reproductive toxicology. Reprod Toxicol. Elsevier Inc.; 2014;49:117–35.
  • T.C. Tarım ve Orman Bakanlığı. Bitki Koruma Ürünleri Veri Tabanı. 2019.
  • USEPA. EPA 738-F-93-011. Registration Eligibility Decision (RED) for Glyphosate. Reregistration Eligibility Decis. Glyphosate. 1993. USEPA. Revised Glyphosate Issue Paper: Evaluation of Carcinogenic Potential.EPA’s Office of Pesticide Programs. 2017.
There are 43 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section RESEARCH ARTICLE
Authors

Ruhi Türkmen 0000-0003-4726-3900

Türkan Türkmen This is me 0000-0003-0736-8927

Publication Date June 30, 2019
Acceptance Date May 7, 2019
Published in Issue Year 2019

Cite

APA Türkmen, R., & Türkmen, T. (2019). Prenatal and Neonatal Exposure to Glyphosate-Based Herbicide Reduces The Primordial to Primary Follicle Transition in The Newborn Rat Ovary: A Preliminary Study. Kocatepe Veterinary Journal, 12(2), 168-177. https://doi.org/10.30607/kvj.543261
AMA Türkmen R, Türkmen T. Prenatal and Neonatal Exposure to Glyphosate-Based Herbicide Reduces The Primordial to Primary Follicle Transition in The Newborn Rat Ovary: A Preliminary Study. kvj. June 2019;12(2):168-177. doi:10.30607/kvj.543261
Chicago Türkmen, Ruhi, and Türkan Türkmen. “Prenatal and Neonatal Exposure to Glyphosate-Based Herbicide Reduces The Primordial to Primary Follicle Transition in The Newborn Rat Ovary: A Preliminary Study”. Kocatepe Veterinary Journal 12, no. 2 (June 2019): 168-77. https://doi.org/10.30607/kvj.543261.
EndNote Türkmen R, Türkmen T (June 1, 2019) Prenatal and Neonatal Exposure to Glyphosate-Based Herbicide Reduces The Primordial to Primary Follicle Transition in The Newborn Rat Ovary: A Preliminary Study. Kocatepe Veterinary Journal 12 2 168–177.
IEEE R. Türkmen and T. Türkmen, “Prenatal and Neonatal Exposure to Glyphosate-Based Herbicide Reduces The Primordial to Primary Follicle Transition in The Newborn Rat Ovary: A Preliminary Study”, kvj, vol. 12, no. 2, pp. 168–177, 2019, doi: 10.30607/kvj.543261.
ISNAD Türkmen, Ruhi - Türkmen, Türkan. “Prenatal and Neonatal Exposure to Glyphosate-Based Herbicide Reduces The Primordial to Primary Follicle Transition in The Newborn Rat Ovary: A Preliminary Study”. Kocatepe Veterinary Journal 12/2 (June 2019), 168-177. https://doi.org/10.30607/kvj.543261.
JAMA Türkmen R, Türkmen T. Prenatal and Neonatal Exposure to Glyphosate-Based Herbicide Reduces The Primordial to Primary Follicle Transition in The Newborn Rat Ovary: A Preliminary Study. kvj. 2019;12:168–177.
MLA Türkmen, Ruhi and Türkan Türkmen. “Prenatal and Neonatal Exposure to Glyphosate-Based Herbicide Reduces The Primordial to Primary Follicle Transition in The Newborn Rat Ovary: A Preliminary Study”. Kocatepe Veterinary Journal, vol. 12, no. 2, 2019, pp. 168-77, doi:10.30607/kvj.543261.
Vancouver Türkmen R, Türkmen T. Prenatal and Neonatal Exposure to Glyphosate-Based Herbicide Reduces The Primordial to Primary Follicle Transition in The Newborn Rat Ovary: A Preliminary Study. kvj. 2019;12(2):168-77.

13520    13521       13522   1352314104

14105         14106        14107       14108