Research Article
BibTex RIS Cite

Investigation of Sox2, ß-III Tubulin and Nestin Expressions in Neuropsheres Differentiated from Bovine Adipose Derived Mesenchymal Stem Cells by Immunofluorescence Staining

Year 2019, , 336 - 342, 30.09.2019
https://doi.org/10.30607/kvj.594550

Abstract

Stem cell therapy can
be an advantageous tool for non treatable diseases and has become a theme
research for a better solution to many neurodegenerative cases. Despite of
being very common in pet animals and equines in the field of veterinary
medicine; stem cell based practises in bovines yet remain very limited. In the
following study, Bovine adipose derived stem cells (BASCs) were isolated and
differentiated into neurospheres. The potential expressions of neuron-specific
markers β-III Tubulin, Nestin and Sox2 were demonstrated by immunofluorescence
staining on these neurospheres. The outcomes of the study may provide a better
understanding to the neurogenic potential of BASCs and can be a footstep for
developing new therapeutical approaches for neurodegenerative diseases and
syndroms in bovines.

References

  • Bez A, Corsini E, Curti D, Biggiogera M, Colombo A, Nicosia RF, S. F. Pagano SF, Parati EA. Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain Research. 2003: 993 (1-2):18-29.
  • Brann JH, Firestein SJ. A lifetime of neurogenesis in the olfactory system. Front Neurosci 2014; 8:182.
  • Cebo, D. Characterization Of Bovine Adipose-Derived Stem Cells. International Journal of Scientific Technology Research (IJSTR) 2017; 6 (5):16-18.
  • Chung CS, Fujita N, Kawahara N, Yui S, Nam E, Nishimura R. A comparison of neurosphere differentiation potential of canine bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells. J. Vet. Med. Sci. 2013; 75(7): 879-886
  • Chung DJ, K. Hayashi K, Toupadakis CA, Wong A, Yellowley CE. Osteogenic proliferation and differentiation of canine bone marrow and adipose tissue derived mesenchymal stromal cells and the influence of hypoxia. Research in veterinary science. 2012: 92 (1):66-75.
  • Consiglio AL, Tassan S, Corradetti B, Bizzaro D, Bignotti A, Cremonesi F. 2011. Amniotic mesenchymal-derived cells for the treatment of tendinopathy in the horse: first report. Ippologia. 2011; 22(3):13-28.
  • Corradetti B, Correani A, Romaldini A, Marini MG, Bizzaro D, Perrini C, Cremonesi F, Lange-Consiglio A. Amniotic membrane-derived mesenchymal cells and their conditioned media: potential candidates for uterine regenerative therapy in the horse. PloS one 2014: 9(10):e111324.
  • Da Silva, CG, Martins CF, Cardoso TC, Da Cunha ER, Bessler HC, Martins GHL, Pivato I, Báo SN. 2016. Production of bovine embryos and calves cloned by nuclear transfer using mesenchymal stem cells from amniotic fluid and adipose tissue. Cellular Reprogramming 2016: 18 (2):127-136.
  • Girard SD, Devéze A, Nivet E, Gepner B, Roman FS, Féron F. Isolating nasal olfactory stem cells from rodents or humans. JoVE. 2011:1 (54):e2762.
  • Hu F, Wang X, Liang G, Lv L, Zhu Y, Sun B, Xiao Z. 2013. Effects of epidermal growth factor and basic fibroblast growth factor on the proliferation and osteogenic and neural differentiation of adipose-derived stem cells. Cellular Reprogramming. 2013: 15 (3):224-232.
  • Huaman O, Bahamonde J, Cahuascanco B, Jervis M, Palomino J, Torres CG, Peralta OA. 2019. Immunomodulatory and immunogenic properties of mesenchymal stem cells derived from bovine fetal bone marrow and adipose tissue. Research in veterinary science. 2019; 124:212-222
  • Jensen JB, Parmar M. Strengths and limitations of the neurosphere culture system. Molecular neurobiology. 2006; 34 (3):153-161.
  • Lange-Consiglio A, Tassan S, Corradetti B, Meucci A, Perego R, Bizzaro D, Cremonesi F. Investigating the efficacy of amnion-derived compared with bone marrow–derived mesenchymal stromal cells in equine tendon and ligament injuries. Cytotherapy 2013; 15 (8):1011-1020.
  • Marshall GP, Reynolds BA, Laywell ED. Using the neurosphere assay to quantify neural stem cells in vivo. Current Pharmaceutical Biotechnology. 2007; 8 (3):141-145.
  • Nagase T, D. Matsumoto D, Nagase M, Yoshimura K, Shigeura T, Inoue M, Hasegawa M, Yamagishi M, Machida M. Neurospheres from human adipose tissue transplanted into cultured mouse embryos can contribute to craniofacial morphogenesis: a preliminary report. Journal of Craniofacial Surgery. 2007; 18 (1):49-53.
  • Radtke C, Schmitz B, Spies M, Kocsis J, Vogt P. Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. Int. J. Devl Neuroscience. 2009; 27 (8):817-823.
  • Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255 (5052):1707-1710.
  • Sampaio RV, Chiaratti MR, Santos D, Bressan FF, Sangalli JR, d. Sá ALA, Silva T, Costa N, Cordeiro M, Santos S. 2015. Generation of bovine (Bos indicus) and buffalo (Bubalus bubalis) adipose tissue derived stem cells: isolation, characterization, and multipotentiality. Genet Mol Res. 2015; 14 (1):53-62.
  • Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Ogiuchi H, Okano T, Ando T. A protocol for immunofluorescence staining of floating neurospheres. Neuroscience letters 2010; 479 (2):126-127.
  • Theocharatos S, Wilkinson DJ, Darling S, Wilm B, Kenny SE, Edgar D. Regulation of progenitor cell proliferation and neuronal differentiation in enteric nervous system neurospheres. PloS one 2013; 8 (1):e54809.

Sığır Yağ Dokusundan İzole Edilen Mezenkimal Kök Hücrelerden Farklılaştırılan Nörosferlerde Sox2, ß-III Tubulin ve Nestin Ekspresyonlarının İmmunfloresan Boyama Yöntemi ile İncelenmesi

Year 2019, , 336 - 342, 30.09.2019
https://doi.org/10.30607/kvj.594550

Abstract

Kök hücre tedavisi,
pek çok tedavisi olmayan hastalıkta olduğu gibi çoğu nörodejeneratif hastalık
ve sendromda da daha iyi tedavi protokollerinin geliştirilmesi için önemli bir
çalışma alanı haline gelmiştir. Kök hücrelerin klinik kullanımı pet hayvanları
ve atlarda her ne kadar yaygınlaşmaya başlasa da sığırlarda kök hücre kullanımı
hala oldukça sınırlıdır. Bu çalışmada sığır yağ dokusu kaynaklı mezenkimal kök
hücreler izole edilmiş ve bu hücrelerden nörosfereldesi gerçekleştirilmiştir.
Elde edilen nörosferlerin nöronspresifik belirteçler olan ß-III Tubulin, Nestin
ve Sox2 ekspresyonları immunfloresan boyama tekniği ile değerlendirilmiştir.
Çalışmadan elde edilecek sonuçlar sığır yağ dokusu kaynaklı mezenkimal kök
hücrelerin nörojenik potansiyelinin daha iyi anlaşılması açısından önemli
olmakla birlikte bu sonuçlar sığırlarda nörojenik defektlerde kullanılabilecek
potansiyel tedavi yaklaşımlarının geliştirilmesi hususunda da yol gösterici
olacaktır. 

References

  • Bez A, Corsini E, Curti D, Biggiogera M, Colombo A, Nicosia RF, S. F. Pagano SF, Parati EA. Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain Research. 2003: 993 (1-2):18-29.
  • Brann JH, Firestein SJ. A lifetime of neurogenesis in the olfactory system. Front Neurosci 2014; 8:182.
  • Cebo, D. Characterization Of Bovine Adipose-Derived Stem Cells. International Journal of Scientific Technology Research (IJSTR) 2017; 6 (5):16-18.
  • Chung CS, Fujita N, Kawahara N, Yui S, Nam E, Nishimura R. A comparison of neurosphere differentiation potential of canine bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells. J. Vet. Med. Sci. 2013; 75(7): 879-886
  • Chung DJ, K. Hayashi K, Toupadakis CA, Wong A, Yellowley CE. Osteogenic proliferation and differentiation of canine bone marrow and adipose tissue derived mesenchymal stromal cells and the influence of hypoxia. Research in veterinary science. 2012: 92 (1):66-75.
  • Consiglio AL, Tassan S, Corradetti B, Bizzaro D, Bignotti A, Cremonesi F. 2011. Amniotic mesenchymal-derived cells for the treatment of tendinopathy in the horse: first report. Ippologia. 2011; 22(3):13-28.
  • Corradetti B, Correani A, Romaldini A, Marini MG, Bizzaro D, Perrini C, Cremonesi F, Lange-Consiglio A. Amniotic membrane-derived mesenchymal cells and their conditioned media: potential candidates for uterine regenerative therapy in the horse. PloS one 2014: 9(10):e111324.
  • Da Silva, CG, Martins CF, Cardoso TC, Da Cunha ER, Bessler HC, Martins GHL, Pivato I, Báo SN. 2016. Production of bovine embryos and calves cloned by nuclear transfer using mesenchymal stem cells from amniotic fluid and adipose tissue. Cellular Reprogramming 2016: 18 (2):127-136.
  • Girard SD, Devéze A, Nivet E, Gepner B, Roman FS, Féron F. Isolating nasal olfactory stem cells from rodents or humans. JoVE. 2011:1 (54):e2762.
  • Hu F, Wang X, Liang G, Lv L, Zhu Y, Sun B, Xiao Z. 2013. Effects of epidermal growth factor and basic fibroblast growth factor on the proliferation and osteogenic and neural differentiation of adipose-derived stem cells. Cellular Reprogramming. 2013: 15 (3):224-232.
  • Huaman O, Bahamonde J, Cahuascanco B, Jervis M, Palomino J, Torres CG, Peralta OA. 2019. Immunomodulatory and immunogenic properties of mesenchymal stem cells derived from bovine fetal bone marrow and adipose tissue. Research in veterinary science. 2019; 124:212-222
  • Jensen JB, Parmar M. Strengths and limitations of the neurosphere culture system. Molecular neurobiology. 2006; 34 (3):153-161.
  • Lange-Consiglio A, Tassan S, Corradetti B, Meucci A, Perego R, Bizzaro D, Cremonesi F. Investigating the efficacy of amnion-derived compared with bone marrow–derived mesenchymal stromal cells in equine tendon and ligament injuries. Cytotherapy 2013; 15 (8):1011-1020.
  • Marshall GP, Reynolds BA, Laywell ED. Using the neurosphere assay to quantify neural stem cells in vivo. Current Pharmaceutical Biotechnology. 2007; 8 (3):141-145.
  • Nagase T, D. Matsumoto D, Nagase M, Yoshimura K, Shigeura T, Inoue M, Hasegawa M, Yamagishi M, Machida M. Neurospheres from human adipose tissue transplanted into cultured mouse embryos can contribute to craniofacial morphogenesis: a preliminary report. Journal of Craniofacial Surgery. 2007; 18 (1):49-53.
  • Radtke C, Schmitz B, Spies M, Kocsis J, Vogt P. Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. Int. J. Devl Neuroscience. 2009; 27 (8):817-823.
  • Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255 (5052):1707-1710.
  • Sampaio RV, Chiaratti MR, Santos D, Bressan FF, Sangalli JR, d. Sá ALA, Silva T, Costa N, Cordeiro M, Santos S. 2015. Generation of bovine (Bos indicus) and buffalo (Bubalus bubalis) adipose tissue derived stem cells: isolation, characterization, and multipotentiality. Genet Mol Res. 2015; 14 (1):53-62.
  • Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Ogiuchi H, Okano T, Ando T. A protocol for immunofluorescence staining of floating neurospheres. Neuroscience letters 2010; 479 (2):126-127.
  • Theocharatos S, Wilkinson DJ, Darling S, Wilm B, Kenny SE, Edgar D. Regulation of progenitor cell proliferation and neuronal differentiation in enteric nervous system neurospheres. PloS one 2013; 8 (1):e54809.
There are 20 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section RESEARCH ARTICLE
Authors

Özlem Özden Akkaya 0000-0001-6372-9155

Tayfun Dikmen 0000-0003-4470-7465

Shah Nawaz 0000-0001-5468-8267

Publication Date September 30, 2019
Acceptance Date August 27, 2019
Published in Issue Year 2019

Cite

APA Özden Akkaya, Ö., Dikmen, T., & Nawaz, S. (2019). Investigation of Sox2, ß-III Tubulin and Nestin Expressions in Neuropsheres Differentiated from Bovine Adipose Derived Mesenchymal Stem Cells by Immunofluorescence Staining. Kocatepe Veterinary Journal, 12(3), 336-342. https://doi.org/10.30607/kvj.594550
AMA Özden Akkaya Ö, Dikmen T, Nawaz S. Investigation of Sox2, ß-III Tubulin and Nestin Expressions in Neuropsheres Differentiated from Bovine Adipose Derived Mesenchymal Stem Cells by Immunofluorescence Staining. kvj. September 2019;12(3):336-342. doi:10.30607/kvj.594550
Chicago Özden Akkaya, Özlem, Tayfun Dikmen, and Shah Nawaz. “Investigation of Sox2, ß-III Tubulin and Nestin Expressions in Neuropsheres Differentiated from Bovine Adipose Derived Mesenchymal Stem Cells by Immunofluorescence Staining”. Kocatepe Veterinary Journal 12, no. 3 (September 2019): 336-42. https://doi.org/10.30607/kvj.594550.
EndNote Özden Akkaya Ö, Dikmen T, Nawaz S (September 1, 2019) Investigation of Sox2, ß-III Tubulin and Nestin Expressions in Neuropsheres Differentiated from Bovine Adipose Derived Mesenchymal Stem Cells by Immunofluorescence Staining. Kocatepe Veterinary Journal 12 3 336–342.
IEEE Ö. Özden Akkaya, T. Dikmen, and S. Nawaz, “Investigation of Sox2, ß-III Tubulin and Nestin Expressions in Neuropsheres Differentiated from Bovine Adipose Derived Mesenchymal Stem Cells by Immunofluorescence Staining”, kvj, vol. 12, no. 3, pp. 336–342, 2019, doi: 10.30607/kvj.594550.
ISNAD Özden Akkaya, Özlem et al. “Investigation of Sox2, ß-III Tubulin and Nestin Expressions in Neuropsheres Differentiated from Bovine Adipose Derived Mesenchymal Stem Cells by Immunofluorescence Staining”. Kocatepe Veterinary Journal 12/3 (September 2019), 336-342. https://doi.org/10.30607/kvj.594550.
JAMA Özden Akkaya Ö, Dikmen T, Nawaz S. Investigation of Sox2, ß-III Tubulin and Nestin Expressions in Neuropsheres Differentiated from Bovine Adipose Derived Mesenchymal Stem Cells by Immunofluorescence Staining. kvj. 2019;12:336–342.
MLA Özden Akkaya, Özlem et al. “Investigation of Sox2, ß-III Tubulin and Nestin Expressions in Neuropsheres Differentiated from Bovine Adipose Derived Mesenchymal Stem Cells by Immunofluorescence Staining”. Kocatepe Veterinary Journal, vol. 12, no. 3, 2019, pp. 336-42, doi:10.30607/kvj.594550.
Vancouver Özden Akkaya Ö, Dikmen T, Nawaz S. Investigation of Sox2, ß-III Tubulin and Nestin Expressions in Neuropsheres Differentiated from Bovine Adipose Derived Mesenchymal Stem Cells by Immunofluorescence Staining. kvj. 2019;12(3):336-42.

13520    13521       13522   1352314104

14105         14106        14107       14108