Research Article
BibTex RIS Cite

At Yağ Dokusu Kaynaklı Mezenkimal Kök Hücrelerin İzolasyonu ve Çoklu Farklılaştırması

Year 2020, , 304 - 312, 30.09.2020
https://doi.org/10.30607/kvj.751139

Abstract

Mezenkimal kök hücreler kendilerini yenileyebilme ve sınırsız bölünebilme kabiliyetlerinin vasıtasıyla rejeneratif tıp alanında etkili bir kaynak haline gelmiştir. Bu çalışmada at yağ dokusu kaynaklı mezenkimal kök hücreler (EASCs) gelecekte hücresel tedavilerde kullanılabilirliği adına, morfolojileri ve çoklu farklılaşma kabiliyetleri bakımından değerlendirmeye alınmıştır. Elde edilen hücrelerin kök hücre özelliğini kesinleştirmek için hücreler osteojenik ve adipojenik farklılaştırmaya tabii tutulmuş ve nörosfer farklılaştırması yapılmıştır. Bunun yanı sıra, çalışmada elde edilen nörosferlerin enzimatik olarak çözülümünden sonra elde edilen nörosfer kaynaklı hücreler kültüre edilmiştir. Çalışma at yağ dokusu kaynaklı kök hücrelerin atlarda rejeneratif tıp için uygun bir seçim olabileceğini öne sürmektedir. Fakat at hekimliğinde pratik uygulama için bir standardın oluşturulmasından önce daha detaylı moleküler karakterizasyon çalışmalarına ihtiyaç duyulmaktadır.

References

  • Alipour F, Parham A, Kazemi Mehrjerdi H, Dehghani H. Equine adipose-derived mesenchymal stem cells: phenotype and growth characteristics, gene expression profile and differentiation potentials. Cell journal.2015; 16(4): 456-465
  • Altunbaş K, YaprakçI MV, S. Ç k. Isolation and Characterization of Olfactory Stem Cells from Canine Olfactory Mucosa. . Kafkas Univ Vet Fak Derg,.2016; 22(2): 237-243
  • Angelone M, Conti V, Biacca C, Battaglia B, Pecorari L, Piana F, Gnudi G, Leonardi F. The contribution of adipose tissue-derived mesenchymal stem cells and platelet-rich plasma to the treatment of chronic equine laminitis: A proof of concept. 2017; 18.
  • Barberini D J, Freitas N P P, Magnoni M S, Maia L, Listoni A J, Heckler M C, Sudano M J, Golim M A, da Cruz Landim-Alvarenga F, Amorim R M. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential. Stem Cell Res Ther.2014; 5(1): 25-25
  • Barberini DJ, Aleman M, Aristizabal F, Spriet M, Clark KC, Walker NJ, Galuppo LD, Amorim RM, Woolard KD, Borjesson DL. Safety and tracking of intrathecal allogeneic mesenchymal stem cell transplantation in healthy and diseased horses. Stem Cell Res Ther. 2018; 9: 96.
  • Biehl J K, Russell B. Introduction to stem cell therapy. The Journal of cardiovas nurs.2009; 24(2): 98-105
  • Brederlau A, Correia A S, Anisimov S V, Elmi M, Paul G, Roybon L, Morizane A, Bergquist F, Riebe I, Nannmark U, Carta M, Hanse E, Takahashi J, Sasai Y, Funa K, Brundin P, Eriksson P S, Li J-Y. Transplantation of Human Embryonic Stem Cell-Derived Cells to a Rat Model of Parkinson's Disease: Effect of In Vitro Differentiation on Graft Survival and Teratoma Formation. Stem Cell.2006; 24(6): 1433-1440
  • Burk J, Ribitsch I, Gittel C, Juelke H, Kasper C, Staszyk C, Brehm W. Growth and differentiation characteristics of equine mesenchymal stromal cells derived from different sources. Vet journal. 2013; 195(1): 98-106
  • Byrne J A, Pedersen D A, Clepper L L, Nelson M, Sanger W G, Gokhale S, Wolf D P, Mitalipov S M. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature.2007; 450(7169): 497-502
  • Chen S, Cui G, Peng C, Lavin MF, Sun X, Zhang E, Yang Y, Guan Y, Du Z, Shao H. Transplantation of adipose-derived mesenchymal stem cells attenuates pulmonary fibrosis of silicosis via anti-inflammatory and anti-apoptosis effects in rats. Stem Cell Res Ther. 2018; 9: 110.
  • Crovace A, Lacitignola L, Rossi G, Francioso E. Histological and immunohistochemical evaluation of autologous cultured bone marrow mesenchymal stem cells and bone marrow mononucleated cells in collagenase-induced tendinitis of equine superficial digital flexor tendon. Vet med international.2010; 2010: 250978
  • Darabi R, Gehlbach K, Bachoo R M, Kamath S, Osawa M, Kamm K E, Kyba M, Perlingeiro R C. Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat. Med.2008; 14(2): 134-143
  • De Coppi P, Bartsch G, Siddiqui M M, Xu T, Santos C C, Perin L, Mostoslavsky G, Serre A C, Snyder E Y, Yoo J J, Furth M E, Soker S, Atala A. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol.2007; 25
  • De Mattos Carvalho A, Alves A L G, de Oliveira P G G, Cisneros Álvarez L E, Amorim R L, Hussni C A, Deffune E. Use of Adipose Tissue-Derived Mesenchymal Stem Cells for Experimental Tendinitis Therapy in Equines .Journal of Equine Vet Sci.(2011); (Vol. 31, pp. 26-34)
  • De Oliveira Carvalho S. Establishing stem cell based systems to study neuropathologies. (Master Research), Universidade de Aveiro, Portugal.2012
  • De Schauwer C, Meyer E, Van de Walle G R, Van Soom A. Markers of stemness in equine mesenchymal stem cells: a plea for uniformity. Theriogenology.2011; 75(8): 1431-1443
  • di Domenico A, Carola G, Calatayud C, Pons-Espinal M, Muñoz JP, Richaud-Patin Y, Fernandez-Carasa I, Gut M, Faella A, Parameswaran J, Soriano J, Ferrer I, Tolosa E, Zorzano A, Cuervo AM, Raya A, Consiglio A. Patient-specific ipsc-derived astrocytes contribute to non-cell-autonomous neurodegeneration in parkinson's disease. Stem cell reports. 2019; 12: 213-229.
  • Dixon-Shanies D, Rudick J, Knittle J L. Observatons on the growth and metabolic functions of cultured cells derived from human adipose tissue. Proceedings of the Society for Experimental Biology and Medicine. Society for Expt Biol and Med.1975; 149(2): 541-545
  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy.2006; 8(4): 315-317
  • Fink T, Zachar V. Adipogenic differentiation of human mesenchymal stem cells. In: Vemuri M, Chase LG , Rao MS, eds. Mesenchymal stem cell assays and applications. Totowa, NJ: Humana Press, 2011; 243-251.
  • Frisbie D D, Smith R K. Clinical update on the use of mesenchymal stem cells in equine orthopaedics. Equine vet journal.2010; 42(1): 86-89
  • Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy.2003; 5(5): 362-369
  • Girard S D, Devéze A, Nivet E, Gepner B, Roman F S, Féron F. Isolating nasal olfactory stem cells from rodents or humans. Journal of visualized experiments : JoVE.2011; (54)
  • Huang S J, Fu R H, Shyu W C, Liu S P, Jong G P, Chiu Y W, Wu H S, Tsou Y A, Cheng C W, Lin S Z. Adipose-derived stem cells: isolation, characterization, and differentiation potential. Cell transplantation.2013; 22(4): 701-709
  • Iacono E, Brunori L, Pirrone A, Pagliaro P P, Ricci F, Tazzari P L, Merlo B. Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton's jelly in the horse. Reproduction.2012; 143(4): 455-468
  • Koç A, Emin N, Elçin A E, Elçin Y M. In Vitro Osteogenic Differentiation of Rat Mesenchymal Stem Cells in a Microgravity Bioreactor. Journal of Bioactive and Compatible Polymers.2008; 23(3): 244-261
  • Laflamme M A, Chen K Y, Naumova A V, Muskheli V, Fugate J A, Dupras S K, Reinecke H, Xu C, Hassanipour M, Police S, O'Sullivan C, Collins L, Chen Y, Minami E, Gill E A, Ueno S, Yuan C, Gold J, Murry C E. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol.2007; 25(9): 1015-1024
  • Lange-Consiglio A, Corradetti B, Bizzaro D, Magatti M, Ressel L, Tassan S, Parolini O, Cremonesi F. Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane. Journal of Tissue Eng Reg Med.2012; 6(8): 622-635
  • Lange-Consiglio A, Corradetti B, Meucci A, Perego R, Bizzaro D, Cremonesi F. Characteristics of equine mesenchymal stem cells derived from amnion and bone marrow: in vitro proliferative and multilineage potential assessment. Equine vet journal.2013; 45(6): 737-744
  • Lee S T, Chu K, Jung K H, Song Y M, Jeon D, Kim S U, Kim M, Lee S K, Roh J K. Direct generation of neurosphere-like cells from human dermal fibroblasts. PloS one.2011; 6(7): e21801
  • Macrin D, Joseph JP, Pillai AA, Devi A. Eminent sources of adult mesenchymal stem cells and their therapeutic imminence. Stem cell reviews and reports. 2017; 13: 741-756.
  • Martino N A, Reshkin S J, Ciani E, Dell'Aquila M E. Calcium-Sensing Receptor-Mediated Osteogenic and Early-Stage Neurogenic Differentiation in Umbilical Cord Matrix Mesenchymal Stem Cells from a Large Animal Model. PloS one.2014; 9(11): e111533
  • Mirzaei H, Sahebkar A, Sichani LS, Moridikia A, Nazari S, Sadri Nahand J, salehi H, Stenvang J, Masoudifar A, Mirzaei HR, Jaafari MR. Therapeutic application of multipotent stem cells. J Cell Physiol. 2018; 233: 2815-2823.
  • Moonesi Rad R, Atila D, Evis Z, Keskin D, Tezcaner A. Development of a novel functionally graded membrane containing boron-modified bioactive glass nanoparticles for guided bone regeneration. Journal of tissue eng reg med.2019; 13(8): 1331-1345
  • Nawaz S, Özden Akkaya Ö, Dikmen T, Altunbaş K, Yağci A, Kibria A S M G, Erdoğan M, Çelik H A. Molecular characterization of bovine amniotic fluid derived stem cells with an underlying focus on their comparative neuronal potential at different passages. Annals of Anatomy - Anatomischer Anzeiger.2020; 228: 151452
  • Ozden-Akkaya O, Tayfun DİKMEN, NAWAZ S. Investigation of Sox2, ß-III Tubulin and Nestin Expressions in Neuropsheres Differentiated from Bovine Adipose Derived Mesenchymal Stem Cells by Immunofluorescence Staining. Kocatepe Vet Journal.2019; 12(3): 336-342
  • Pacini S, Spinabella S, Trombi L, Fazzi R, Galimberti S, Dini F, Carlucci F, Petrini M. Suspension of bone marrow-derived undifferentiated mesenchymal stromal cells for repair of superficial digital flexor tendon in race horses. Tissue engineering.2007; 13(12): 2949-2955
  • Picanco-Castro V, Moreira L F, Kashima S, Covas D T. Can pluripotent stem cells be used in cell-based therapy? Cellular reprogramming.2014; 16(2): 98-107
  • Quimby J M, Dow S W. Novel treatment strategies for feline chronic kidney disease: A critical look at the potential of mesenchymal stem cell therapy. Vet journal (London, England : 1997).2015; 204(3): 241-246
  • Rivera C, Tuemmers C, Bañados R, Vidal-Seguel N, Montiel-Eulefi E. Reduction of recurrent tendonitis scar using autologous mesenchymal stem cells derived from adipose tissue from the base of the tail in holsteiner horses (equus ferus caballus). Int J Morphol. 2020; 38: 186-192.
  • Rompolas P, Deschene ER, Zito G, Gonzalez DG, Saotome I, Haberman AM, Greco V. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature. 2012; 487: 496-499.
  • Roth J A, Tuggle C K. Livestock models in translational medicine. ILAR journal.2015; 56(1): 1-6
  • Ryan J M, Barry F P, Murphy J M, Mahon B P. Mesenchymal stem cells avoid allogeneic rejection. Journal of inflammation (London, England).2005; 2: 8
  • Tepliashin A S, Chupikova N I, Korzhikova S V, Sharifullina S Z, Rostovskaia M S, Topchiashvili Z A, Savchenkova I P. Comparative analysis of cell populations with a phenotype similar to that of mesenchymal stem cells derived from subcutaneous fat. Tsitologiia.2005; 47(7): 637-643
  • Toghraie F S, Chenari N, Gholipour M A, Faghih Z, Torabinejad S, Dehghani S, Ghaderi A. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit. The Knee.2011; 18(2): 71-75
  • Vidal M A, Kilroy G E, Lopez M J, Johnson J R, Moore R M, Gimble J M. Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Veterinary surgery : VS.2007; 36(7): 613-622
  • Wernig M, Zhao J-P, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A.2008; 105(15): 5856-5861
  • Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Res Ther. 2019; 10: 68.
  • Zuk P A, Zhu M, Mizuno H, Huang J, Futrell J W, Katz A J, Benhaim P, Lorenz H P, Hedrick M H. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue engineering.2001; 7(2): 211-228

Equine Adipose Tissue Derived Mesenchymal Stem Cells and Their Multilineage Differentiation

Year 2020, , 304 - 312, 30.09.2020
https://doi.org/10.30607/kvj.751139

Abstract

Mesenchymal stem cells (MSCs) have become a potent source for cell therapy due their inherent properties of self-renewal and ability to undergo unlimited divisions in the field of regenerative medicine. In this study, equine adipose tissue stem cells (EASCs) have been evaluated on the basis of their morphology, proliferation potential and multilineage differentiation capabilities for their future usage in cell therapy. The cells were further differentiated into osteogenic and adipogenic cell lineages as well as into adipose derived neurospheres to ensure the stemness of propagated cells. In our study, we further successfully cultured the neurosphere derived cells which were cultured from neurospheres after enzymatic dissociation. The study exhibits that EASCs offer a suitable choice for cellular regenerative therapy in equines. Nonetheless, there is a still need to molecular characterization of EASCs in order to establish a standard practice in equine medicine.

References

  • Alipour F, Parham A, Kazemi Mehrjerdi H, Dehghani H. Equine adipose-derived mesenchymal stem cells: phenotype and growth characteristics, gene expression profile and differentiation potentials. Cell journal.2015; 16(4): 456-465
  • Altunbaş K, YaprakçI MV, S. Ç k. Isolation and Characterization of Olfactory Stem Cells from Canine Olfactory Mucosa. . Kafkas Univ Vet Fak Derg,.2016; 22(2): 237-243
  • Angelone M, Conti V, Biacca C, Battaglia B, Pecorari L, Piana F, Gnudi G, Leonardi F. The contribution of adipose tissue-derived mesenchymal stem cells and platelet-rich plasma to the treatment of chronic equine laminitis: A proof of concept. 2017; 18.
  • Barberini D J, Freitas N P P, Magnoni M S, Maia L, Listoni A J, Heckler M C, Sudano M J, Golim M A, da Cruz Landim-Alvarenga F, Amorim R M. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential. Stem Cell Res Ther.2014; 5(1): 25-25
  • Barberini DJ, Aleman M, Aristizabal F, Spriet M, Clark KC, Walker NJ, Galuppo LD, Amorim RM, Woolard KD, Borjesson DL. Safety and tracking of intrathecal allogeneic mesenchymal stem cell transplantation in healthy and diseased horses. Stem Cell Res Ther. 2018; 9: 96.
  • Biehl J K, Russell B. Introduction to stem cell therapy. The Journal of cardiovas nurs.2009; 24(2): 98-105
  • Brederlau A, Correia A S, Anisimov S V, Elmi M, Paul G, Roybon L, Morizane A, Bergquist F, Riebe I, Nannmark U, Carta M, Hanse E, Takahashi J, Sasai Y, Funa K, Brundin P, Eriksson P S, Li J-Y. Transplantation of Human Embryonic Stem Cell-Derived Cells to a Rat Model of Parkinson's Disease: Effect of In Vitro Differentiation on Graft Survival and Teratoma Formation. Stem Cell.2006; 24(6): 1433-1440
  • Burk J, Ribitsch I, Gittel C, Juelke H, Kasper C, Staszyk C, Brehm W. Growth and differentiation characteristics of equine mesenchymal stromal cells derived from different sources. Vet journal. 2013; 195(1): 98-106
  • Byrne J A, Pedersen D A, Clepper L L, Nelson M, Sanger W G, Gokhale S, Wolf D P, Mitalipov S M. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature.2007; 450(7169): 497-502
  • Chen S, Cui G, Peng C, Lavin MF, Sun X, Zhang E, Yang Y, Guan Y, Du Z, Shao H. Transplantation of adipose-derived mesenchymal stem cells attenuates pulmonary fibrosis of silicosis via anti-inflammatory and anti-apoptosis effects in rats. Stem Cell Res Ther. 2018; 9: 110.
  • Crovace A, Lacitignola L, Rossi G, Francioso E. Histological and immunohistochemical evaluation of autologous cultured bone marrow mesenchymal stem cells and bone marrow mononucleated cells in collagenase-induced tendinitis of equine superficial digital flexor tendon. Vet med international.2010; 2010: 250978
  • Darabi R, Gehlbach K, Bachoo R M, Kamath S, Osawa M, Kamm K E, Kyba M, Perlingeiro R C. Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat. Med.2008; 14(2): 134-143
  • De Coppi P, Bartsch G, Siddiqui M M, Xu T, Santos C C, Perin L, Mostoslavsky G, Serre A C, Snyder E Y, Yoo J J, Furth M E, Soker S, Atala A. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol.2007; 25
  • De Mattos Carvalho A, Alves A L G, de Oliveira P G G, Cisneros Álvarez L E, Amorim R L, Hussni C A, Deffune E. Use of Adipose Tissue-Derived Mesenchymal Stem Cells for Experimental Tendinitis Therapy in Equines .Journal of Equine Vet Sci.(2011); (Vol. 31, pp. 26-34)
  • De Oliveira Carvalho S. Establishing stem cell based systems to study neuropathologies. (Master Research), Universidade de Aveiro, Portugal.2012
  • De Schauwer C, Meyer E, Van de Walle G R, Van Soom A. Markers of stemness in equine mesenchymal stem cells: a plea for uniformity. Theriogenology.2011; 75(8): 1431-1443
  • di Domenico A, Carola G, Calatayud C, Pons-Espinal M, Muñoz JP, Richaud-Patin Y, Fernandez-Carasa I, Gut M, Faella A, Parameswaran J, Soriano J, Ferrer I, Tolosa E, Zorzano A, Cuervo AM, Raya A, Consiglio A. Patient-specific ipsc-derived astrocytes contribute to non-cell-autonomous neurodegeneration in parkinson's disease. Stem cell reports. 2019; 12: 213-229.
  • Dixon-Shanies D, Rudick J, Knittle J L. Observatons on the growth and metabolic functions of cultured cells derived from human adipose tissue. Proceedings of the Society for Experimental Biology and Medicine. Society for Expt Biol and Med.1975; 149(2): 541-545
  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy.2006; 8(4): 315-317
  • Fink T, Zachar V. Adipogenic differentiation of human mesenchymal stem cells. In: Vemuri M, Chase LG , Rao MS, eds. Mesenchymal stem cell assays and applications. Totowa, NJ: Humana Press, 2011; 243-251.
  • Frisbie D D, Smith R K. Clinical update on the use of mesenchymal stem cells in equine orthopaedics. Equine vet journal.2010; 42(1): 86-89
  • Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy.2003; 5(5): 362-369
  • Girard S D, Devéze A, Nivet E, Gepner B, Roman F S, Féron F. Isolating nasal olfactory stem cells from rodents or humans. Journal of visualized experiments : JoVE.2011; (54)
  • Huang S J, Fu R H, Shyu W C, Liu S P, Jong G P, Chiu Y W, Wu H S, Tsou Y A, Cheng C W, Lin S Z. Adipose-derived stem cells: isolation, characterization, and differentiation potential. Cell transplantation.2013; 22(4): 701-709
  • Iacono E, Brunori L, Pirrone A, Pagliaro P P, Ricci F, Tazzari P L, Merlo B. Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton's jelly in the horse. Reproduction.2012; 143(4): 455-468
  • Koç A, Emin N, Elçin A E, Elçin Y M. In Vitro Osteogenic Differentiation of Rat Mesenchymal Stem Cells in a Microgravity Bioreactor. Journal of Bioactive and Compatible Polymers.2008; 23(3): 244-261
  • Laflamme M A, Chen K Y, Naumova A V, Muskheli V, Fugate J A, Dupras S K, Reinecke H, Xu C, Hassanipour M, Police S, O'Sullivan C, Collins L, Chen Y, Minami E, Gill E A, Ueno S, Yuan C, Gold J, Murry C E. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol.2007; 25(9): 1015-1024
  • Lange-Consiglio A, Corradetti B, Bizzaro D, Magatti M, Ressel L, Tassan S, Parolini O, Cremonesi F. Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane. Journal of Tissue Eng Reg Med.2012; 6(8): 622-635
  • Lange-Consiglio A, Corradetti B, Meucci A, Perego R, Bizzaro D, Cremonesi F. Characteristics of equine mesenchymal stem cells derived from amnion and bone marrow: in vitro proliferative and multilineage potential assessment. Equine vet journal.2013; 45(6): 737-744
  • Lee S T, Chu K, Jung K H, Song Y M, Jeon D, Kim S U, Kim M, Lee S K, Roh J K. Direct generation of neurosphere-like cells from human dermal fibroblasts. PloS one.2011; 6(7): e21801
  • Macrin D, Joseph JP, Pillai AA, Devi A. Eminent sources of adult mesenchymal stem cells and their therapeutic imminence. Stem cell reviews and reports. 2017; 13: 741-756.
  • Martino N A, Reshkin S J, Ciani E, Dell'Aquila M E. Calcium-Sensing Receptor-Mediated Osteogenic and Early-Stage Neurogenic Differentiation in Umbilical Cord Matrix Mesenchymal Stem Cells from a Large Animal Model. PloS one.2014; 9(11): e111533
  • Mirzaei H, Sahebkar A, Sichani LS, Moridikia A, Nazari S, Sadri Nahand J, salehi H, Stenvang J, Masoudifar A, Mirzaei HR, Jaafari MR. Therapeutic application of multipotent stem cells. J Cell Physiol. 2018; 233: 2815-2823.
  • Moonesi Rad R, Atila D, Evis Z, Keskin D, Tezcaner A. Development of a novel functionally graded membrane containing boron-modified bioactive glass nanoparticles for guided bone regeneration. Journal of tissue eng reg med.2019; 13(8): 1331-1345
  • Nawaz S, Özden Akkaya Ö, Dikmen T, Altunbaş K, Yağci A, Kibria A S M G, Erdoğan M, Çelik H A. Molecular characterization of bovine amniotic fluid derived stem cells with an underlying focus on their comparative neuronal potential at different passages. Annals of Anatomy - Anatomischer Anzeiger.2020; 228: 151452
  • Ozden-Akkaya O, Tayfun DİKMEN, NAWAZ S. Investigation of Sox2, ß-III Tubulin and Nestin Expressions in Neuropsheres Differentiated from Bovine Adipose Derived Mesenchymal Stem Cells by Immunofluorescence Staining. Kocatepe Vet Journal.2019; 12(3): 336-342
  • Pacini S, Spinabella S, Trombi L, Fazzi R, Galimberti S, Dini F, Carlucci F, Petrini M. Suspension of bone marrow-derived undifferentiated mesenchymal stromal cells for repair of superficial digital flexor tendon in race horses. Tissue engineering.2007; 13(12): 2949-2955
  • Picanco-Castro V, Moreira L F, Kashima S, Covas D T. Can pluripotent stem cells be used in cell-based therapy? Cellular reprogramming.2014; 16(2): 98-107
  • Quimby J M, Dow S W. Novel treatment strategies for feline chronic kidney disease: A critical look at the potential of mesenchymal stem cell therapy. Vet journal (London, England : 1997).2015; 204(3): 241-246
  • Rivera C, Tuemmers C, Bañados R, Vidal-Seguel N, Montiel-Eulefi E. Reduction of recurrent tendonitis scar using autologous mesenchymal stem cells derived from adipose tissue from the base of the tail in holsteiner horses (equus ferus caballus). Int J Morphol. 2020; 38: 186-192.
  • Rompolas P, Deschene ER, Zito G, Gonzalez DG, Saotome I, Haberman AM, Greco V. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature. 2012; 487: 496-499.
  • Roth J A, Tuggle C K. Livestock models in translational medicine. ILAR journal.2015; 56(1): 1-6
  • Ryan J M, Barry F P, Murphy J M, Mahon B P. Mesenchymal stem cells avoid allogeneic rejection. Journal of inflammation (London, England).2005; 2: 8
  • Tepliashin A S, Chupikova N I, Korzhikova S V, Sharifullina S Z, Rostovskaia M S, Topchiashvili Z A, Savchenkova I P. Comparative analysis of cell populations with a phenotype similar to that of mesenchymal stem cells derived from subcutaneous fat. Tsitologiia.2005; 47(7): 637-643
  • Toghraie F S, Chenari N, Gholipour M A, Faghih Z, Torabinejad S, Dehghani S, Ghaderi A. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit. The Knee.2011; 18(2): 71-75
  • Vidal M A, Kilroy G E, Lopez M J, Johnson J R, Moore R M, Gimble J M. Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Veterinary surgery : VS.2007; 36(7): 613-622
  • Wernig M, Zhao J-P, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A.2008; 105(15): 5856-5861
  • Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Res Ther. 2019; 10: 68.
  • Zuk P A, Zhu M, Mizuno H, Huang J, Futrell J W, Katz A J, Benhaim P, Lorenz H P, Hedrick M H. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue engineering.2001; 7(2): 211-228
There are 49 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences, Veterinary Surgery
Journal Section RESEARCH ARTICLE
Authors

Asm Golam Kıbrıa 0000-0003-1303-4341

Shah Nawaz 0000-0001-5468-8267

Tayfun Dikmen 0000-0003-4470-7465

Özlem Özden Akkaya 0000-0001-6372-9155

Artay Yağcı 0000-0002-8081-9774

Publication Date September 30, 2020
Acceptance Date September 4, 2020
Published in Issue Year 2020

Cite

APA Kıbrıa, A. G., Nawaz, S., Dikmen, T., Özden Akkaya, Ö., et al. (2020). Equine Adipose Tissue Derived Mesenchymal Stem Cells and Their Multilineage Differentiation. Kocatepe Veterinary Journal, 13(3), 304-312. https://doi.org/10.30607/kvj.751139
AMA Kıbrıa AG, Nawaz S, Dikmen T, Özden Akkaya Ö, Yağcı A. Equine Adipose Tissue Derived Mesenchymal Stem Cells and Their Multilineage Differentiation. kvj. September 2020;13(3):304-312. doi:10.30607/kvj.751139
Chicago Kıbrıa, Asm Golam, Shah Nawaz, Tayfun Dikmen, Özlem Özden Akkaya, and Artay Yağcı. “Equine Adipose Tissue Derived Mesenchymal Stem Cells and Their Multilineage Differentiation”. Kocatepe Veterinary Journal 13, no. 3 (September 2020): 304-12. https://doi.org/10.30607/kvj.751139.
EndNote Kıbrıa AG, Nawaz S, Dikmen T, Özden Akkaya Ö, Yağcı A (September 1, 2020) Equine Adipose Tissue Derived Mesenchymal Stem Cells and Their Multilineage Differentiation. Kocatepe Veterinary Journal 13 3 304–312.
IEEE A. G. Kıbrıa, S. Nawaz, T. Dikmen, Ö. Özden Akkaya, and A. Yağcı, “Equine Adipose Tissue Derived Mesenchymal Stem Cells and Their Multilineage Differentiation”, kvj, vol. 13, no. 3, pp. 304–312, 2020, doi: 10.30607/kvj.751139.
ISNAD Kıbrıa, Asm Golam et al. “Equine Adipose Tissue Derived Mesenchymal Stem Cells and Their Multilineage Differentiation”. Kocatepe Veterinary Journal 13/3 (September 2020), 304-312. https://doi.org/10.30607/kvj.751139.
JAMA Kıbrıa AG, Nawaz S, Dikmen T, Özden Akkaya Ö, Yağcı A. Equine Adipose Tissue Derived Mesenchymal Stem Cells and Their Multilineage Differentiation. kvj. 2020;13:304–312.
MLA Kıbrıa, Asm Golam et al. “Equine Adipose Tissue Derived Mesenchymal Stem Cells and Their Multilineage Differentiation”. Kocatepe Veterinary Journal, vol. 13, no. 3, 2020, pp. 304-12, doi:10.30607/kvj.751139.
Vancouver Kıbrıa AG, Nawaz S, Dikmen T, Özden Akkaya Ö, Yağcı A. Equine Adipose Tissue Derived Mesenchymal Stem Cells and Their Multilineage Differentiation. kvj. 2020;13(3):304-12.

13520    13521       13522   1352314104

14105         14106        14107       14108