Review
BibTex RIS Cite

Antibiotic Resistance Profile of Lactic Acid Bacteria Origine From Animal Foods

Year 2016, Volume: 9 Issue: 4, 372 - 378, 31.12.2016

Abstract

At the present time, researches about lactic acid bacteria have begun to increase. This situation enable that investigate of starter culture features on these microorganisms. On the other hand, using antibiotic for growth promoter on animals cause development antibiotic resistance in these microorganisms. While researches about multiple antibiotic resistance of pathogen microorganisms increase, microorganisms that safety for public health begin to acquire antibiotic resistance. In this review, it is aimed to give some information about antibiotic resistance of lactic acid bacteria.

References

  • Ammor MS, Florez AB, Mayo B. Antibiotic resistance in nonenterococcal lactic acid bacteria and bifidobacteria. Food Microbiol. 2007; 24: 559-570.
  • Anonim.www.mevzuat.gov.tr/Metin.Aspx?MevzuatKod=7.5.18596&MevzuatIliski=0&sourceXmlSearch=yem%20katk%C4%B1; Erişim tarihi: 11.11.2016.
  • Aslim B, Beyatli Y. Antibiotic resistance and plasmid DNA contents of Streptococcus thermophilus strains isolated from Turkish yoghurts. Turk J Vet Anim Sci. 2004; 28: 257– 263.
  • Bates J. Epidemiology of vancomycin-resistant enterococci in the community and the relevance of farm animals to human infection. J Hosp Infect. 1997; 37: 89–101.
  • Batish VK, Ranganathan B. Antibiotic susceptibility of deoxyribonuclease-positive enterococci isolated from milk and milk products and their epidemiological significance. Int J Food Microbiol. 1986; 16: 203–206.
  • Charpentier E, Courvalin P. Antibiotic resistance in Listeria spp. Antimicrob Agents Ch. 1999; 43 (9): 2103–2108.
  • Clewell DB. Bacterial Conjugation, Ed; Clewell DB. Plenum Press, New York, 1993.
  • Clewell DB, Flannagan SE, Jaworski DD. Unconstrained bacterial promiscuity: the Tn916–Tn1545 family of conjugative transposons. Trends Microbiol. 1995; 3: 229– 236.
  • Davies J. Origins, acquisition and dissemination of antibiotic resistance determinants, In: Antibiotic resistance: origins, evolution, selection and spread, Ed; Chadwick DJ, Goode J, Ciba Foundation Symposium, vol. 207. Wiley, Chichester, 1997; pp. 15– 27.
  • Davies JE. Inactivation of antibiotics and the dissemination of resistance genes. Science. 1994; 264: 375–382.
  • Davies R, Roberts TA. Antimicrobial susceptibility of enterococci recovered from commercial swine carcasses: effect of feed additives. Lett Appl Microbiol. 1999; 29: 327– 333.
  • Dellaglio F, Dicks LMT, Torriani S. The genus Leuconostoc, In: The Genera of Lactic Acid Bacteria, Ed; Wood BJB, Holzapfel WH. Blackie Academic & Professional, London, 1995; pp. 235–278.
  • Devirgiliis C, Barile S, Perozzi G. Antibiotic resistance determinants in the interplay between food and gut microbiota. Genes Nutr. 2011; 6: 275-284.
  • Devirgiliis C, Coppola D, Barile S, Colonna B, Perozzi G. Characterization of the Tn916 conjugative transposon in a food-borne strain of Lactobacillus paracasei. Appl Environ Microbiol. 2009; 75: 3866–3871.
  • Deveriese LA, Pot B. The genus Enterococcus, In: The Genera of Lactic Acid Bacteria, Ed; Wood BJB, Holzapfel WH. Blackie Academic & Professional, London, 1995; pp. 327–367.
  • Elisha BG, Courvalin P. Analysis of genes encoding dalanine: d-alanine ligase-related enzymes in Leuconostoc mesenteroides and Lactobacillus spp. Gene. 1995; 152: 79–83.
  • Franz CM, Muscholl-Silberhorn AB, Yousif NMK, Vancanneyt M, Swings J, Holzapfel WH. Incidence of virulence factors and antibiotic resistance among Enterococci isolated from food. Appl Environ Microbiol. 2001; 67: 4385– 4389.
  • Franz CMAP, Stiles ME, Schleifer KH, Holzapfel WH. Enterococci ın foods a conundrum for food safety. Int J Food Microbiol. 2003; 88: 105–122.
  • Gevers D, Huys G, Devlieghere F, Uyttendaele M, Debevere J, Swings J. Isolation and identification of tetracycline resistance lactic acid bacteria from pre-packed sliced meat products. Syst Appl Microbiol. 2000; 23: 279-284.
  • Giraffa G, Carminati D, Neviani E. Enterococci isolated from dairy products: a review of risks and potential technological use. J Food Protect. 1997; 60: 732–738.
  • Giraffa G, Sisto F. Susceptibility to vancomycin of enterococci isolated from dairy products. Lett Appl Microbiol. 1997; 25: 335–338.
  • Giraffa G. Enterococci from foods. FEMS Microbiol Rev. 2002; 26: 163–171.
  • Iplikçioğlu Çil G, Ormancı FS. Piliç boyun derilerinden izole edilen C. Perfringens’lerin antibiyotik direnç profillerinin belirlenmesi. Etlik Vet Mikrobiyol Derg. 2016; 27 (1): (Baskıda).
  • Isleroglu H, Yıldırım Z, Demirpence Y, Yıldırım M. Enterekokların biyokimyasal, fizyolojik ve fonksiyonel özellikleri ile patojenitesi. Akademik Gıda. 2008; 6 (3): 16-26.
  • Janzen T, Kleinschmidt J, Neve H, Geis A. Sequencing and characterization of pST1, a cryptic plasmid from Streptococcus thermophilus. FEMS Microbiol Lett. 1992; 95: 175–180.
  • Jett BD, Huycke MM, Gilmore MS. Virulence of Enterococci. Clin Microbiol Rev. 1994; 7 (4): 462-4781.
  • Klein G, Pack A, Reuter G. Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant enterococci in raw minced beef and pork in Germany. Appl Environ Microbiol. 1998; 64: 1825–1830.
  • Knudtson LM, Hartman PA. Antibiotic resistance among enterococci isolates from environmental and clinical sources. J Food Protect. 1993; 56: 489–492.
  • Korhonen JM, Danielsen M, Mayo B, Egervarn M, Axelsson L, Huys G, von Wring A. Antimicrobial susceptibility an proposed microbiological cut-off values of Lactobacilli by phenotypic determination. Int J Prob Preb. 2008; 3: 257-268.
  • Maietti L, Bonvini B, Huys G, Giraffa G. Incidence of antibiotic resistance and virulence determinants among Enterococcus italicus isolates from dairy products. Syst Appl Microbiol. 2007; 30: 509–517.
  • Mathur S, Singh R. Antibiotic resistance in food lactic acid bacteria—a review. Int J Food Microbiol. 2005; 105: 281– 295.
  • Nawaz M, Wang J, Zhou A, Ma C, Wu X, Moore JE, Millar BC, Xu J. Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Curr Microbiol. 2011; 62: 1081-1089.
  • Pavia M, Nobile CGA, Salpietro L, Angelillo IF. Vancomycin resistance and antibiotic susceptibility of enterococci in raw meat. J Food Prot. 2000; 63: 912– 915.
  • Perreten V, Giampa N, Schuler-Schmid U, Teuber M. Antibiotic resistance genes in coagulase-negative staphylococci ısolated from food system. Appl Microbiol. 1998; 21 (1): 113-120.
  • Perreten V, Schwarz F, Cresta L, Boeglin M, Dasen G, Teuber M. Antibiotic resistance spread in food. Nature. 1997; 389: 801–802.
  • Quednau M, Ahrne S, Petersson AC, Molin G. Antibiotic resistant strains of Enterococcus isolated from Swedish and Danish retailed chicken and pork. J Appl Microbiol. 1998; 84: 1163–1170.
  • Robrido B, Singh KV, Baquero F, Murray BE, Torres C. Vancomycin-resistant enterococci isolated from animals and food. Int J Food Microbiol. 2000; 54: 197–204.
  • Schleifer KH, Ludwig W. Phylogenetic relationships of lactic acid bacteria, In: The Genera of Lactic Acid Bacteria, Ed; Wood BJB, Holzapfel WH, Blackie Academic & Professional, London, 1995; pp. 7–18.
  • Schmieger H, Schicklmaier P. Transduction of multiple drug resistance of Salmonella enterica serovar typhimurium DT104. FEMS Microbiol Lett. 1999; 170 (1): 251-256.
  • Scott KP. The role of conjugative transposons in spreading antibiotic resistance between bacteria that inhabit the gastrointestinal tract. Cell Mol Life Sci. 2002; 59: 2071–2082.
  • Sgorbati B, Bivati B, Palenzona D. The genus Bifidobacterium, In: The Genera of Lactic Acid Bacteria, Ed; Wood BJB, Holzapfel WH. Blackie Academic & Professional, London, 1995; pp. 279– 376.
  • Simpson, Taguchi, H., The genus Pediococcus, with notes on the genera Tetratogenococcus and Aerococcus. The Genera of Lactic acid bacteria. Blackie Academic & Professional, London, 1995; pp. 125– 172.
  • Sozzi T, Smiley MB. Antibiotic resistances of yogurt starter cultures Streptococcus thermophilus and Lactobacillus bulgaricus. Appl Environ Microbiol. 1980; 40: 862–865.
  • Tannock GW. Probiotics. A critical review. Horizon Scientific Press, Wymondham, 1998.
  • Tatlı D. Geleneksel süt ürünlerinden izole edilen laktik asit bakterilerinin antibyotik dirençlerinin belirlenmesi. Yüksek lisans tezi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 2009.
  • Temmerman R, Pot B, Huys G, Swings J. Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int J Food Microbiol. 2002; 81: 1–10.
  • Teuber M, Meile L, Schwarz F. Acquired antibiotic resistance in lactic acid bacteria from food. Antonie van Leeuwenhoek.1999; 76: 115–137.
  • Teuber M, Perreten V, Wirsching F. Antibiotikumresistente bakterien: eine neue dimension in der lebensmittelmikrobiologie. Lebensm Wiss Technol. 1996; 29: 182–199.
  • Teuber M, Perreten V. Role of milk and meat products as vehicles for antibiotic-resistant bacteria. Acta Vet Scand Suppl. 2000; 93: 75–87.
  • Teuber M. The genus Lactococcus, In: The Genera of Lactic Acid Bacteria, Ed; Wood BJB, Holzapfel WH, Blackie Academic & Professional, London, Springer US, 1995; pp. 173-234
  • Teuber M. Spread of antibiotic resistance with food-borne pathogens. Cell Mol Life Sci. 1999; 56: 755– 763.
  • Teuber M. Veterinary use and antibiotic resistance. Curr Opin Microbiol. 2001; 4: 493–499.
  • Van den Braak N, van Belkum A, van Keulen M, Vliegenthart J, Verbrugh HA, Endtz HP Molecular characterization of vancomycin-resistant enterococci from hospitalized patients and poultry products in the Netherlands. J Clin Microbiol. 1998; 36: 1927–1932.
  • Wegener HC, Madsen M, Nielsen N, Aarestrup FM. Isolation of vancomycin resistant Enterococcus faecium from food. Int J Food Microbiol. 1997; 35: 57– 66.
  • Wegener HC. Antibiotics in animal feed and their role in resistance development. Curr Opin Microbiol. 2003; 6: 439– 445.
  • Witte W. Impact of antibiotic use in animal feeding on resistance of bacterial pathogens in humans, In: Antibiotic resistance: origins, evolution, selection and spread, Ed; Chadwick, DJ, Goode J, Ciba Foundation Symposium 207. Wiley, Chichester, 1997; pp. 61–75.
  • Woodford N. Glycopeptide-resistant enterococci: a decade of experience. J Med Microbiol, 1998; 47: 849–862.
  • Yalanca I. Geleneksel et ürünlerinden izole edilen laktik asit bakterilerinin antibiyotik direncinin belirlenmesi. Yüksek lisans tezi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 2009.

Hayvansal Gıdalardan İzole Edilen Laktik Asit Bakterilerinin Antibiyotik Direnç Profilleri

Year 2016, Volume: 9 Issue: 4, 372 - 378, 31.12.2016

Abstract

Günümüzde laktik asit bakterileri ile ilgili teknolojik çalışmalar artmaya başlamıştır. Bu durum bu mikroorganizmaların starter kültür özelliklerinin araştırılmasına olanaklar sağlamaktadır. Bir yandan da hayvanlarda çeşitli amaçlarla bilinçsizce kullanılan antibiyotikler bu mikroorganizmalarda antibiyotik direnç oluşumuna neden olmaktadır. Patojen mikroorganizmaların çoklu antibiyotik dirençliliği konusu ile ilgili çalışmalar yaygınlaşsa da halk sağlığını tehdit etmediğini düşündüğümüz mikroorganizmaların antibiyotik direnç geliştirmesi konusu da önem taşımaktadır. Bu derlemede laktik asit bakterilerinin antibiyotik dirençliliği ile ilgili bilgilendirme yapılması amaçlanmıştır.

References

  • Ammor MS, Florez AB, Mayo B. Antibiotic resistance in nonenterococcal lactic acid bacteria and bifidobacteria. Food Microbiol. 2007; 24: 559-570.
  • Anonim.www.mevzuat.gov.tr/Metin.Aspx?MevzuatKod=7.5.18596&MevzuatIliski=0&sourceXmlSearch=yem%20katk%C4%B1; Erişim tarihi: 11.11.2016.
  • Aslim B, Beyatli Y. Antibiotic resistance and plasmid DNA contents of Streptococcus thermophilus strains isolated from Turkish yoghurts. Turk J Vet Anim Sci. 2004; 28: 257– 263.
  • Bates J. Epidemiology of vancomycin-resistant enterococci in the community and the relevance of farm animals to human infection. J Hosp Infect. 1997; 37: 89–101.
  • Batish VK, Ranganathan B. Antibiotic susceptibility of deoxyribonuclease-positive enterococci isolated from milk and milk products and their epidemiological significance. Int J Food Microbiol. 1986; 16: 203–206.
  • Charpentier E, Courvalin P. Antibiotic resistance in Listeria spp. Antimicrob Agents Ch. 1999; 43 (9): 2103–2108.
  • Clewell DB. Bacterial Conjugation, Ed; Clewell DB. Plenum Press, New York, 1993.
  • Clewell DB, Flannagan SE, Jaworski DD. Unconstrained bacterial promiscuity: the Tn916–Tn1545 family of conjugative transposons. Trends Microbiol. 1995; 3: 229– 236.
  • Davies J. Origins, acquisition and dissemination of antibiotic resistance determinants, In: Antibiotic resistance: origins, evolution, selection and spread, Ed; Chadwick DJ, Goode J, Ciba Foundation Symposium, vol. 207. Wiley, Chichester, 1997; pp. 15– 27.
  • Davies JE. Inactivation of antibiotics and the dissemination of resistance genes. Science. 1994; 264: 375–382.
  • Davies R, Roberts TA. Antimicrobial susceptibility of enterococci recovered from commercial swine carcasses: effect of feed additives. Lett Appl Microbiol. 1999; 29: 327– 333.
  • Dellaglio F, Dicks LMT, Torriani S. The genus Leuconostoc, In: The Genera of Lactic Acid Bacteria, Ed; Wood BJB, Holzapfel WH. Blackie Academic & Professional, London, 1995; pp. 235–278.
  • Devirgiliis C, Barile S, Perozzi G. Antibiotic resistance determinants in the interplay between food and gut microbiota. Genes Nutr. 2011; 6: 275-284.
  • Devirgiliis C, Coppola D, Barile S, Colonna B, Perozzi G. Characterization of the Tn916 conjugative transposon in a food-borne strain of Lactobacillus paracasei. Appl Environ Microbiol. 2009; 75: 3866–3871.
  • Deveriese LA, Pot B. The genus Enterococcus, In: The Genera of Lactic Acid Bacteria, Ed; Wood BJB, Holzapfel WH. Blackie Academic & Professional, London, 1995; pp. 327–367.
  • Elisha BG, Courvalin P. Analysis of genes encoding dalanine: d-alanine ligase-related enzymes in Leuconostoc mesenteroides and Lactobacillus spp. Gene. 1995; 152: 79–83.
  • Franz CM, Muscholl-Silberhorn AB, Yousif NMK, Vancanneyt M, Swings J, Holzapfel WH. Incidence of virulence factors and antibiotic resistance among Enterococci isolated from food. Appl Environ Microbiol. 2001; 67: 4385– 4389.
  • Franz CMAP, Stiles ME, Schleifer KH, Holzapfel WH. Enterococci ın foods a conundrum for food safety. Int J Food Microbiol. 2003; 88: 105–122.
  • Gevers D, Huys G, Devlieghere F, Uyttendaele M, Debevere J, Swings J. Isolation and identification of tetracycline resistance lactic acid bacteria from pre-packed sliced meat products. Syst Appl Microbiol. 2000; 23: 279-284.
  • Giraffa G, Carminati D, Neviani E. Enterococci isolated from dairy products: a review of risks and potential technological use. J Food Protect. 1997; 60: 732–738.
  • Giraffa G, Sisto F. Susceptibility to vancomycin of enterococci isolated from dairy products. Lett Appl Microbiol. 1997; 25: 335–338.
  • Giraffa G. Enterococci from foods. FEMS Microbiol Rev. 2002; 26: 163–171.
  • Iplikçioğlu Çil G, Ormancı FS. Piliç boyun derilerinden izole edilen C. Perfringens’lerin antibiyotik direnç profillerinin belirlenmesi. Etlik Vet Mikrobiyol Derg. 2016; 27 (1): (Baskıda).
  • Isleroglu H, Yıldırım Z, Demirpence Y, Yıldırım M. Enterekokların biyokimyasal, fizyolojik ve fonksiyonel özellikleri ile patojenitesi. Akademik Gıda. 2008; 6 (3): 16-26.
  • Janzen T, Kleinschmidt J, Neve H, Geis A. Sequencing and characterization of pST1, a cryptic plasmid from Streptococcus thermophilus. FEMS Microbiol Lett. 1992; 95: 175–180.
  • Jett BD, Huycke MM, Gilmore MS. Virulence of Enterococci. Clin Microbiol Rev. 1994; 7 (4): 462-4781.
  • Klein G, Pack A, Reuter G. Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant enterococci in raw minced beef and pork in Germany. Appl Environ Microbiol. 1998; 64: 1825–1830.
  • Knudtson LM, Hartman PA. Antibiotic resistance among enterococci isolates from environmental and clinical sources. J Food Protect. 1993; 56: 489–492.
  • Korhonen JM, Danielsen M, Mayo B, Egervarn M, Axelsson L, Huys G, von Wring A. Antimicrobial susceptibility an proposed microbiological cut-off values of Lactobacilli by phenotypic determination. Int J Prob Preb. 2008; 3: 257-268.
  • Maietti L, Bonvini B, Huys G, Giraffa G. Incidence of antibiotic resistance and virulence determinants among Enterococcus italicus isolates from dairy products. Syst Appl Microbiol. 2007; 30: 509–517.
  • Mathur S, Singh R. Antibiotic resistance in food lactic acid bacteria—a review. Int J Food Microbiol. 2005; 105: 281– 295.
  • Nawaz M, Wang J, Zhou A, Ma C, Wu X, Moore JE, Millar BC, Xu J. Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Curr Microbiol. 2011; 62: 1081-1089.
  • Pavia M, Nobile CGA, Salpietro L, Angelillo IF. Vancomycin resistance and antibiotic susceptibility of enterococci in raw meat. J Food Prot. 2000; 63: 912– 915.
  • Perreten V, Giampa N, Schuler-Schmid U, Teuber M. Antibiotic resistance genes in coagulase-negative staphylococci ısolated from food system. Appl Microbiol. 1998; 21 (1): 113-120.
  • Perreten V, Schwarz F, Cresta L, Boeglin M, Dasen G, Teuber M. Antibiotic resistance spread in food. Nature. 1997; 389: 801–802.
  • Quednau M, Ahrne S, Petersson AC, Molin G. Antibiotic resistant strains of Enterococcus isolated from Swedish and Danish retailed chicken and pork. J Appl Microbiol. 1998; 84: 1163–1170.
  • Robrido B, Singh KV, Baquero F, Murray BE, Torres C. Vancomycin-resistant enterococci isolated from animals and food. Int J Food Microbiol. 2000; 54: 197–204.
  • Schleifer KH, Ludwig W. Phylogenetic relationships of lactic acid bacteria, In: The Genera of Lactic Acid Bacteria, Ed; Wood BJB, Holzapfel WH, Blackie Academic & Professional, London, 1995; pp. 7–18.
  • Schmieger H, Schicklmaier P. Transduction of multiple drug resistance of Salmonella enterica serovar typhimurium DT104. FEMS Microbiol Lett. 1999; 170 (1): 251-256.
  • Scott KP. The role of conjugative transposons in spreading antibiotic resistance between bacteria that inhabit the gastrointestinal tract. Cell Mol Life Sci. 2002; 59: 2071–2082.
  • Sgorbati B, Bivati B, Palenzona D. The genus Bifidobacterium, In: The Genera of Lactic Acid Bacteria, Ed; Wood BJB, Holzapfel WH. Blackie Academic & Professional, London, 1995; pp. 279– 376.
  • Simpson, Taguchi, H., The genus Pediococcus, with notes on the genera Tetratogenococcus and Aerococcus. The Genera of Lactic acid bacteria. Blackie Academic & Professional, London, 1995; pp. 125– 172.
  • Sozzi T, Smiley MB. Antibiotic resistances of yogurt starter cultures Streptococcus thermophilus and Lactobacillus bulgaricus. Appl Environ Microbiol. 1980; 40: 862–865.
  • Tannock GW. Probiotics. A critical review. Horizon Scientific Press, Wymondham, 1998.
  • Tatlı D. Geleneksel süt ürünlerinden izole edilen laktik asit bakterilerinin antibyotik dirençlerinin belirlenmesi. Yüksek lisans tezi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 2009.
  • Temmerman R, Pot B, Huys G, Swings J. Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int J Food Microbiol. 2002; 81: 1–10.
  • Teuber M, Meile L, Schwarz F. Acquired antibiotic resistance in lactic acid bacteria from food. Antonie van Leeuwenhoek.1999; 76: 115–137.
  • Teuber M, Perreten V, Wirsching F. Antibiotikumresistente bakterien: eine neue dimension in der lebensmittelmikrobiologie. Lebensm Wiss Technol. 1996; 29: 182–199.
  • Teuber M, Perreten V. Role of milk and meat products as vehicles for antibiotic-resistant bacteria. Acta Vet Scand Suppl. 2000; 93: 75–87.
  • Teuber M. The genus Lactococcus, In: The Genera of Lactic Acid Bacteria, Ed; Wood BJB, Holzapfel WH, Blackie Academic & Professional, London, Springer US, 1995; pp. 173-234
  • Teuber M. Spread of antibiotic resistance with food-borne pathogens. Cell Mol Life Sci. 1999; 56: 755– 763.
  • Teuber M. Veterinary use and antibiotic resistance. Curr Opin Microbiol. 2001; 4: 493–499.
  • Van den Braak N, van Belkum A, van Keulen M, Vliegenthart J, Verbrugh HA, Endtz HP Molecular characterization of vancomycin-resistant enterococci from hospitalized patients and poultry products in the Netherlands. J Clin Microbiol. 1998; 36: 1927–1932.
  • Wegener HC, Madsen M, Nielsen N, Aarestrup FM. Isolation of vancomycin resistant Enterococcus faecium from food. Int J Food Microbiol. 1997; 35: 57– 66.
  • Wegener HC. Antibiotics in animal feed and their role in resistance development. Curr Opin Microbiol. 2003; 6: 439– 445.
  • Witte W. Impact of antibiotic use in animal feeding on resistance of bacterial pathogens in humans, In: Antibiotic resistance: origins, evolution, selection and spread, Ed; Chadwick, DJ, Goode J, Ciba Foundation Symposium 207. Wiley, Chichester, 1997; pp. 61–75.
  • Woodford N. Glycopeptide-resistant enterococci: a decade of experience. J Med Microbiol, 1998; 47: 849–862.
  • Yalanca I. Geleneksel et ürünlerinden izole edilen laktik asit bakterilerinin antibiyotik direncinin belirlenmesi. Yüksek lisans tezi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 2009.
There are 58 citations in total.

Details

Journal Section REVIEW
Authors

Yağmur Nil Demirel This is me

Zeki Gürler This is me

Publication Date December 31, 2016
Acceptance Date December 7, 2016
Published in Issue Year 2016 Volume: 9 Issue: 4

Cite

APA Demirel, Y. N., & Gürler, Z. (2016). Antibiotic Resistance Profile of Lactic Acid Bacteria Origine From Animal Foods. Kocatepe Veterinary Journal, 9(4), 372-378.
AMA Demirel YN, Gürler Z. Antibiotic Resistance Profile of Lactic Acid Bacteria Origine From Animal Foods. kvj. December 2016;9(4):372-378.
Chicago Demirel, Yağmur Nil, and Zeki Gürler. “Antibiotic Resistance Profile of Lactic Acid Bacteria Origine From Animal Foods”. Kocatepe Veterinary Journal 9, no. 4 (December 2016): 372-78.
EndNote Demirel YN, Gürler Z (December 1, 2016) Antibiotic Resistance Profile of Lactic Acid Bacteria Origine From Animal Foods. Kocatepe Veterinary Journal 9 4 372–378.
IEEE Y. N. Demirel and Z. Gürler, “Antibiotic Resistance Profile of Lactic Acid Bacteria Origine From Animal Foods”, kvj, vol. 9, no. 4, pp. 372–378, 2016.
ISNAD Demirel, Yağmur Nil - Gürler, Zeki. “Antibiotic Resistance Profile of Lactic Acid Bacteria Origine From Animal Foods”. Kocatepe Veterinary Journal 9/4 (December 2016), 372-378.
JAMA Demirel YN, Gürler Z. Antibiotic Resistance Profile of Lactic Acid Bacteria Origine From Animal Foods. kvj. 2016;9:372–378.
MLA Demirel, Yağmur Nil and Zeki Gürler. “Antibiotic Resistance Profile of Lactic Acid Bacteria Origine From Animal Foods”. Kocatepe Veterinary Journal, vol. 9, no. 4, 2016, pp. 372-8.
Vancouver Demirel YN, Gürler Z. Antibiotic Resistance Profile of Lactic Acid Bacteria Origine From Animal Foods. kvj. 2016;9(4):372-8.

13520    13521       13522   1352314104

14105         14106        14107       14108