Research Article
BibTex RIS Cite

The Effects of High Calcium and Vitamin D on the Fructose- Induced Lipogenesis Pathway in Rats

Year 2023, Volume: 16 Issue: 4, 541 - 555, 31.12.2023
https://doi.org/10.30607/kvj.1319111

Abstract

In this study, the protective effects of high amounts of dietary calcium and vitamin D on fructose-induced lipogenesis were investigated at molecular and biochemical levels. Control group (Con, n=8), High fructose diet group (F, n=8), High fructose diet+75 mg CaCO3 and 26.4 IU vitamin D3 group (FCaD1, n=8), High fructose diet+150 mg CaCO3 and 52.8 IU vitamin D3 group (FCaD2, n=8) including experimental groups were fed for 28 days. The significant difference between the living weights was determined firstly as 278.64±5.61a; 268.94±2.80ab; 257.93±4.86b and 257.38±3.42b g in the Con, F, FCaD1, FCaD2 groups, respectively, at the end of the first week (P<0.05). This difference was seen to persist during the 3rd week of the trial. It was observed that this difference continued until the end of the 3rd week of the study. In the study, plasma Triglyceride (TG) amount was found to be in the form of 36.25±2.76b; 99.13±15.63a; 98.50±18.00a and 79.88±9.33ab mg.dl-1 in Con, F, FCaD1 and FCaD2 groups, respectively (P<0.05). The SCD-1 gene's liver expression levels were assessed as 11.83±2.08 (P<0.001); 5.31±1.40 (P<0.05) and 5.18±1.43 (P<0.05), respectively, compared to the Con group; SREBP-1c was determined as 2.11±0.37 (P<0.05); 3.41±1.20 (P<0.05) and 1.79±0.30 (P<0.05), respectively. In this study, it has been shown through the SREBP-1c and SCD-1 genes that calcium-vitamin D supplementation can have positive effects in a short time against lipogenesis induced by high fructose diet.

Supporting Institution

Hatay Mustafa Kemal Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

21.YL.022

Thanks

In this study would like to thank the Hatay Mustafa Kemal University Scientific Research Projects Unit with the study entitled “The Effects of High Calcium and Vitamin D on Fructose-Induced Lipogenesis Pathway in Rats”, Project No: 21.YL.022, for their contributions to the present study and also thank the adminisration and staff of the Hatay Mustafa Kemal University Experimental Research Practice and Research Center.

References

  • Abete, I., Astrup, A., Martínez, J. A., Thorsdottir, I., & Zulet, M. A. (2010). Obesity and the metabolic syndrome: role of different dietary macronutrient distribution patterns and specific nutritional components on weight loss and maintenance. Nutrition Reviews, 68(4), 214–231. https://doi.org/10.1111/j.1753-4887.2010.00280.x
  • Agame-Lagunes, B., Grube-Pagola, P., García-Varela, R., Alexander-Aguilera, A., & García, HS. (2021). Effect of Curcumin Nanoemulsions Stabilized with MAG and DAG-MCFAs in a Fructose-Induced Hepatic Steatosis Rat Model. Pharmaceutics, 13(4), 509. https://doi.org/10.3390/pharmaceutics13040509
  • Aragno, M., Tomasinelli, C. E., Vercellinatto, I., Catalano, M. G., Collino, M., Fantozzi R., Danni, O., & Boccuzzi G. (2009). SREBP-1c in nonalcoholic fatty liver disease induced by Western-type high-fat diet plus fructose in rats. Free Radical Biology and Medicine, 47(7), 1067–1074. https://doi.org/10.1016/j.freeradbiomed.2009.07.016
  • Bantle J. P. (2009). Dietary Fructose and Metabolic Syndrome and Diabetes. The Journal of Nutrition, 139(6), 1263S–1268S. https://doi.org/10.3945/jn.108.098020
  • Bocarsly, M.E., Powell, E.S., Avena, N.M., & Hoebel, B.G. (2010). High-fructose corn syrup causes characteristics of obesity in rats: Increased body weight, body fat and triglyceride levels. Pharmacology Biochemistry and Behavior, 97(1), 101–106. https://doi.org/10.1016/j.pbb.2010.02.012
  • Chiu, S., Mulligan, K., & Schwarz, J-M. (2018). Dietary carbohydrates and fatty liver disease: de novo lipogenesis. Current Opinion in Clinical Nutrition and Metabolic Care, 21(4), 277–282. https://doi.org/10.1097/MCO.0000000000000469
  • Das, S., & Choudhuri, D. (2020). Calcium supplementation shows a hepatoprotective effect against high-fat diet by regulating oxidative-induced inflammatory response and lipogenesis activity in male rats. Journal of Traditional and Complementary Medicine, 10, 511-519. https://doi.org/10.1016/j.jtcme.2019.06.002
  • Distefano J. K. (2020). Fructose-mediated effects on gene expression and epigenetic mechanisms associated with NAFLD pathogenesis. Cellular and Molecular Life Sciences, 77, 2079–2090. https://doi.org/10.1007/s00018-019-03390-0
  • Eckel, R. H., Grundy, S. M., & Zimmet, P. Z. (2005). The metabolic syndrome. The Lancet, 365(9468), 1415–1428. https://doi.org/10.1016/S0140-6736(05)66378-7
  • Flowers, M. T., & Ntambi, J. M. (2008). Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Current Opinion in Lipidology, 19(3), 248–256. https://doi.org/10.1097/MOL.0b013e3282f9b54d
  • Gathercole, L. L., Morgan, S. A., & Tomlinson, J. W. (2013). Hormonal Regulation of Lipogenesis. Vitamins & Hormones, 1–27. https://doi.org/10.1016/B978-0-12-407766-9.00001-8
  • Gou, S.-H., Huang, H.-F., Chen, X.-Y., Liu, J., He, M., Ma, Y.-Y., Zhao X.-N., Zhang, Y., & Ni, J.-M. (2016). Lipid-lowering, hepatoprotective, and atheroprotective effects of the mixture Hong-Qu and gypenosides in hyperlipidemia with NAFLD rats. Journal of the Chinese Medical Association, 79(3), 111–121. https://doi.org/10.1016/j.jcma.2015.09.002
  • He, Z., Jiang, T., Wang, Z., Levi, M., & Li, J. (2004). Modulation of carbohydrate response element-binding protein gene expression in 3T3-L1 adipocytes and rat adipose tissue. American Journal of Physiology-Endocrinology and Metabolism, 287(3), E424–E430. https://doi.org/10.1152/ajpendo.00568.2003
  • Jacqumain, M., Doucet, E., Despres, J. P., Bouchard, C., & Tremblay, A. (2003). Calcium intake, body composition, and lipoprotein-lipid concentrations in adults. The American Journal of Clinical Nutrition, 77(6), 1448–1552. https://doi.org/10.1093/ajcn/77.6.1448
  • Kang, E.-J., Lee, J.-E., An, S.-M., Lee, J. H., Kwon, H. S., Kim B. C., Kim S. J., Kim J. M., Hwang D. Y., Jung Y.-J., Yang, S. Y., Kim, S. C., & An, B.-S. (2015). The effects of vitamin D3 on lipogenesis in the liver and adipose tissue of pregnant rats. International Journal of Molecular Medicine, 36(4), 1151–1158. https://doi.org/10.3892/ijmm.2015.2300
  • Kawasaki, T., Igarashi, K., Koeda, T., Sugimoto, K., Nakagawa, K., Hayaski, S., Yamaji, R., Inui, H., Fukusato, T., & Yamanoichi, T. (2009). Rats Fed Fructose-Enriched Diets Have Characteristics of Nonalcoholic Hepatic Steatosis. The Journal of Nutrition, 139(11), 2067–2071. https://doi.org/10.3945/jn.109.105858
  • Kleinert, M., Clemmensen, C., Hofmann, S. M., Moore, M. C., Renner, S., Woods, S. C., Huypens, P., Beckers, H., de Angelis, M. H., Schürmann, A., Bakhti, M., Klingenspor, M., Heiman, M., Cherrington, A. D., Ristow, M., Lickert, H., Wolf, E., Havel, P. J., Müller, T. D., & Tschöp, M. H. (2018). Animal models of obesity and diabetes mellitus. Nature Reviews Endocrinology, 14(3), 140–162. https://doi.org/10.1038/nrendo.2017.161
  • Li, P., Chang, X., Fan, X., Fan, C., Tang, T., Wang, R., & Qi, K. (2018). Dietary calcium status during maternal pregnancy and lactationaffects lipid metabolism in mouse offspring. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-34520-6
  • Li, P., Yan, K., Chang, X., Chen, X., Wang, R., Fan, X., Tang, T., Zhan, D., & Qi, K. (2020). Sex-specific maternal calcium requirements for the preventionof nonalcoholic fatty liver disease by altering the intestinal microbiota and lipid metabolism in the high-fat-diet-fed offspring mice. Gut Microbes, 11(6), 1590–1607. https://doi.org/10.1080/19490976.2020.1768645
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2- ΔΔCT Method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
  • Maia-Ceciliano, T. C., Dutra, R. R., Aguila, M. B., & Mandarim-De-Lacerda, C. A. (2019). The deficiency and the supplementation of vitamin D and liver: lessons of chronic fructose-rich diet in mice. The Journal of Steroid Biochemistry and Molecular Biology, 192, 105399. https://doi.org/10.1016/j.jsbmb.2019.105399
  • Mansouri, M., Miri, A., Varmaghani, M., Abbasi, R., Taha, P., Ramezani, S., Rahmani, E., Armaghan, R., & Sadeghi, O. (2019). Vitamin D Deficiency İn Relation to General and Abdominal Obesity Among High Educated Adults. Eating and Weight Disorders, 24(1), 83-90. https://doi.org/10.1007/s40519-018-0511-4
  • Marziou, A., Philouze, C., Couturier, C., Astier, J., Obert, P., Landrier, J.-F., & Riva, C. (2020). Vitamin D Supplementation Improves Adipose Tissue Inflammation and Reduces Hepatic Steatosis in Obese C57BL/6J Mice. Nutrients, 12(2), 342. https://doi.org/10.3390/nu12020342
  • Melanson, E. L., Sharp, T. A., Schneider, J., Donahoo, W. T., Grunwald, G. K. & Hill J. O. (2003). Relation between calcium intake and fat oxidation in adult humans. International Journal of Obesity, 27(2), 196–203. https://doi.org/10.1038/sj.ijo.802202
  • Melanson, K. J., Angelopoulos, T. J., Nguyen, V., Zukley, L., Lowndes, J., & Rippe, J. M. (2008). High-fructose corn syrup, energy intake, and appetite regulation. The American Journal of Clinical Nutrition, 88(6), 1738S–1744S. https://doi.org/10.3945/ajcn.2008.25825E
  • Mock, K., Lateef, S., Benedito, V. A., & Tou, J. C. (2017). High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation. The Journal of Nutritional Biochemistry, 39, 32-39. https://doi.org/10.1016/j.jnutbio.2016.09.010
  • Ning, C., Liu, L., Lv, G., Yang, Y., Zhang, Y., Yu, R., Wang, Y., & Zhu, J. (2015). Lipid metabolism and inflammation modulated by Vitamin D in liver of diabetic rats. Lipids in Health and Disease, 14, 31. https://doi.org/10.1186/s12944-015-0030-5
  • National Research Council. (1995). Nutrient requirements of laboratory animals. 4th revised ed.
  • Özkan, H., & Yakan A. (2019). Dietary high calories from sunflower oil, sucrose and fructose sources alters lipogenic genes expression levels in liver and skeletal muscle in rats. Annals of Hepatology, 18(5), 715-724. https://doi.org/10.1016/j.aohep.2019.03.013
  • Özkan H. (2018). Yüksek Enerjili Rasyonla Beslenen Ratlarda Lipogenez Yolağındaki Bazı Genlerin Ekspresyon Seviyeleri., Hatay Mustafa Kemal Üniversitesi Sağlık Bilimleri Enstitüsü, Doktora tezi.
  • Pan, J. H., Cha, H., Tang, J., Lee, S., Lee, S. H., Le, B., Redding, M. C., Kim, S., Batish, M., Kong, B. C., Lee, J. H., & Kim, J. K. (2021). The role of microRNA-33 as a key regulator in hepatic lipogenesis signaling and a potential serological biomarker for NAFLD with excessive dietary fructose consumption in C57BL/6N mice. Food & Function, 12(2), 656–667. https://doi.org/10.1039/D0FO02286A
  • Papakonstantinou, E., Flatt, W. P., Huth, P. J., & Harris, R. B. S. (2003). High Dietary Calcium Reduces Body Fat Content, Digestibility of Fat, and Serum Vitamin D in Rats. Obesity Research, 11(3), 387–394. https://doi.org/10.1038/oby.2003.52
  • Rio, D. C., Ares, M., Hannon, G. J., & Nilsen, T. W. (2010). Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols, (6), 1-3. https://doi.org/10.1101/pdb.prot5439
  • Rui L. (2014). Energy Metabolism in the Liver. Comprehensive Physiology, 4(1), 177–197. https://doi.org/10.1002/cphy.c130024
  • Santos, B. P. dos, da Costa Diesel, L. F., da Silva Meirelles, L., Nardi, N. B., & Camassola, M. (2016). Identification of suitable reference genes for quantitative gene expression analysis in rat adipose stromal cells induced to trilineage differentiation. Gene, 594(2), 211–219. https://doi.org/10.1016/j.gene.2016.09.002
  • Sergeev, I. N., & Song, Q. (2014). High vitamin D and calcium intakes reduce diet-induced obesity in mice by increasing adipose tissue apoptosis. Molecular Nutrition Food Research, 58(6), 1342–1348. https://doi.org/10.1002/mnfr.201300503
  • Shimada M, Ichigo Y, Shirouchi B, Takashima S, Inagaki M, Nakagawa T., & Hayakawa, T. (2019). Treatment with myo-inositol attenuates binding of the carbohydrate-responsive element-binding protein to the ChREBP-β and FASN genes in rat nonalcoholic fatty liver induced by high-fructose diet. Nutrition Research, 64, 49-55. https://doi.org/10.1016/j.nutres.2019.01.002
  • Siddiqui, S. M. K., Chang, E., Li, J., Burlage, C., Zou, M., Buhman, K. K., Koser, S., Donkin, S. S, & Teegarden, D. (2008). Dietary intervention with vitamin D, calcium, and whey protein reduced fat mass and increased lean mass in rats. Nutrition Research, 28(11), 783–790. https://doi.org/10.1016/j.nutres.2008.08.004
  • Softhic, S., Cohen, D. E., & Kahn, C. R. (2016). Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease. Digestive Diseases and Sciences, 61(5), 1282–1293. https://doi.org/10.1007/s10620-016-4054-0
  • Song, Q., & Sergeev, I. N. (2012). Calcium and vitamin D in obesity. Nutrition Research Reviews, 25(1), 130–141. https://doi.org/10.1017/S0954422412000029
  • Tappy, L., & Le, K.-A. (2010). Metabolic Effects of Fructose and the Worldwide Increase in Obesity. Physiological Reviews, 90, 23–46. https://doi.org/10.1152/physrev.00019.2009
  • Teegarden D. (2005). The Influence of Dairy Product Consumption on Body Composition. The Journal of Nutrition, 2749-2752. https://doi.org/10.1093/jn/135.12.2749
  • Thacher, T. D. & Clarke, B. L. (2011). Vitamin D Insufficiency. Mayo Clinic Proceedings, 86(1), 50–60. https://doi.org/10.4065/mcp.2010.0567
  • Yasari, S., Prud’homme, D., Wang, D., Jankowski, M., Levy, É., Gutkowska, J., & Lavoie, J.-M. (2010). Exercise training decreases hepatic SCD-1 gene expression and protein content in rats. Molecular and Cellular Biochemistry, 335(1-2), 291–299. https://doi.org/10.1007/s11010-009-0279-y
  • Yin, Y., Yu, Z., Xia, M., Luo, X., Lu, X., & Ling, W. (2012). Vitamin D attenuates high fat diet-induced hepatic steatosis in rats by modulating lipid metabolism. European Journal of Clinical Investigation, 42(11), 1189–1196. https://doi.org/10.1111/j.1365-2362.2012.02706.x
  • Zarghani, S. S., Soraya, H., & Alizadeh, M. (2016). Calcium and vitamin D3 combinations improve fatty liver disease through AMPK-independent mechanisms. European Journal of Nutrition, 57, 731–740. https://doi.org/10.1007/s00394-016-1360-4
  • Zhang, Q., & Tordoff, M. G. (2004). No effect of dietary calcium on body weight of lean and obese mice and rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 286(4), R669–R677. https://doi.org/10.1152/ajpregu.00655.2003
  • Zhang, F., Ye, J., Zhu, X., Wang, L., Gao, P., Shu, G., Jiang, Q., & Wang, S. (2019). Anti-Obesity Effects of Dietary Calcium: The Evidence and Possible Mechanisms. International Journal of Molecular Sciences, 20(12), 3072. https://doi.org/10.3390/ijms20123072
  • Zhu, W., Cai, D., Wang, Y., Lin, N., Hu, Q., Qi Y., Ma S., & Amarasekara S. (2013). Calcium plus vitamin D3 supplementation facilitated Fat loss in overweight and obese college students with very-low calcium consumption: a randomized controlled trial. Nutrition Journal, 12(1). https://doi.org/10.1186/1475-2891-12-8

Ratlarda Yüksek Kalsiyum ve Vitamin D’nin Fruktozla İndüklenmiş Lipogenez Yolağı Üzerine Etkileri

Year 2023, Volume: 16 Issue: 4, 541 - 555, 31.12.2023
https://doi.org/10.30607/kvj.1319111

Abstract

Bu çalışmada diyetle alınan yüksek miktarlardaki kalsiyum ve vitamin D’nin fruktozla indüklenmiş lipogenez üzerine olabilecek koruyucu etkileri moleküler ve biyokimyasal düzeyde araştırılmıştır. Kontrol grubu (Kon, n=8), Yüksek fruktozlu diyet grubu (F, n=8), Yüksek fruktozlu diyet+75 mg CaCO3 ve 26,4 IU vitamin D3 alan grup (FCaD1, n=8), Yüksek fruktozlu diyet+150 mg CaCO3 ve 52,8 IU vitamin D3 alan grup (FCaD2, n=8) olmak üzere 4 grup rat 28 gün boyunca beslenmiştir. Canlı ağırlıklar arasındaki anlamlı farklılık ilk olarak 1. hafta sonunda Kon, F, FCaD1, FCaD2 gruplarında sırasıyla 278,64±5,61a; 268,94±2,80ab; 257,93±4,86b ve 257,38±3,42b g olarak tespit edilmiştir (P<0,05). Bu farklılığın çalışmanın 3. haftasının sonuna kadar devam ettiği görülmüştür. Çalışmada plazma TG miktarının Kon, F, FCaD1 ve FCaD2 gruplarında sırasıyla 36,25±2,76b; 99,13±15,63a; 98,50±18,00a ve 79,88±9,33ab mg.dl-1 şeklinde olduğu görülmüştür (P<0,05). Karaciğerde SCD-1 geninin ekspresyon seviyeleri Kon grubuna göre sırasıyla 11,83±2,08 (P<0,001); 5,31±1,40 (P<0,05) ve 5,18±1,43 (P<0,05) olarak, SREBP-1c geninin ekspresyon seviyeleri ise sırasıyla 2,11±0,37 (P<0,05); 3,41±1,20 (P<0,05) ve 1,79±0,30 (P<0,05) olarak tespit edilmiştir. Yapılan bu çalışmada, yüksek fruktozlu diyet ile indüklenmiş lipogeneze karşı kalsiyum-vitamin D takviyesinin kısa sürede olumlu etkilerinin olabileceği SREBP-1c ve SCD-1 genleri üzerinden gösterilmiştir.

Project Number

21.YL.022

References

  • Abete, I., Astrup, A., Martínez, J. A., Thorsdottir, I., & Zulet, M. A. (2010). Obesity and the metabolic syndrome: role of different dietary macronutrient distribution patterns and specific nutritional components on weight loss and maintenance. Nutrition Reviews, 68(4), 214–231. https://doi.org/10.1111/j.1753-4887.2010.00280.x
  • Agame-Lagunes, B., Grube-Pagola, P., García-Varela, R., Alexander-Aguilera, A., & García, HS. (2021). Effect of Curcumin Nanoemulsions Stabilized with MAG and DAG-MCFAs in a Fructose-Induced Hepatic Steatosis Rat Model. Pharmaceutics, 13(4), 509. https://doi.org/10.3390/pharmaceutics13040509
  • Aragno, M., Tomasinelli, C. E., Vercellinatto, I., Catalano, M. G., Collino, M., Fantozzi R., Danni, O., & Boccuzzi G. (2009). SREBP-1c in nonalcoholic fatty liver disease induced by Western-type high-fat diet plus fructose in rats. Free Radical Biology and Medicine, 47(7), 1067–1074. https://doi.org/10.1016/j.freeradbiomed.2009.07.016
  • Bantle J. P. (2009). Dietary Fructose and Metabolic Syndrome and Diabetes. The Journal of Nutrition, 139(6), 1263S–1268S. https://doi.org/10.3945/jn.108.098020
  • Bocarsly, M.E., Powell, E.S., Avena, N.M., & Hoebel, B.G. (2010). High-fructose corn syrup causes characteristics of obesity in rats: Increased body weight, body fat and triglyceride levels. Pharmacology Biochemistry and Behavior, 97(1), 101–106. https://doi.org/10.1016/j.pbb.2010.02.012
  • Chiu, S., Mulligan, K., & Schwarz, J-M. (2018). Dietary carbohydrates and fatty liver disease: de novo lipogenesis. Current Opinion in Clinical Nutrition and Metabolic Care, 21(4), 277–282. https://doi.org/10.1097/MCO.0000000000000469
  • Das, S., & Choudhuri, D. (2020). Calcium supplementation shows a hepatoprotective effect against high-fat diet by regulating oxidative-induced inflammatory response and lipogenesis activity in male rats. Journal of Traditional and Complementary Medicine, 10, 511-519. https://doi.org/10.1016/j.jtcme.2019.06.002
  • Distefano J. K. (2020). Fructose-mediated effects on gene expression and epigenetic mechanisms associated with NAFLD pathogenesis. Cellular and Molecular Life Sciences, 77, 2079–2090. https://doi.org/10.1007/s00018-019-03390-0
  • Eckel, R. H., Grundy, S. M., & Zimmet, P. Z. (2005). The metabolic syndrome. The Lancet, 365(9468), 1415–1428. https://doi.org/10.1016/S0140-6736(05)66378-7
  • Flowers, M. T., & Ntambi, J. M. (2008). Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Current Opinion in Lipidology, 19(3), 248–256. https://doi.org/10.1097/MOL.0b013e3282f9b54d
  • Gathercole, L. L., Morgan, S. A., & Tomlinson, J. W. (2013). Hormonal Regulation of Lipogenesis. Vitamins & Hormones, 1–27. https://doi.org/10.1016/B978-0-12-407766-9.00001-8
  • Gou, S.-H., Huang, H.-F., Chen, X.-Y., Liu, J., He, M., Ma, Y.-Y., Zhao X.-N., Zhang, Y., & Ni, J.-M. (2016). Lipid-lowering, hepatoprotective, and atheroprotective effects of the mixture Hong-Qu and gypenosides in hyperlipidemia with NAFLD rats. Journal of the Chinese Medical Association, 79(3), 111–121. https://doi.org/10.1016/j.jcma.2015.09.002
  • He, Z., Jiang, T., Wang, Z., Levi, M., & Li, J. (2004). Modulation of carbohydrate response element-binding protein gene expression in 3T3-L1 adipocytes and rat adipose tissue. American Journal of Physiology-Endocrinology and Metabolism, 287(3), E424–E430. https://doi.org/10.1152/ajpendo.00568.2003
  • Jacqumain, M., Doucet, E., Despres, J. P., Bouchard, C., & Tremblay, A. (2003). Calcium intake, body composition, and lipoprotein-lipid concentrations in adults. The American Journal of Clinical Nutrition, 77(6), 1448–1552. https://doi.org/10.1093/ajcn/77.6.1448
  • Kang, E.-J., Lee, J.-E., An, S.-M., Lee, J. H., Kwon, H. S., Kim B. C., Kim S. J., Kim J. M., Hwang D. Y., Jung Y.-J., Yang, S. Y., Kim, S. C., & An, B.-S. (2015). The effects of vitamin D3 on lipogenesis in the liver and adipose tissue of pregnant rats. International Journal of Molecular Medicine, 36(4), 1151–1158. https://doi.org/10.3892/ijmm.2015.2300
  • Kawasaki, T., Igarashi, K., Koeda, T., Sugimoto, K., Nakagawa, K., Hayaski, S., Yamaji, R., Inui, H., Fukusato, T., & Yamanoichi, T. (2009). Rats Fed Fructose-Enriched Diets Have Characteristics of Nonalcoholic Hepatic Steatosis. The Journal of Nutrition, 139(11), 2067–2071. https://doi.org/10.3945/jn.109.105858
  • Kleinert, M., Clemmensen, C., Hofmann, S. M., Moore, M. C., Renner, S., Woods, S. C., Huypens, P., Beckers, H., de Angelis, M. H., Schürmann, A., Bakhti, M., Klingenspor, M., Heiman, M., Cherrington, A. D., Ristow, M., Lickert, H., Wolf, E., Havel, P. J., Müller, T. D., & Tschöp, M. H. (2018). Animal models of obesity and diabetes mellitus. Nature Reviews Endocrinology, 14(3), 140–162. https://doi.org/10.1038/nrendo.2017.161
  • Li, P., Chang, X., Fan, X., Fan, C., Tang, T., Wang, R., & Qi, K. (2018). Dietary calcium status during maternal pregnancy and lactationaffects lipid metabolism in mouse offspring. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-34520-6
  • Li, P., Yan, K., Chang, X., Chen, X., Wang, R., Fan, X., Tang, T., Zhan, D., & Qi, K. (2020). Sex-specific maternal calcium requirements for the preventionof nonalcoholic fatty liver disease by altering the intestinal microbiota and lipid metabolism in the high-fat-diet-fed offspring mice. Gut Microbes, 11(6), 1590–1607. https://doi.org/10.1080/19490976.2020.1768645
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2- ΔΔCT Method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
  • Maia-Ceciliano, T. C., Dutra, R. R., Aguila, M. B., & Mandarim-De-Lacerda, C. A. (2019). The deficiency and the supplementation of vitamin D and liver: lessons of chronic fructose-rich diet in mice. The Journal of Steroid Biochemistry and Molecular Biology, 192, 105399. https://doi.org/10.1016/j.jsbmb.2019.105399
  • Mansouri, M., Miri, A., Varmaghani, M., Abbasi, R., Taha, P., Ramezani, S., Rahmani, E., Armaghan, R., & Sadeghi, O. (2019). Vitamin D Deficiency İn Relation to General and Abdominal Obesity Among High Educated Adults. Eating and Weight Disorders, 24(1), 83-90. https://doi.org/10.1007/s40519-018-0511-4
  • Marziou, A., Philouze, C., Couturier, C., Astier, J., Obert, P., Landrier, J.-F., & Riva, C. (2020). Vitamin D Supplementation Improves Adipose Tissue Inflammation and Reduces Hepatic Steatosis in Obese C57BL/6J Mice. Nutrients, 12(2), 342. https://doi.org/10.3390/nu12020342
  • Melanson, E. L., Sharp, T. A., Schneider, J., Donahoo, W. T., Grunwald, G. K. & Hill J. O. (2003). Relation between calcium intake and fat oxidation in adult humans. International Journal of Obesity, 27(2), 196–203. https://doi.org/10.1038/sj.ijo.802202
  • Melanson, K. J., Angelopoulos, T. J., Nguyen, V., Zukley, L., Lowndes, J., & Rippe, J. M. (2008). High-fructose corn syrup, energy intake, and appetite regulation. The American Journal of Clinical Nutrition, 88(6), 1738S–1744S. https://doi.org/10.3945/ajcn.2008.25825E
  • Mock, K., Lateef, S., Benedito, V. A., & Tou, J. C. (2017). High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation. The Journal of Nutritional Biochemistry, 39, 32-39. https://doi.org/10.1016/j.jnutbio.2016.09.010
  • Ning, C., Liu, L., Lv, G., Yang, Y., Zhang, Y., Yu, R., Wang, Y., & Zhu, J. (2015). Lipid metabolism and inflammation modulated by Vitamin D in liver of diabetic rats. Lipids in Health and Disease, 14, 31. https://doi.org/10.1186/s12944-015-0030-5
  • National Research Council. (1995). Nutrient requirements of laboratory animals. 4th revised ed.
  • Özkan, H., & Yakan A. (2019). Dietary high calories from sunflower oil, sucrose and fructose sources alters lipogenic genes expression levels in liver and skeletal muscle in rats. Annals of Hepatology, 18(5), 715-724. https://doi.org/10.1016/j.aohep.2019.03.013
  • Özkan H. (2018). Yüksek Enerjili Rasyonla Beslenen Ratlarda Lipogenez Yolağındaki Bazı Genlerin Ekspresyon Seviyeleri., Hatay Mustafa Kemal Üniversitesi Sağlık Bilimleri Enstitüsü, Doktora tezi.
  • Pan, J. H., Cha, H., Tang, J., Lee, S., Lee, S. H., Le, B., Redding, M. C., Kim, S., Batish, M., Kong, B. C., Lee, J. H., & Kim, J. K. (2021). The role of microRNA-33 as a key regulator in hepatic lipogenesis signaling and a potential serological biomarker for NAFLD with excessive dietary fructose consumption in C57BL/6N mice. Food & Function, 12(2), 656–667. https://doi.org/10.1039/D0FO02286A
  • Papakonstantinou, E., Flatt, W. P., Huth, P. J., & Harris, R. B. S. (2003). High Dietary Calcium Reduces Body Fat Content, Digestibility of Fat, and Serum Vitamin D in Rats. Obesity Research, 11(3), 387–394. https://doi.org/10.1038/oby.2003.52
  • Rio, D. C., Ares, M., Hannon, G. J., & Nilsen, T. W. (2010). Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols, (6), 1-3. https://doi.org/10.1101/pdb.prot5439
  • Rui L. (2014). Energy Metabolism in the Liver. Comprehensive Physiology, 4(1), 177–197. https://doi.org/10.1002/cphy.c130024
  • Santos, B. P. dos, da Costa Diesel, L. F., da Silva Meirelles, L., Nardi, N. B., & Camassola, M. (2016). Identification of suitable reference genes for quantitative gene expression analysis in rat adipose stromal cells induced to trilineage differentiation. Gene, 594(2), 211–219. https://doi.org/10.1016/j.gene.2016.09.002
  • Sergeev, I. N., & Song, Q. (2014). High vitamin D and calcium intakes reduce diet-induced obesity in mice by increasing adipose tissue apoptosis. Molecular Nutrition Food Research, 58(6), 1342–1348. https://doi.org/10.1002/mnfr.201300503
  • Shimada M, Ichigo Y, Shirouchi B, Takashima S, Inagaki M, Nakagawa T., & Hayakawa, T. (2019). Treatment with myo-inositol attenuates binding of the carbohydrate-responsive element-binding protein to the ChREBP-β and FASN genes in rat nonalcoholic fatty liver induced by high-fructose diet. Nutrition Research, 64, 49-55. https://doi.org/10.1016/j.nutres.2019.01.002
  • Siddiqui, S. M. K., Chang, E., Li, J., Burlage, C., Zou, M., Buhman, K. K., Koser, S., Donkin, S. S, & Teegarden, D. (2008). Dietary intervention with vitamin D, calcium, and whey protein reduced fat mass and increased lean mass in rats. Nutrition Research, 28(11), 783–790. https://doi.org/10.1016/j.nutres.2008.08.004
  • Softhic, S., Cohen, D. E., & Kahn, C. R. (2016). Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease. Digestive Diseases and Sciences, 61(5), 1282–1293. https://doi.org/10.1007/s10620-016-4054-0
  • Song, Q., & Sergeev, I. N. (2012). Calcium and vitamin D in obesity. Nutrition Research Reviews, 25(1), 130–141. https://doi.org/10.1017/S0954422412000029
  • Tappy, L., & Le, K.-A. (2010). Metabolic Effects of Fructose and the Worldwide Increase in Obesity. Physiological Reviews, 90, 23–46. https://doi.org/10.1152/physrev.00019.2009
  • Teegarden D. (2005). The Influence of Dairy Product Consumption on Body Composition. The Journal of Nutrition, 2749-2752. https://doi.org/10.1093/jn/135.12.2749
  • Thacher, T. D. & Clarke, B. L. (2011). Vitamin D Insufficiency. Mayo Clinic Proceedings, 86(1), 50–60. https://doi.org/10.4065/mcp.2010.0567
  • Yasari, S., Prud’homme, D., Wang, D., Jankowski, M., Levy, É., Gutkowska, J., & Lavoie, J.-M. (2010). Exercise training decreases hepatic SCD-1 gene expression and protein content in rats. Molecular and Cellular Biochemistry, 335(1-2), 291–299. https://doi.org/10.1007/s11010-009-0279-y
  • Yin, Y., Yu, Z., Xia, M., Luo, X., Lu, X., & Ling, W. (2012). Vitamin D attenuates high fat diet-induced hepatic steatosis in rats by modulating lipid metabolism. European Journal of Clinical Investigation, 42(11), 1189–1196. https://doi.org/10.1111/j.1365-2362.2012.02706.x
  • Zarghani, S. S., Soraya, H., & Alizadeh, M. (2016). Calcium and vitamin D3 combinations improve fatty liver disease through AMPK-independent mechanisms. European Journal of Nutrition, 57, 731–740. https://doi.org/10.1007/s00394-016-1360-4
  • Zhang, Q., & Tordoff, M. G. (2004). No effect of dietary calcium on body weight of lean and obese mice and rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 286(4), R669–R677. https://doi.org/10.1152/ajpregu.00655.2003
  • Zhang, F., Ye, J., Zhu, X., Wang, L., Gao, P., Shu, G., Jiang, Q., & Wang, S. (2019). Anti-Obesity Effects of Dietary Calcium: The Evidence and Possible Mechanisms. International Journal of Molecular Sciences, 20(12), 3072. https://doi.org/10.3390/ijms20123072
  • Zhu, W., Cai, D., Wang, Y., Lin, N., Hu, Q., Qi Y., Ma S., & Amarasekara S. (2013). Calcium plus vitamin D3 supplementation facilitated Fat loss in overweight and obese college students with very-low calcium consumption: a randomized controlled trial. Nutrition Journal, 12(1). https://doi.org/10.1186/1475-2891-12-8
There are 49 citations in total.

Details

Primary Language English
Subjects Animal Science, Genetics and Biostatistics
Journal Section RESEARCH ARTICLE
Authors

Semiha Özge Kara 0000-0003-2272-0968

Akın Yakan 0000-0002-9248-828X

Project Number 21.YL.022
Early Pub Date December 20, 2023
Publication Date December 31, 2023
Acceptance Date December 8, 2023
Published in Issue Year 2023 Volume: 16 Issue: 4

Cite

APA Kara, S. Ö., & Yakan, A. (2023). The Effects of High Calcium and Vitamin D on the Fructose- Induced Lipogenesis Pathway in Rats. Kocatepe Veterinary Journal, 16(4), 541-555. https://doi.org/10.30607/kvj.1319111
AMA Kara SÖ, Yakan A. The Effects of High Calcium and Vitamin D on the Fructose- Induced Lipogenesis Pathway in Rats. kvj. December 2023;16(4):541-555. doi:10.30607/kvj.1319111
Chicago Kara, Semiha Özge, and Akın Yakan. “The Effects of High Calcium and Vitamin D on the Fructose- Induced Lipogenesis Pathway in Rats”. Kocatepe Veterinary Journal 16, no. 4 (December 2023): 541-55. https://doi.org/10.30607/kvj.1319111.
EndNote Kara SÖ, Yakan A (December 1, 2023) The Effects of High Calcium and Vitamin D on the Fructose- Induced Lipogenesis Pathway in Rats. Kocatepe Veterinary Journal 16 4 541–555.
IEEE S. Ö. Kara and A. Yakan, “The Effects of High Calcium and Vitamin D on the Fructose- Induced Lipogenesis Pathway in Rats”, kvj, vol. 16, no. 4, pp. 541–555, 2023, doi: 10.30607/kvj.1319111.
ISNAD Kara, Semiha Özge - Yakan, Akın. “The Effects of High Calcium and Vitamin D on the Fructose- Induced Lipogenesis Pathway in Rats”. Kocatepe Veterinary Journal 16/4 (December 2023), 541-555. https://doi.org/10.30607/kvj.1319111.
JAMA Kara SÖ, Yakan A. The Effects of High Calcium and Vitamin D on the Fructose- Induced Lipogenesis Pathway in Rats. kvj. 2023;16:541–555.
MLA Kara, Semiha Özge and Akın Yakan. “The Effects of High Calcium and Vitamin D on the Fructose- Induced Lipogenesis Pathway in Rats”. Kocatepe Veterinary Journal, vol. 16, no. 4, 2023, pp. 541-55, doi:10.30607/kvj.1319111.
Vancouver Kara SÖ, Yakan A. The Effects of High Calcium and Vitamin D on the Fructose- Induced Lipogenesis Pathway in Rats. kvj. 2023;16(4):541-55.

13520    13521       13522   1352314104

14105         14106        14107       14108