Research Article
BibTex RIS Cite

The Effect of Thyme Oil and Thymol on Hepatic Gene Expression Levels in Rabbits with Induced Hepatic Lipidosis

Year 2025, Volume: 18 Issue: 3, 250 - 262, 03.10.2025

Abstract

Rabbits fed a high cholesterol diet (HCD) exhibit various physiopathologic features of hepatic lipidosis. The aim of this study was to investigate the effects of thyme oil and thymol on inflammation-related hepatic gene expression levels in a HCD-induced hepatic lipidosis model. Male New Zealand rabbits were divided into 6 groups. These groups were; Standard rabbit chow, Standard rabbit chow + thymol, Standard rabbit chow + thyme oil, High cholesterol diet, High cholesterol diet + thymol, High cholesterol diet + thyme oil. Blood samples were collected at 0, 4, 8 and 11 weeks during the study. Total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol and triglyceride levels were analyzed. The mRNA expression levels of inflammation-related genes from liver tissue were analyzed by real-time polymerase chain reaction method. The expression levels of interleukin-4 (IL-4), IL-17 and interferon gamma genes were lower, whereas the expression levels of IL-9, IL-13, IL-18 and RAR-related orphan receptor gamma genes were higher in rabbits fed with HCD compared to the normal diet group (p<0.05). Thymol increased T-box transcription factor, IL-4, IL-17 and IL-18 gene expression. Thyme oil increased GATA binding protein 3 and IL-18 gene expression. In conclusion, thymol and thyme oil suppressed the expression of some inflammation-related genes and upregulated the expression of others. It can be stated that thymol and thyme oil may have positive effects on the prevention or correction of the inflammatory process from the gene level in the hepatic lipidosis model induced by HCD.

Ethical Statement

Ethics committee approval was received for this study from the Animal Experiments Local Ethics Committee of Erciyes University (Date: 04.03.2020, Number: 20/069)

Supporting Institution

This study was supported by Erciyes University Scientific Research Projects Department with project number TDK-2017-7600.

Project Number

TDK-2017-7600

Thanks

I would like to thank Assoc. Prof. Dr. Ahmet EKEN and his team for their help in the laboratory studies of the thesis, Prof. Dr. Ahmet ÖZTÜRK who performed the statistical analysis of the data, Erciyes University Scientific Research Projects (BAP) unit that provided financial support for the realization of the project, Erciyes University Experimental Research Application and Research Center (DEKAM) and its staff where I conducted the experimental studies, Erciyes University Genome and Stem Cell Center (GENKÖK) and its staff where I conducted the laboratory studies.

References

  • Chackelevicius, C. M., Gambaro, S. E., Tiribelli, C., & Rosso, N. (2016). Th17 involvement in nonalcoholic fatty liver disease progression to non-alcoholic steatohepatitis. World journal of gastroenterology, 22(41), 9096-9103. https://doi.org/10.3748/wjg.v22.i41.9096.
  • Chen, Y., Chen, Y., Zhao, L., Chen, Y., Mei, M., Li, Q., Huang, A., Varghese, Z., Moorhead, J. F., & Ruan, X. Z. (2012). Inflammatory stress exacerbates hepatic cholesterol accumulation via disrupting cellular cholesterol export. Journal of gastroenterology and hepatology, 27(5), 974- 984.https://doi.org/10.1111/j.1440-1746.2011.06986.x.
  • Das, S. K.,& Balakrishnan, V. (2011). Role of cytokines in the pathogenesis of non-alcoholic Fatty liver disease. Indian journal of clinical biochemistry: IJCB, 26(2), 202-209. https://doi.org/10.1007/s12291-011-0121-7.
  • El Sebaei, M., El-Bahr, S.M., Al-Nazawi, M., Abdel-Rahe, S. (2019). Effect of flaxseed on lipid profile, antioxidants and PPAR-α gene expression in rabbit fed hypercholesterolemic diet. Int J Pharmacol, 15(5), 642-650. doi:10.3923/ijp.2019.642.650.
  • El-Boshy, M. E., Refaat, B., Qasem, A. H., Khan, A., Ghaith, M., Almasmoum, H., Mahbub, A., & Almaimani, R. A. (2019). The remedial effect of Thymus vulgaris extract against lead toxicity-induced oxidative stress, hepatorenal damage, immunosuppression, and hematological disorders in rats. Environmental science and pollution research international, 26(22), 22736-22746. https://doi.org/10.1007/s11356-019-05562-8.
  • Flisiak-Jackiewicz, M., Bobrus-Chociej, A., Tarasów, E., Wojtkowska, M., Białokoz-Kalinowska, I., & Lebensztejn, D. M. (2018). Predictive Role of Interleukin-18 in Liver Steatosis in Obese Children. Canadian journal of gastroenterology & hepatology, 2018, 3870454. https://doi.org/10.1155/2018/3870454.
  • Fromenty, B.,& Pessayre, D. (1995). Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacology & therapeutics, 67(1), 101-154. https://doi.org/10.1016/0163-7258(95)00012-6.
  • Ghaedi, H., Hosseini, S.A., Jaberi, H. (2021). Effect of 8 weeks of resistance exercise combined with shirazi thyme supplementation on plasma levels of INF-γ and TNF-alpha in men with non-alcoholic fatty liver. Complementary Medicine Research, 11(3), 256-267. doi:10.32598/cmja.11.3.1071.1.
  • Inzaugarat, M. E., De Matteo, E., Baz, P., Lucero, D., García, C. C., Gonzalez Ballerga, E., Daruich, J., Sorda, J. A., Wald, M. R., & Cherñavsky, A. C. (2017). New evidence for the therapeutic potential of curcumin to treat nonalcoholic fatty liver disease in humans. PloS one, 12(3), e0172900. https://doi.org/10.1371/journal.pone.0172900.
  • Kainuma, M., Fujimoto, M., Sekiya, N., Tsuneyama, K., Cheng, C., Takano, Y., Terasawa, K., & Shimada, Y. (2006). Cholesterol-fed rabbit as a unique model of nonalcoholic, nonobese, non-insulin-resistant fatty liver disease with characteristic fibrosis. Journal of gastroenterology, 41(10), 971-980. https://doi.org/10.1007/s00535-006-1883-1.
  • Kim, D.,& Kim, W. R. (2017). Nonobese fatty liver disease. Clinical gastroenterology and hepatology, 15(4), 474- 485. https://doi.org/10.1016/j.cgh.2016.08.028.
  • Kim, E. J., Kim, B. H., Seo, H. S., Lee, Y. J., Kim, H. H., Son, H. H., & Choi, M. H. (2014). Cholesterol-induced non-alcoholic fatty liver disease and atherosclerosis aggravated by systemic inflammation. PloS one, 9(6), e97841. https://doi.org/10.1371/journal.pone.0097841.
  • Lahmi, A., Oryan, S., Eidi, A., & Rohani, A. H. (2023). Comparative effects of thymol and vitamin E on nonalcoholic fatty liver disease in male Wistar rats. Brazilian journal of biology, 84, e268781. https://doi.org/10.1590/1519-6984.268781.
  • Lee, Y. R., Lee, H. B., Oh, M. J., Kim, Y., & Park, H. Y. (2023). Thyme extract alleviates high-fat diet-ınduced obesity and gut dysfunction. Nutrients, 15(23), 5007. https://doi.org/10.3390/nu15235007.
  • Lozano, W. M., Arias-Mutis, O. J., Calvo, C. J., Chorro, F. J., & Zarzoso, M. (2019). Diet-induced rabbit models for the study of metabolic syndrome. Animals, 9(7), 463. https://doi.org/10.3390/ani9070463.
  • Luo, X. Y., Takahara, T., Kawai, K., Fujino, M., Sugiyama, T., Tsuneyama, K., Tsukada, K., Nakae, S., Zhong, L., & Li, X. K. (2013). IFN-γ deficiency attenuates hepatic inflammation and fibrosis in a steatohepatitis model induced by a methionine- and choline-deficient high-fat diet. American journal of physiology. Gastrointestinal and liver physiology, 305(12), G891-G899. https://doi.org/10.1152/ajpgi.00193.2013.
  • Marchese, A., Orhan, I. E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S. F., Gortzi, O., Izadi, M., & Nabavi, S. M. (2016). Antibacterial and antifungal activities of thymol: A brief review of the literature. Food chemistry, 210, 402- 414. https://doi.org/10.1016/j.foodchem.2016.04.111.
  • Nadi, A., Shiravi, A. A., Mohammadi, Z., Aslani, A., & Zeinalian, M. (2023). Thymus vulgaris, a natural pharmacy against COVID-19: A molecular review. Journal of herbal medicine, 38, 100635. https://doi.org/10.1016/j.hermed.2023.100635.
  • National Center for Biotechnology Information (NCBI), Primer sequences. http://www.ncbi.nlm.nih.gov [Access Date: 09.10.2017].
  • Ocaña, A.,& Reglero, G. (2012). Effects of Thyme Extract Oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis) on Cytokine Production and Gene Expression of oxLDL-Stimulated THP-1-Macrophages. Journal of obesity, 2012, 104706. https://doi.org/10.1155/2012/104706.
  • Prasanth Reddy, V., Ravi Vital, K., Varsha, P.V., Satyam, S. (2014). Review on Thymus vulgaris traditional uses and pharmacological properties. Med Aromat Plants, 3(164), 2167-2412. https://doi.org/10.4172/2167-0412.1000164.
  • Rašković, A., Pavlović, N., Kvrgić, M., Sudji, J., Mitić, G., Čapo, I., & Mikov, M. (2015). Effects of pharmaceutical formulations containing thyme on carbon tetrachloride-induced liver injury in rats. BMC complementary and alternative medicine, 15, 442. https://doi.org/10.1186/s12906-015-0966-z.
  • Senokuchi, T., Liang, C. P., Seimon, T. A., Han, S., Matsumoto, M., Banks, A. S., Paik, J. H., DePinho, R. A., Accili, D., Tabas, I., & Tall, A. R. (2008). Forkhead transcription factors (FoxOs) promote apoptosis of insulin-resistant macrophages during cholesterol-induced endoplasmic reticulum stress. Diabetes, 57(11), 2967- 2976. https://doi.org/10.2337/db08-0520.
  • Sheng, X., Wang, L., Zhan, P., He, W., Tian, H., & Liu, J. (2023). Thyme (Thymus quinquecostatus Celak) Polyphenol-Rich Extract (TPE) Alleviates HFD-Induced Liver Injury in Mice by Inactivating the TLR4/NF-κB Signaling Pathway through the Gut-Liver Axis. Foods (Basel, Switzerland), 12(16), 3074. https://doi.org/10.3390/foods12163074.
  • Sheng, X., Wang, M., Lu, M., Xi, B., Sheng, H., & Zang, Y. Q. (2011). Rhein ameliorates fatty liver disease through negative energy balance, hepatic lipogenic regulation, and immunomodulation in diet-induced obese mice. American journal of physiology. Endocrinology and metabolism, 300(5), E886-E893. https://doi.org/10.1152/ajpendo.00332.2010.
  • Sheng, X., Zhan, P., Wang, P., He, W., & Tian, H. (2024). Mitigation of high-fat diet-induced hepatic steatosis by thyme (Thymus quinquecostatus Celak) polyphenol-rich extract (TPE): insights into gut microbiota modulation and bile acid metabolism. Food & function, 15(14), 7333- 7347. https://doi.org/10.1039/d3fo05235d.
  • Sumarac-Dumanovic, M., Stevanovic, D., Ljubic, A., Jorga, J., Simic, M., Stamenkovic-Pejkovic, D., Starcevic, V., Trajkovic, V., & Micic, D. (2009). Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women. International journal of obesity (2005), 33(1), 151-156. https://doi.org/10.1038/ijo.2008.216.
  • Tang, Y., Bian, Z., Zhao, L., Liu, Y., Liang, S., Wang, Q., Han, X., Peng, Y., Chen, X., Shen, L., Qiu, D., Li, Z., & Ma, X. (2011). Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clinical and experimental immunology, 166(2), 281-290. https://doi.org/10.1111/j.1365-2249.2011.04471.x.
  • Tous, M., Ferré, N., Camps, J., Riu, F., & Joven, J. (2005). Feeding apolipoprotein E-knockout mice with cholesterol and fat enriched diets may be a model of non-alcoholic steatohepatitis. Molecular and cellular biochemistry, 268(1-2), 53- 58. https://doi.org/10.1007/s11010-005-2997-0.
  • Vigo, E., Cepeda, A., Gualillo, O., & Perez-Fernandez, R. (2004). In-vitro anti-inflammatory effect of Eucalyptus globulus and Thymus vulgaris: nitric oxide inhibition in J774A.1 murine macrophages. The Journal of pharmacy and pharmacology, 56(2), 257- 263. https://doi.org/10.1211/0022357022665.
  • Xu, R., Tao, A., Zhang, S., & Zhang, M. (2013). Neutralization of interleukin-17 attenuates high fat diet-induced non-alcoholic fatty liver disease in mice. Acta biochimica et biophysica Sinica, 45(9), 726-733. https://doi.org/10.1093/abbs/gmt065.
  • Yagi, R., Zhu, J., & Paul, W. E. (2011). An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation. International immunology, 23(7), 415-420. https://doi.org/10.1093/intimm/dxr029.
  • Yan, X., Wang, Y., Ren, X. Y., Liu, X. Y., Ma, J. M., Song, R. L., Wang, X. H., Dong, Y., Yu, A. X., Fan, Q. Q., Wei, J., & She, G. M. (2021). Gut dysbiosis correction contributes to the hepatoprotective effects of Thymus quinquecostatus Celak extract against alcohol through the gut-liver axis. Food & function, 12(20), 10281-10290. https://doi.org/10.1039/d1fo01117k.
  • Zeyda, M., Huber, J., Prager, G., & Stulnig, T. M. (2011). Inflammation correlates with markers of T-cell subsets including regulatory T cells in adipose tissue from obese patients. Obesity (Silver Spring, Md.), 19(4), 743-748. https://doi.org/10.1038/oby.2010.123.
  • Zhang, W., Kudo, H., Kawai, K., Fujisaka, S., Usui, I., Sugiyama, T., Tsukada, K., Chen, N., & Takahara, T. (2010). Tumor necrosis factor-alpha accelerates apoptosis of steatotic hepatocytes from a murine model of non-alcoholic fatty liver disease. Biochemical and biophysical research communications, 391(4), 1731-1736. https://doi.org/10.1016/j.bbrc.2009.12.144.
  • Zhou, E., Fu, Y., Wei, Z., Yu, Y., Zhang, X., & Yang, Z. (2014). Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma. Fitoterapia, 96, 131-137. https://doi.org/10.1016/j.fitote.2014.04.016

Hepatik Lipidozis Oluşturulan Tavşanlarda Kekik Yağı ve Timol’ün Hepatik Gen Ekspresyon Seviyelerine Etkisi

Year 2025, Volume: 18 Issue: 3, 250 - 262, 03.10.2025

Abstract

Yüksek kolesterol diyetiyle beslenen tavşanlar hepatik lipidozisin çeşitli fizyopatolojik özelliklerini gösterirler. Bu çalışmada, yüksek kolestrol diyeti ile indüklenmiş non-obez hepatik lipidozisin modelinde, kekik yağı ve timol’ün inflamasyonla ilişkili hepatik gen ekspresyon seviyeleri üzerine etkisinin araştırılması amaçlandı. Erkek Yeni Zelanda ırkı tavşanlar 6 gruba ayrıldı. Bu gruplar; Standart tavşan yemi, Standart tavşan yemi + timol, Standart tavşan yemi + kekik yağı, Yüksek kolesterol diyeti, Yüksek kolesterol diyeti + timol, Yüksek kolesterol diyeti + kekik yağı. Çalışma süresince 0., 4., 8. ve 11. haftalarda kan örnekleri alındı. Total kolesterol, yüksek yoğunluklu lipoprotein kolesterol, düşük yoğunluklu lipoprotein kolesterol ve trigliserit düzeyleri analiz edildi. Karaciğer dokusundan inflamasyonla ilişkili genlerin mRNA ekspresyon seviyleri gerçek zamanlı polimeraz zincir reaksiyonu yöntemiyle analiz edildi. Yüksek kolesterol diyetiyle beslenen tavşanlarda, normal diyet grubuna kıyasla interlökin-4 (IL-4), IL-17 ve interferon gama geninin ekspresyon seviyesi düşük, IL-9, IL-13, IL-18 ve RAR ile ilişkili orfan reseptör gama genlerinin ekspresyon seviyesinin yüksek olduğu belirlendi (p<0.05). Timol T-box transkripsiyon faktörü, IL-4, IL-17 ve IL-18 gen ekspresyonunu artırmıştır. Kekik yağı GATA bağlayıcı protein 3 ve IL-18 gen ekspresyonunu artırmıştır. Sonuç olarak, yüksek kolesterol diyeti ile oluşturulan non-obez hepatik lipidozisin modelinde, timol ve kekik yağının inflamasyonla ilişkili bazı genlerin ifade edilmesini baskıladığı, bazılarının ise ifade edilmesini upregüle ettiği görüldü. Bütün yönleriyle değerlendirildiğine, timol ve kekik yağının yüksek kolesterol diyeti ile tetiklenmiş non-alkolik yağlı karaciğer hastalığı modelinde gen düzeyinden itibaren yangısel sürecin önlenmesinde veya düzeltilmesinde olumlu yönde etkileri olabileceği ifade edilebilir.

Project Number

TDK-2017-7600

References

  • Chackelevicius, C. M., Gambaro, S. E., Tiribelli, C., & Rosso, N. (2016). Th17 involvement in nonalcoholic fatty liver disease progression to non-alcoholic steatohepatitis. World journal of gastroenterology, 22(41), 9096-9103. https://doi.org/10.3748/wjg.v22.i41.9096.
  • Chen, Y., Chen, Y., Zhao, L., Chen, Y., Mei, M., Li, Q., Huang, A., Varghese, Z., Moorhead, J. F., & Ruan, X. Z. (2012). Inflammatory stress exacerbates hepatic cholesterol accumulation via disrupting cellular cholesterol export. Journal of gastroenterology and hepatology, 27(5), 974- 984.https://doi.org/10.1111/j.1440-1746.2011.06986.x.
  • Das, S. K.,& Balakrishnan, V. (2011). Role of cytokines in the pathogenesis of non-alcoholic Fatty liver disease. Indian journal of clinical biochemistry: IJCB, 26(2), 202-209. https://doi.org/10.1007/s12291-011-0121-7.
  • El Sebaei, M., El-Bahr, S.M., Al-Nazawi, M., Abdel-Rahe, S. (2019). Effect of flaxseed on lipid profile, antioxidants and PPAR-α gene expression in rabbit fed hypercholesterolemic diet. Int J Pharmacol, 15(5), 642-650. doi:10.3923/ijp.2019.642.650.
  • El-Boshy, M. E., Refaat, B., Qasem, A. H., Khan, A., Ghaith, M., Almasmoum, H., Mahbub, A., & Almaimani, R. A. (2019). The remedial effect of Thymus vulgaris extract against lead toxicity-induced oxidative stress, hepatorenal damage, immunosuppression, and hematological disorders in rats. Environmental science and pollution research international, 26(22), 22736-22746. https://doi.org/10.1007/s11356-019-05562-8.
  • Flisiak-Jackiewicz, M., Bobrus-Chociej, A., Tarasów, E., Wojtkowska, M., Białokoz-Kalinowska, I., & Lebensztejn, D. M. (2018). Predictive Role of Interleukin-18 in Liver Steatosis in Obese Children. Canadian journal of gastroenterology & hepatology, 2018, 3870454. https://doi.org/10.1155/2018/3870454.
  • Fromenty, B.,& Pessayre, D. (1995). Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacology & therapeutics, 67(1), 101-154. https://doi.org/10.1016/0163-7258(95)00012-6.
  • Ghaedi, H., Hosseini, S.A., Jaberi, H. (2021). Effect of 8 weeks of resistance exercise combined with shirazi thyme supplementation on plasma levels of INF-γ and TNF-alpha in men with non-alcoholic fatty liver. Complementary Medicine Research, 11(3), 256-267. doi:10.32598/cmja.11.3.1071.1.
  • Inzaugarat, M. E., De Matteo, E., Baz, P., Lucero, D., García, C. C., Gonzalez Ballerga, E., Daruich, J., Sorda, J. A., Wald, M. R., & Cherñavsky, A. C. (2017). New evidence for the therapeutic potential of curcumin to treat nonalcoholic fatty liver disease in humans. PloS one, 12(3), e0172900. https://doi.org/10.1371/journal.pone.0172900.
  • Kainuma, M., Fujimoto, M., Sekiya, N., Tsuneyama, K., Cheng, C., Takano, Y., Terasawa, K., & Shimada, Y. (2006). Cholesterol-fed rabbit as a unique model of nonalcoholic, nonobese, non-insulin-resistant fatty liver disease with characteristic fibrosis. Journal of gastroenterology, 41(10), 971-980. https://doi.org/10.1007/s00535-006-1883-1.
  • Kim, D.,& Kim, W. R. (2017). Nonobese fatty liver disease. Clinical gastroenterology and hepatology, 15(4), 474- 485. https://doi.org/10.1016/j.cgh.2016.08.028.
  • Kim, E. J., Kim, B. H., Seo, H. S., Lee, Y. J., Kim, H. H., Son, H. H., & Choi, M. H. (2014). Cholesterol-induced non-alcoholic fatty liver disease and atherosclerosis aggravated by systemic inflammation. PloS one, 9(6), e97841. https://doi.org/10.1371/journal.pone.0097841.
  • Lahmi, A., Oryan, S., Eidi, A., & Rohani, A. H. (2023). Comparative effects of thymol and vitamin E on nonalcoholic fatty liver disease in male Wistar rats. Brazilian journal of biology, 84, e268781. https://doi.org/10.1590/1519-6984.268781.
  • Lee, Y. R., Lee, H. B., Oh, M. J., Kim, Y., & Park, H. Y. (2023). Thyme extract alleviates high-fat diet-ınduced obesity and gut dysfunction. Nutrients, 15(23), 5007. https://doi.org/10.3390/nu15235007.
  • Lozano, W. M., Arias-Mutis, O. J., Calvo, C. J., Chorro, F. J., & Zarzoso, M. (2019). Diet-induced rabbit models for the study of metabolic syndrome. Animals, 9(7), 463. https://doi.org/10.3390/ani9070463.
  • Luo, X. Y., Takahara, T., Kawai, K., Fujino, M., Sugiyama, T., Tsuneyama, K., Tsukada, K., Nakae, S., Zhong, L., & Li, X. K. (2013). IFN-γ deficiency attenuates hepatic inflammation and fibrosis in a steatohepatitis model induced by a methionine- and choline-deficient high-fat diet. American journal of physiology. Gastrointestinal and liver physiology, 305(12), G891-G899. https://doi.org/10.1152/ajpgi.00193.2013.
  • Marchese, A., Orhan, I. E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S. F., Gortzi, O., Izadi, M., & Nabavi, S. M. (2016). Antibacterial and antifungal activities of thymol: A brief review of the literature. Food chemistry, 210, 402- 414. https://doi.org/10.1016/j.foodchem.2016.04.111.
  • Nadi, A., Shiravi, A. A., Mohammadi, Z., Aslani, A., & Zeinalian, M. (2023). Thymus vulgaris, a natural pharmacy against COVID-19: A molecular review. Journal of herbal medicine, 38, 100635. https://doi.org/10.1016/j.hermed.2023.100635.
  • National Center for Biotechnology Information (NCBI), Primer sequences. http://www.ncbi.nlm.nih.gov [Access Date: 09.10.2017].
  • Ocaña, A.,& Reglero, G. (2012). Effects of Thyme Extract Oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis) on Cytokine Production and Gene Expression of oxLDL-Stimulated THP-1-Macrophages. Journal of obesity, 2012, 104706. https://doi.org/10.1155/2012/104706.
  • Prasanth Reddy, V., Ravi Vital, K., Varsha, P.V., Satyam, S. (2014). Review on Thymus vulgaris traditional uses and pharmacological properties. Med Aromat Plants, 3(164), 2167-2412. https://doi.org/10.4172/2167-0412.1000164.
  • Rašković, A., Pavlović, N., Kvrgić, M., Sudji, J., Mitić, G., Čapo, I., & Mikov, M. (2015). Effects of pharmaceutical formulations containing thyme on carbon tetrachloride-induced liver injury in rats. BMC complementary and alternative medicine, 15, 442. https://doi.org/10.1186/s12906-015-0966-z.
  • Senokuchi, T., Liang, C. P., Seimon, T. A., Han, S., Matsumoto, M., Banks, A. S., Paik, J. H., DePinho, R. A., Accili, D., Tabas, I., & Tall, A. R. (2008). Forkhead transcription factors (FoxOs) promote apoptosis of insulin-resistant macrophages during cholesterol-induced endoplasmic reticulum stress. Diabetes, 57(11), 2967- 2976. https://doi.org/10.2337/db08-0520.
  • Sheng, X., Wang, L., Zhan, P., He, W., Tian, H., & Liu, J. (2023). Thyme (Thymus quinquecostatus Celak) Polyphenol-Rich Extract (TPE) Alleviates HFD-Induced Liver Injury in Mice by Inactivating the TLR4/NF-κB Signaling Pathway through the Gut-Liver Axis. Foods (Basel, Switzerland), 12(16), 3074. https://doi.org/10.3390/foods12163074.
  • Sheng, X., Wang, M., Lu, M., Xi, B., Sheng, H., & Zang, Y. Q. (2011). Rhein ameliorates fatty liver disease through negative energy balance, hepatic lipogenic regulation, and immunomodulation in diet-induced obese mice. American journal of physiology. Endocrinology and metabolism, 300(5), E886-E893. https://doi.org/10.1152/ajpendo.00332.2010.
  • Sheng, X., Zhan, P., Wang, P., He, W., & Tian, H. (2024). Mitigation of high-fat diet-induced hepatic steatosis by thyme (Thymus quinquecostatus Celak) polyphenol-rich extract (TPE): insights into gut microbiota modulation and bile acid metabolism. Food & function, 15(14), 7333- 7347. https://doi.org/10.1039/d3fo05235d.
  • Sumarac-Dumanovic, M., Stevanovic, D., Ljubic, A., Jorga, J., Simic, M., Stamenkovic-Pejkovic, D., Starcevic, V., Trajkovic, V., & Micic, D. (2009). Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women. International journal of obesity (2005), 33(1), 151-156. https://doi.org/10.1038/ijo.2008.216.
  • Tang, Y., Bian, Z., Zhao, L., Liu, Y., Liang, S., Wang, Q., Han, X., Peng, Y., Chen, X., Shen, L., Qiu, D., Li, Z., & Ma, X. (2011). Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clinical and experimental immunology, 166(2), 281-290. https://doi.org/10.1111/j.1365-2249.2011.04471.x.
  • Tous, M., Ferré, N., Camps, J., Riu, F., & Joven, J. (2005). Feeding apolipoprotein E-knockout mice with cholesterol and fat enriched diets may be a model of non-alcoholic steatohepatitis. Molecular and cellular biochemistry, 268(1-2), 53- 58. https://doi.org/10.1007/s11010-005-2997-0.
  • Vigo, E., Cepeda, A., Gualillo, O., & Perez-Fernandez, R. (2004). In-vitro anti-inflammatory effect of Eucalyptus globulus and Thymus vulgaris: nitric oxide inhibition in J774A.1 murine macrophages. The Journal of pharmacy and pharmacology, 56(2), 257- 263. https://doi.org/10.1211/0022357022665.
  • Xu, R., Tao, A., Zhang, S., & Zhang, M. (2013). Neutralization of interleukin-17 attenuates high fat diet-induced non-alcoholic fatty liver disease in mice. Acta biochimica et biophysica Sinica, 45(9), 726-733. https://doi.org/10.1093/abbs/gmt065.
  • Yagi, R., Zhu, J., & Paul, W. E. (2011). An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation. International immunology, 23(7), 415-420. https://doi.org/10.1093/intimm/dxr029.
  • Yan, X., Wang, Y., Ren, X. Y., Liu, X. Y., Ma, J. M., Song, R. L., Wang, X. H., Dong, Y., Yu, A. X., Fan, Q. Q., Wei, J., & She, G. M. (2021). Gut dysbiosis correction contributes to the hepatoprotective effects of Thymus quinquecostatus Celak extract against alcohol through the gut-liver axis. Food & function, 12(20), 10281-10290. https://doi.org/10.1039/d1fo01117k.
  • Zeyda, M., Huber, J., Prager, G., & Stulnig, T. M. (2011). Inflammation correlates with markers of T-cell subsets including regulatory T cells in adipose tissue from obese patients. Obesity (Silver Spring, Md.), 19(4), 743-748. https://doi.org/10.1038/oby.2010.123.
  • Zhang, W., Kudo, H., Kawai, K., Fujisaka, S., Usui, I., Sugiyama, T., Tsukada, K., Chen, N., & Takahara, T. (2010). Tumor necrosis factor-alpha accelerates apoptosis of steatotic hepatocytes from a murine model of non-alcoholic fatty liver disease. Biochemical and biophysical research communications, 391(4), 1731-1736. https://doi.org/10.1016/j.bbrc.2009.12.144.
  • Zhou, E., Fu, Y., Wei, Z., Yu, Y., Zhang, X., & Yang, Z. (2014). Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma. Fitoterapia, 96, 131-137. https://doi.org/10.1016/j.fitote.2014.04.016
There are 36 citations in total.

Details

Primary Language English
Subjects Veterinary Internal Medicine
Journal Section RESEARCH ARTICLE
Authors

Gencay Ekinci 0000-0002-4551-8749

Vehbi Güneş 0000-0002-4047-4409

Project Number TDK-2017-7600
Early Pub Date September 19, 2025
Publication Date October 3, 2025
Submission Date May 2, 2025
Acceptance Date August 21, 2025
Published in Issue Year 2025 Volume: 18 Issue: 3

Cite

APA Ekinci, G., & Güneş, V. (2025). The Effect of Thyme Oil and Thymol on Hepatic Gene Expression Levels in Rabbits with Induced Hepatic Lipidosis. Kocatepe Veterinary Journal, 18(3), 250-262. https://doi.org/10.30607/kvj.1689410
AMA Ekinci G, Güneş V. The Effect of Thyme Oil and Thymol on Hepatic Gene Expression Levels in Rabbits with Induced Hepatic Lipidosis. kvj. October 2025;18(3):250-262. doi:10.30607/kvj.1689410
Chicago Ekinci, Gencay, and Vehbi Güneş. “The Effect of Thyme Oil and Thymol on Hepatic Gene Expression Levels in Rabbits With Induced Hepatic Lipidosis”. Kocatepe Veterinary Journal 18, no. 3 (October 2025): 250-62. https://doi.org/10.30607/kvj.1689410.
EndNote Ekinci G, Güneş V (October 1, 2025) The Effect of Thyme Oil and Thymol on Hepatic Gene Expression Levels in Rabbits with Induced Hepatic Lipidosis. Kocatepe Veterinary Journal 18 3 250–262.
IEEE G. Ekinci and V. Güneş, “The Effect of Thyme Oil and Thymol on Hepatic Gene Expression Levels in Rabbits with Induced Hepatic Lipidosis”, kvj, vol. 18, no. 3, pp. 250–262, 2025, doi: 10.30607/kvj.1689410.
ISNAD Ekinci, Gencay - Güneş, Vehbi. “The Effect of Thyme Oil and Thymol on Hepatic Gene Expression Levels in Rabbits With Induced Hepatic Lipidosis”. Kocatepe Veterinary Journal 18/3 (October2025), 250-262. https://doi.org/10.30607/kvj.1689410.
JAMA Ekinci G, Güneş V. The Effect of Thyme Oil and Thymol on Hepatic Gene Expression Levels in Rabbits with Induced Hepatic Lipidosis. kvj. 2025;18:250–262.
MLA Ekinci, Gencay and Vehbi Güneş. “The Effect of Thyme Oil and Thymol on Hepatic Gene Expression Levels in Rabbits With Induced Hepatic Lipidosis”. Kocatepe Veterinary Journal, vol. 18, no. 3, 2025, pp. 250-62, doi:10.30607/kvj.1689410.
Vancouver Ekinci G, Güneş V. The Effect of Thyme Oil and Thymol on Hepatic Gene Expression Levels in Rabbits with Induced Hepatic Lipidosis. kvj. 2025;18(3):250-62.

13520    13521       13522   1352314104

14105         14106        14107       14108