Review
BibTex RIS Cite

The Effects of Music on the Brain: A Literature Review of fNIRS Studies

Year 2025, Volume: 3 Issue: 2, 386 - 412, 25.08.2025

Abstract

This review study examines 40 experimental studies investigating the effects of music on the brain using the fNIRS neuroimaging tool. The study is a narrative review. The studies included were analysed descriptively in terms of various characteristics such as year, country, participant profile, experimental design, devices used, brain regions examined, musical stimuli used, and their durations. Subsequently, a thematic content analysis approach was used to classify the studies under five main themes: the effects of music on cognitive functions, the neurophysiological and emotional effects of music, music therapy and health applications, the social effects of music and interbrain synchronization, methodological innovations and fNIRS analytical approaches. The review results show that fNIRS-based music research has increased in recent years, with studies predominantly concentrated in China, Japan, Brazil, and South Korea. While the studies examined reveal various effects of music on the brain, they also have some methodological limitations. This review aims to summarize the current state and trends in the field, to present the potential of this field to researchers in our country, and to guide future research.

References

  • Alves Heinze, R., Vanzella, P., Zimeo Morais, G. A., & Sato, J. R. (2019). Hand motor learning in a musical context and prefrontal cortex hemodynamic response: A functional near-infrared spectroscopy (fNIRS) study. Cognitive Processing, 20(4), 507-513. https://doi.org/10.1007/s10339-019-00925-y
  • Bicciato, G., Keller, E., Wolf, M., Brandi, G., Schulthess, S., Friedl, S. G., Willms, J. F., & Narula, G. (2021). Increase in Low-Frequency Oscillations in fNIRS as Cerebral Response to Auditory Stimulation with Familiar Music. Brain Sciences, 12(1), 42. https://doi.org/10.3390/brainsci12010042
  • Bigliassi, M., Barreto-Silva, V., Altimari, L. R., Vandoni, M., Codrons, E., & Buzzachera, C. F. (2015). How Motivational and Calm Music May Affect the Prefrontal Cortex Area and Emotional Responses: A Functional Near-Infrared Spectroscopy (fNIRS) Study. Perceptual and Motor Skills, 120(1), 202-218. https://doi.org/10.2466/27.24.PMS.120v12x5
  • Bigliassi, M., Barreto-Silva, V., Kanthack, T. F. D., & Altimari, L. R. (2014). Music and cortical blood flow: A functional near-infrared spectroscopy (fNIRS) study. Psychology & Neuroscience, 7(4), 545-550. https://doi.org/10.3922/j.psns.2014.4.13
  • Bigliassi, M., León-Domínguez, U., & Altimari, L. R. (2015). How does the prefrontal cortex “listen” to classical and techno music? A functional near-infrared spectroscopy (fNIRS) study. Psychology & Neuroscience, 8(2), 246-256. https://doi.org/10.1037/h0101064
  • Curzel, F., Tillmann, B., & Ferreri, L. (2024). Lights on music cognition: A systematic and critical review of fNIRS applications and future perspectives. Brain and Cognition, 180, 106200. https://doi.org/10.1016/j.bandc.2024.106200
  • Çağman, T. (2021). Türkiye’de Nöro-Müzikoloji Alanında Yapılmış Çalışmalara Dair Literatür Değerlendirmesi. Online Journal of Music Sciences, 118-126. https://doi.org/10.31811/ojomus.953529
  • Da Silva Ferreira Barreto, C., Zimeo Morais, G. A., Vanzella, P., & Sato, J. R. (2020). Combining the intersubject correlation analysis and the multivariate distance matrix regression to evaluate associations between fNIRS signals and behavioral data from ecological experiments. Experimental Brain Research, 238(10), 2399-2408. https://doi.org/10.1007/s00221-020-05895-8
  • Ding, K., Li, J., Li, X., & Li, H. (2024). Understanding the Effect of Listening to Music, Playing Music, and Singing on Brain Function: A Scoping Review of fNIRS Studies. Brain Sciences, 14(8), 751. https://doi.org/10.3390/brainsci14080751
  • Erol, A. (2021). Derleme yazmanın temel ilkeleri. Archives of Neuropsychiatry. 59 (1), 1-2. https://doi.org/10.29399/npa.28093
  • Feng, K., Shen, C.-Y., Ma, X.-Y., Chen, G.-F., Zhang, M.-L., Xu, B., Liu, X.-M., Sun, J.-J., Zhang, X.-Q., Liu, P.-Z., & Ju, Y. (2019). Effects of music therapy on major depressive disorder: A study of prefrontal hemodynamic functions using fNIRS. Psychiatry Research, 275, 86-93. https://doi.org/10.1016/j.psychres.2019.03.015
  • Ferreri, L., Aucouturier, J.-J., Muthalib, M., Bigand, E., & Bugaiska, A. (2013). Music improves verbal memory encoding while decreasing prefrontal cortex activity: An fNIRS study. Frontiers in Microbiology, 7. https://doi.org/10.3389/fnhum.2013.00779
  • Ferreri, L., Bigand, E., Bard, P., & Bugaiska, A. (2015). The Influence of Music on Prefrontal Cortex during Episodic Encoding and Retrieval of Verbal Information: A Multichannel fNIRS Study. Behavioural Neurology, 2015, 1-11. https://doi.org/10.1155/2015/707625
  • Ferreri, L., Bigand, E., Perrey, S., Muthalib, M., Bard, P., & Bugaiska, A. (2014). Less Effort, Better Results: How Does Music Act on Prefrontal Cortex in Older Adults during Verbal Encoding? An fNIRS Study. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00301
  • Fukuie, T., Suwabe, K., Kawase, S., Shimizu, T., Ochi, G., Kuwamizu, R., Sakairi, Y., & Soya, H. (2022). Groove rhythm stimulates prefrontal cortex function in groove enjoyers. Scientific Reports, 12(1), 7377. https://doi.org/10.1038/s41598-022-11324-3
  • Guo, Z., Ma, T., & Chen, F. (2019). Lateralization of processing spectrally-degraded music in the auditory cortex: An fNIRS study. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2981-2984. https://doi.org/10.1109/EMBC.2019.8856756
  • Hu, Y., Zhu, M., Liu, Y., Wang, Z., Cheng, X., Pan, Y., & Hu, Y. (2022). Musical Meter Induces Interbrain Synchronization during Interpersonal Coordination. Eneuro, 9(5), ENEURO.0504-21.2022. https://doi.org/10.1523/ENEURO.0504-21.2022
  • Imamura, Y. (2018). Profound Haemodynamic Response in the Prefrontal cortex Induced by Musical Stimuli.
  • Jeong, E., & Ryu, H. (2016). Melodic Contour Identification Reflects the Cognitive Threshold of Aging. Frontiers in Aging Neuroscience, 8. https://doi.org/10.3389/fnagi.2016.00134
  • Jeong, E., Ryu, H., Jo, G., & Kim, J. (2018). Cognitive Load Changes during Music Listening and its Implication in Earcon Design in Public Environments: An fNIRS Study. International Journal of Environmental Research and Public Health, 15(10), 2075. https://doi.org/10.3390/ijerph15102075
  • Jeong, E., Ryu, H., Shin, J.-H., Kwon, G. H., Jo, G., & Lee, J.-Y. (2018). High Oxygen Exchange to Music Indicates Auditory Distractibility in Acquired Brain Injury: An fNIRS Study with a Vector-Based Phase Analysis. Scientific Reports, 8(1), 16737. https://doi.org/10.1038/s41598-018-35172-2
  • Jo, G., Kim, Y.-M., Jun, D. W., & Jeong, E. (2020). Pitch Processing Can Indicate Cognitive Alterations in Chronic Liver Disease: An fNIRS Study. Frontiers in Human Neuroscience, 14, 535775. https://doi.org/10.3389/fnhum.2020.535775
  • Leman, M. (1999). Relevance of neuromusicology for music research. Journal of New Music Research, 28(3), 186–199. https://doi.org/10.1076/jnmr.28.3.186.3110
  • Li, H., Zeng, Y., Bai, Z., Li, W., Wu, K., & Zhou, J. (2024). EEG-fNIRS-Based Music Emotion Decoding and Individualized Music Generation. 2024 5th International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), 394-397. https://doi.org/10.1109/ICHCI63580.2024.10808139
  • Luo, L., Shan, M., Zu, Y., Chen, Y., Bu, L., Wang, L., Ni, M., & Niu, W. (2022). Effects of long-term COVID-19 confinement and music stimulation on mental state and brain activity of young people. Neuroscience Letters, 791, 136922. https://doi.org/10.1016/j.neulet.2022.136922
  • Machado, A., Cai, Z., Vincent, T., Pellegrino, G., Lina, J.-M., & Grova, C. (2021). Deconvolution of hemodynamic responses along the cortical surface using personalized functional near infrared spectroscopy. Scientific Reports, 11, 5964. https://doi.org/10.1038/s41598-021-85386-0
  • Misumi, M., Orii, H., Sharmin, T., Mishima, K., & Nishihara, K. (2016). Cerebral Blood Oxygenation Change in a Hearing Music Task Measured with fNIRS. The Proceedings of the 4th International Conference on Industrial Application Engineering 2016, 438-442. https://doi.org/10.12792/iciae2016.079
  • Özer, A., & Görgülü, Z. (2021). Bir bilimsel derlemenin planlanması ve yazımı. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 23(3), 698-713. https://doi.org/10.17556/erziefd.819971
  • Qiu, L., Zhong, Y., Xie, Q., He, Z., Wang, X., Chen, Y., Zhan, C. A., & Pan, J. (2022). Multi-Modal Integration of EEG-fNIRS for Characterization of Brain Activity Evoked by Preferred Music. Frontiers in Neurorobotics, 16, 823435. https://doi.org/10.3389/fnbot.2022.823435
  • Rahman, J. S., Caldwell, S., Jones, R., & Gedeon, T. (2022). Brain Melody Interaction: Understanding Effects of Music on Cerebral Hemodynamic Responses. Multimodal Technologies and Interaction, 6(5), 35. https://doi.org/10.3390/mti6050035
  • Ren, H., Jiang, X., Meng, L., Lu, C., Wang, L., Dai, C., & Chen, W. (2022). fNIRS-Based Dynamic Functional Connectivity Reveals the Innate Musical Sensing Brain Networks in Preterm Infants. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 1806-1816. https://doi.org/10.1109/TNSRE.2022.3178078
  • Ren, H., Jiang, X., Xu, K., Zou, L., Wang, L., Lu, C., Liu, X., & Chen, W. (2019). Evaluation of the Effects of Mozart Music on Cerebral Hemodynamics in Preterm Infants. 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), 1-4. https://doi.org/10.1109/BIOCAS.2019.8919100
  • Ren, H., Zou, L., Wang, L., Lu, C., Yuan, Y., Dai, C., & Chen, W. (2021). Evaluation of the Short-Term Music Therapy on Brain Functions of Preterm Infants Using Functional Near-Infrared Spectroscopy. Frontiers in Neurology, 12, 649340. https://doi.org/10.3389/fneur.2021.649340
  • Santosa, H., Hong, M. J., & Hong, K.-S. (2014). Lateralization of music processing with noises in the auditory cortex: An fNIRS study. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00418
  • Sarinasadat, H., Hattori, Y., Miyake, Y., & Nozawa, T. (2019). Music Valence and Genre Influence Group Creativity. Içinde D. Harris (Ed.), Engineering Psychology and Cognitive Ergonomics (C. 11571, ss. 410-422). Springer International Publishing. https://doi.org/10.1007/978-3-030-22507-0_32
  • Scholkmann, F., Haslbeck, F., Oba, E., Restin, T., Ostojic, D., Kleiser, S., Verbiest, B. C. H., Zohdi, H., Wolf, U., Bassler, D., Bucher, H. U., Wolf, M., & Karen, T. (2024). Creative music therapy in preterm infants effects cerebrovascular oxygenation and perfusion. Scientific Reports, 14(1), 28249. https://doi.org/10.1038/s41598-024-75282-8
  • Shi, S., Wang, J., Wang, Y., Wang, H., Zhang, Q., & Qie, S. (2023). Effects of different types of visual music on the prefrontal hemodynamics of children with autism spectrum disorder based on functional near-infrared spectroscopy. Translational Pediatrics, 12(2), 162-171. https://doi.org/10.21037/tp-22-693
  • Sorkpor, S. K., Montero-Hernandez, S., Miao, H., Pollonini, L., & Ahn, H. (2023). Assessing the impact of preferred web app-based music-listening on pain processing at the central nervous level in older black adults with low back pain: An fNIRS study. Geriatric Nursing, 54, 135-143. https://doi.org/10.1016/j.gerinurse.2023.09.005
  • Suda, M., Morimoto, K., Obata, A., Koizumi, H., & Maki, A. (2008). Cortical responses to Mozart’s sonata enhance spatial-reasoning ability. Neurological Research, 30(9), 885-888. https://doi.org/10.1179/174313208X319143
  • Tachibana, A., Noah, J. A., Ono, Y., Irie, S., Tatsumoto, M., Taguchi, D., Tokuda, N., & Ueda, S. (2024). Rock music improvisation shows increased activity in Broca’s area and its right hemisphere homologue related to spontaneous creativity. BMC Research Notes, 17(1), 61. https://doi.org/10.1186/s13104-024-06727-6
  • Tachibana, A., Noah, J. A., Ono, Y., Taguchi, D., & Ueda, S. (2019). Prefrontal activation related to spontaneous creativity with rock music improvisation: A functional near-infrared spectroscopy study. Scientific Reports, 9(1), 16044. https://doi.org/10.1038/s41598-019-52348-6
  • Vanzella, P., Balardin, J. B., Furucho, R. A., Zimeo Morais, G. A., Braun Janzen, T., Sammler, D., & Sato, J. R. (2019). fNIRS Responses in Professional Violinists While Playing Duets: Evidence for Distinct Leader and Follower Roles at the Brain Level. Frontiers in Psychology, 10, 164. https://doi.org/10.3389/fpsyg.2019.00164
  • Yamada, Y., & Ono, Y. (2019). Detection of Music Preferences using Cerebral Blood Flow Signals. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 490-493. https://doi.org/10.1109/EMBC.2019.8856351
  • Yin, J., Xu, G., Xie, H., Liu, Y., Dou, Z., Shao, B., & Li, Z. (2024). Effects of different frequencies music on cortical responses and functional connectivity in patients with minimal conscious state. Journal of Biophotonics, 17(5), e202300427. https://doi.org/10.1002/jbio.202300427
  • Yıldırım, A. & Şimşek, H. (2011). Sosyal bilimlerde nitel araştırma yöntemleri. (8. Baskı). Seçkin Yayıncılık.
  • Zhang, J., Shi, P., Du, J., & Yu, H. (2023). A study based on functional near-infrared spectroscopy: Cortical responses to music interventions in patients with myofascial pain syndrome. Frontiers in Human Neuroscience, 17, 1119098. https://doi.org/10.3389/fnhum.2023.1119098
  • Zheng, M., Lin, H., & Chen, F. (2020). An fNIRS Study on the Effect of Music Style on Cognitive Activities. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 3200-3203. https://doi.org/10.1109/EMBC44109.2020.9176441

MÜZİĞİN BEYİN ÜZERİNDEKİ ETKİLERİ: fNIRS ÇALIŞMALARININ LİTERATÜR DERLEMESİ

Year 2025, Volume: 3 Issue: 2, 386 - 412, 25.08.2025

Abstract

Bu derleme çalışması, fNIRS nörogörüntüleme aracı kullanılarak müziğin beyindeki etkilerini inceleyen 40 deneysel çalışmayı ele almaktadır. Çalışma, geleneksel anlatı derlemesi (narrative review) türündedir. Ele alınan çalışmalar yıl, ülke, katılımcı profili, deneysel desen, kullanılan cihazlar, incelenen beyin bölgeleri, kullanılan müzikal uyaranlar ve süreleri gibi çeşitli özellikleri açısından betimsel olarak analiz edilmiştir. Ardından tematik bir yaklaşımla içerik analizi gerçekleştirilerek beş ana tema altında sınıflandırılmıştır: müziğin bilişsel işlevler üzerindeki etkileri, müziğin nörofizyolojik ve duygusal etkileri, müzik terapi ve sağlık uygulamaları, müziğin sosyal etkileri ve beyinler arası senkronizasyon, yöntemsel yenilikler ve fNIRS analitik yaklaşımlar. Derleme sonucunda, fNIRS ile yapılan müzik araştırmalarının son yıllarda arttığı, çalışmaların çoğunlukla Çin, Japonya, Brezilya ve Güney Kore’de yoğunlaştığı görülmüştür. İncelenen çalışmalar, müziğin beyin üzerindeki çeşitli etkilerini ortaya koymakla birlikte, bazı metodolojik sınırlılıklar içermektedir. Bu derleme, alandaki mevcut durumu ve eğilimleri özetlemenin yanı sıra ülkemiz araştırmacılarına bu alandaki potansiyeli sunmayı ve gelecekteki araştırmalara yön vermeyi amaçlamaktadır.

References

  • Alves Heinze, R., Vanzella, P., Zimeo Morais, G. A., & Sato, J. R. (2019). Hand motor learning in a musical context and prefrontal cortex hemodynamic response: A functional near-infrared spectroscopy (fNIRS) study. Cognitive Processing, 20(4), 507-513. https://doi.org/10.1007/s10339-019-00925-y
  • Bicciato, G., Keller, E., Wolf, M., Brandi, G., Schulthess, S., Friedl, S. G., Willms, J. F., & Narula, G. (2021). Increase in Low-Frequency Oscillations in fNIRS as Cerebral Response to Auditory Stimulation with Familiar Music. Brain Sciences, 12(1), 42. https://doi.org/10.3390/brainsci12010042
  • Bigliassi, M., Barreto-Silva, V., Altimari, L. R., Vandoni, M., Codrons, E., & Buzzachera, C. F. (2015). How Motivational and Calm Music May Affect the Prefrontal Cortex Area and Emotional Responses: A Functional Near-Infrared Spectroscopy (fNIRS) Study. Perceptual and Motor Skills, 120(1), 202-218. https://doi.org/10.2466/27.24.PMS.120v12x5
  • Bigliassi, M., Barreto-Silva, V., Kanthack, T. F. D., & Altimari, L. R. (2014). Music and cortical blood flow: A functional near-infrared spectroscopy (fNIRS) study. Psychology & Neuroscience, 7(4), 545-550. https://doi.org/10.3922/j.psns.2014.4.13
  • Bigliassi, M., León-Domínguez, U., & Altimari, L. R. (2015). How does the prefrontal cortex “listen” to classical and techno music? A functional near-infrared spectroscopy (fNIRS) study. Psychology & Neuroscience, 8(2), 246-256. https://doi.org/10.1037/h0101064
  • Curzel, F., Tillmann, B., & Ferreri, L. (2024). Lights on music cognition: A systematic and critical review of fNIRS applications and future perspectives. Brain and Cognition, 180, 106200. https://doi.org/10.1016/j.bandc.2024.106200
  • Çağman, T. (2021). Türkiye’de Nöro-Müzikoloji Alanında Yapılmış Çalışmalara Dair Literatür Değerlendirmesi. Online Journal of Music Sciences, 118-126. https://doi.org/10.31811/ojomus.953529
  • Da Silva Ferreira Barreto, C., Zimeo Morais, G. A., Vanzella, P., & Sato, J. R. (2020). Combining the intersubject correlation analysis and the multivariate distance matrix regression to evaluate associations between fNIRS signals and behavioral data from ecological experiments. Experimental Brain Research, 238(10), 2399-2408. https://doi.org/10.1007/s00221-020-05895-8
  • Ding, K., Li, J., Li, X., & Li, H. (2024). Understanding the Effect of Listening to Music, Playing Music, and Singing on Brain Function: A Scoping Review of fNIRS Studies. Brain Sciences, 14(8), 751. https://doi.org/10.3390/brainsci14080751
  • Erol, A. (2021). Derleme yazmanın temel ilkeleri. Archives of Neuropsychiatry. 59 (1), 1-2. https://doi.org/10.29399/npa.28093
  • Feng, K., Shen, C.-Y., Ma, X.-Y., Chen, G.-F., Zhang, M.-L., Xu, B., Liu, X.-M., Sun, J.-J., Zhang, X.-Q., Liu, P.-Z., & Ju, Y. (2019). Effects of music therapy on major depressive disorder: A study of prefrontal hemodynamic functions using fNIRS. Psychiatry Research, 275, 86-93. https://doi.org/10.1016/j.psychres.2019.03.015
  • Ferreri, L., Aucouturier, J.-J., Muthalib, M., Bigand, E., & Bugaiska, A. (2013). Music improves verbal memory encoding while decreasing prefrontal cortex activity: An fNIRS study. Frontiers in Microbiology, 7. https://doi.org/10.3389/fnhum.2013.00779
  • Ferreri, L., Bigand, E., Bard, P., & Bugaiska, A. (2015). The Influence of Music on Prefrontal Cortex during Episodic Encoding and Retrieval of Verbal Information: A Multichannel fNIRS Study. Behavioural Neurology, 2015, 1-11. https://doi.org/10.1155/2015/707625
  • Ferreri, L., Bigand, E., Perrey, S., Muthalib, M., Bard, P., & Bugaiska, A. (2014). Less Effort, Better Results: How Does Music Act on Prefrontal Cortex in Older Adults during Verbal Encoding? An fNIRS Study. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00301
  • Fukuie, T., Suwabe, K., Kawase, S., Shimizu, T., Ochi, G., Kuwamizu, R., Sakairi, Y., & Soya, H. (2022). Groove rhythm stimulates prefrontal cortex function in groove enjoyers. Scientific Reports, 12(1), 7377. https://doi.org/10.1038/s41598-022-11324-3
  • Guo, Z., Ma, T., & Chen, F. (2019). Lateralization of processing spectrally-degraded music in the auditory cortex: An fNIRS study. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2981-2984. https://doi.org/10.1109/EMBC.2019.8856756
  • Hu, Y., Zhu, M., Liu, Y., Wang, Z., Cheng, X., Pan, Y., & Hu, Y. (2022). Musical Meter Induces Interbrain Synchronization during Interpersonal Coordination. Eneuro, 9(5), ENEURO.0504-21.2022. https://doi.org/10.1523/ENEURO.0504-21.2022
  • Imamura, Y. (2018). Profound Haemodynamic Response in the Prefrontal cortex Induced by Musical Stimuli.
  • Jeong, E., & Ryu, H. (2016). Melodic Contour Identification Reflects the Cognitive Threshold of Aging. Frontiers in Aging Neuroscience, 8. https://doi.org/10.3389/fnagi.2016.00134
  • Jeong, E., Ryu, H., Jo, G., & Kim, J. (2018). Cognitive Load Changes during Music Listening and its Implication in Earcon Design in Public Environments: An fNIRS Study. International Journal of Environmental Research and Public Health, 15(10), 2075. https://doi.org/10.3390/ijerph15102075
  • Jeong, E., Ryu, H., Shin, J.-H., Kwon, G. H., Jo, G., & Lee, J.-Y. (2018). High Oxygen Exchange to Music Indicates Auditory Distractibility in Acquired Brain Injury: An fNIRS Study with a Vector-Based Phase Analysis. Scientific Reports, 8(1), 16737. https://doi.org/10.1038/s41598-018-35172-2
  • Jo, G., Kim, Y.-M., Jun, D. W., & Jeong, E. (2020). Pitch Processing Can Indicate Cognitive Alterations in Chronic Liver Disease: An fNIRS Study. Frontiers in Human Neuroscience, 14, 535775. https://doi.org/10.3389/fnhum.2020.535775
  • Leman, M. (1999). Relevance of neuromusicology for music research. Journal of New Music Research, 28(3), 186–199. https://doi.org/10.1076/jnmr.28.3.186.3110
  • Li, H., Zeng, Y., Bai, Z., Li, W., Wu, K., & Zhou, J. (2024). EEG-fNIRS-Based Music Emotion Decoding and Individualized Music Generation. 2024 5th International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), 394-397. https://doi.org/10.1109/ICHCI63580.2024.10808139
  • Luo, L., Shan, M., Zu, Y., Chen, Y., Bu, L., Wang, L., Ni, M., & Niu, W. (2022). Effects of long-term COVID-19 confinement and music stimulation on mental state and brain activity of young people. Neuroscience Letters, 791, 136922. https://doi.org/10.1016/j.neulet.2022.136922
  • Machado, A., Cai, Z., Vincent, T., Pellegrino, G., Lina, J.-M., & Grova, C. (2021). Deconvolution of hemodynamic responses along the cortical surface using personalized functional near infrared spectroscopy. Scientific Reports, 11, 5964. https://doi.org/10.1038/s41598-021-85386-0
  • Misumi, M., Orii, H., Sharmin, T., Mishima, K., & Nishihara, K. (2016). Cerebral Blood Oxygenation Change in a Hearing Music Task Measured with fNIRS. The Proceedings of the 4th International Conference on Industrial Application Engineering 2016, 438-442. https://doi.org/10.12792/iciae2016.079
  • Özer, A., & Görgülü, Z. (2021). Bir bilimsel derlemenin planlanması ve yazımı. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 23(3), 698-713. https://doi.org/10.17556/erziefd.819971
  • Qiu, L., Zhong, Y., Xie, Q., He, Z., Wang, X., Chen, Y., Zhan, C. A., & Pan, J. (2022). Multi-Modal Integration of EEG-fNIRS for Characterization of Brain Activity Evoked by Preferred Music. Frontiers in Neurorobotics, 16, 823435. https://doi.org/10.3389/fnbot.2022.823435
  • Rahman, J. S., Caldwell, S., Jones, R., & Gedeon, T. (2022). Brain Melody Interaction: Understanding Effects of Music on Cerebral Hemodynamic Responses. Multimodal Technologies and Interaction, 6(5), 35. https://doi.org/10.3390/mti6050035
  • Ren, H., Jiang, X., Meng, L., Lu, C., Wang, L., Dai, C., & Chen, W. (2022). fNIRS-Based Dynamic Functional Connectivity Reveals the Innate Musical Sensing Brain Networks in Preterm Infants. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 1806-1816. https://doi.org/10.1109/TNSRE.2022.3178078
  • Ren, H., Jiang, X., Xu, K., Zou, L., Wang, L., Lu, C., Liu, X., & Chen, W. (2019). Evaluation of the Effects of Mozart Music on Cerebral Hemodynamics in Preterm Infants. 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), 1-4. https://doi.org/10.1109/BIOCAS.2019.8919100
  • Ren, H., Zou, L., Wang, L., Lu, C., Yuan, Y., Dai, C., & Chen, W. (2021). Evaluation of the Short-Term Music Therapy on Brain Functions of Preterm Infants Using Functional Near-Infrared Spectroscopy. Frontiers in Neurology, 12, 649340. https://doi.org/10.3389/fneur.2021.649340
  • Santosa, H., Hong, M. J., & Hong, K.-S. (2014). Lateralization of music processing with noises in the auditory cortex: An fNIRS study. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00418
  • Sarinasadat, H., Hattori, Y., Miyake, Y., & Nozawa, T. (2019). Music Valence and Genre Influence Group Creativity. Içinde D. Harris (Ed.), Engineering Psychology and Cognitive Ergonomics (C. 11571, ss. 410-422). Springer International Publishing. https://doi.org/10.1007/978-3-030-22507-0_32
  • Scholkmann, F., Haslbeck, F., Oba, E., Restin, T., Ostojic, D., Kleiser, S., Verbiest, B. C. H., Zohdi, H., Wolf, U., Bassler, D., Bucher, H. U., Wolf, M., & Karen, T. (2024). Creative music therapy in preterm infants effects cerebrovascular oxygenation and perfusion. Scientific Reports, 14(1), 28249. https://doi.org/10.1038/s41598-024-75282-8
  • Shi, S., Wang, J., Wang, Y., Wang, H., Zhang, Q., & Qie, S. (2023). Effects of different types of visual music on the prefrontal hemodynamics of children with autism spectrum disorder based on functional near-infrared spectroscopy. Translational Pediatrics, 12(2), 162-171. https://doi.org/10.21037/tp-22-693
  • Sorkpor, S. K., Montero-Hernandez, S., Miao, H., Pollonini, L., & Ahn, H. (2023). Assessing the impact of preferred web app-based music-listening on pain processing at the central nervous level in older black adults with low back pain: An fNIRS study. Geriatric Nursing, 54, 135-143. https://doi.org/10.1016/j.gerinurse.2023.09.005
  • Suda, M., Morimoto, K., Obata, A., Koizumi, H., & Maki, A. (2008). Cortical responses to Mozart’s sonata enhance spatial-reasoning ability. Neurological Research, 30(9), 885-888. https://doi.org/10.1179/174313208X319143
  • Tachibana, A., Noah, J. A., Ono, Y., Irie, S., Tatsumoto, M., Taguchi, D., Tokuda, N., & Ueda, S. (2024). Rock music improvisation shows increased activity in Broca’s area and its right hemisphere homologue related to spontaneous creativity. BMC Research Notes, 17(1), 61. https://doi.org/10.1186/s13104-024-06727-6
  • Tachibana, A., Noah, J. A., Ono, Y., Taguchi, D., & Ueda, S. (2019). Prefrontal activation related to spontaneous creativity with rock music improvisation: A functional near-infrared spectroscopy study. Scientific Reports, 9(1), 16044. https://doi.org/10.1038/s41598-019-52348-6
  • Vanzella, P., Balardin, J. B., Furucho, R. A., Zimeo Morais, G. A., Braun Janzen, T., Sammler, D., & Sato, J. R. (2019). fNIRS Responses in Professional Violinists While Playing Duets: Evidence for Distinct Leader and Follower Roles at the Brain Level. Frontiers in Psychology, 10, 164. https://doi.org/10.3389/fpsyg.2019.00164
  • Yamada, Y., & Ono, Y. (2019). Detection of Music Preferences using Cerebral Blood Flow Signals. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 490-493. https://doi.org/10.1109/EMBC.2019.8856351
  • Yin, J., Xu, G., Xie, H., Liu, Y., Dou, Z., Shao, B., & Li, Z. (2024). Effects of different frequencies music on cortical responses and functional connectivity in patients with minimal conscious state. Journal of Biophotonics, 17(5), e202300427. https://doi.org/10.1002/jbio.202300427
  • Yıldırım, A. & Şimşek, H. (2011). Sosyal bilimlerde nitel araştırma yöntemleri. (8. Baskı). Seçkin Yayıncılık.
  • Zhang, J., Shi, P., Du, J., & Yu, H. (2023). A study based on functional near-infrared spectroscopy: Cortical responses to music interventions in patients with myofascial pain syndrome. Frontiers in Human Neuroscience, 17, 1119098. https://doi.org/10.3389/fnhum.2023.1119098
  • Zheng, M., Lin, H., & Chen, F. (2020). An fNIRS Study on the Effect of Music Style on Cognitive Activities. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 3200-3203. https://doi.org/10.1109/EMBC44109.2020.9176441
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Music Cognition, Musicology and Ethnomusicology, Music (Other)
Journal Section Reviews
Authors

Emin Abdülkadir Çolakoğlu 0000-0002-4022-6122

Publication Date August 25, 2025
Submission Date May 9, 2025
Acceptance Date May 30, 2025
Published in Issue Year 2025 Volume: 3 Issue: 2

Cite

APA Çolakoğlu, E. A. (2025). MÜZİĞİN BEYİN ÜZERİNDEKİ ETKİLERİ: fNIRS ÇALIŞMALARININ LİTERATÜR DERLEMESİ. LOKUM Sanat Ve Tasarım Dergisi, 3(2), 386-412.

12629082024145456.jpg
LOKUM Jounal of Art and Design - Karabuk University Safranbolu Fethi Toker Faculty of Fine Arts and Design
Phone: +90 370 418 96 68
E-mail: lokumstd@karabuk.edu.tr
Social media: 


88x31.png