Research Article

Modelling of the flotation process by Central Composite Design for obtaining superior grade feldspar

-
https://doi.org/10.30797/madencilik.1216734

Abstract

Feldspar is usually found in conjunction with titanium and iron minerals. Feldspar should be separated from other minerals by generally magnetic separation or/and flotation with high grade. However, due to the similarities in the properties, feldspars are difficult to separate from gangue minerals by flotation.

In this study, the degradability of iron was investigated by mica flotation, and Central Composite Design (CCD) was used to plan and analyze the results. During the study, the effect of solid ratio, pH, collector amount and airflow on the iron content and the yield of the obtained clean feldspar were modelled. Then, estimation of the optimum conditions and verification tests were performed. The iron content was reduced to 0.14% by mica flotation. However, this reduction amount was found to be insufficient. Finally, iron content was reduced to 0.05%. Considering that the maximum iron content of the superior grade feldspar is 0.1%, it can be said that two stage flotation is successful without different processes such as magnetic separation.

Supporting Institution

ESOGÜ BAP

Project Number

201715D18

Thanks

The authors would like to thank Eskisehir Osmangazi University, Scientific Research Project Commission (Project # 201715D18) for the financial support of this project.

References

  • References Aksoy D.O., Sagol, E. 2016. Application of central composite design method to coal flotation: Modelling, optimization and verification. Fuel 183, 609-616 doi:10.1016/j.fuel.2016.06.111
  • Aslan, N. 2007. Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a Multi-Gravity Separator for coal cleaning. Fuel 86(5), 769-776. doi:10.1016/j.fuel.2006.10.020
  • Aytar, P., Aksoy D.O., Toptas, Y., Çabuk, A., Koca, S., Koca, H. 2014. Isolation and characterization of native microorganism from Turkish lignite and usability at fungal desulphurization. Fuel 116, 634-641.doi:10.1016/j. fuel.2013.08.077
  • Bai, X., Wen, S.M., Liu, J., Lin, Y.L. 2018. Response Surface Methodology for Optimization of Copper Leaching from Refractory Flotation Tailings. Minerals 8(4), 165. doi:10.3390/min8040165
  • Celik, M.S., Pehlivanoglu, B., Aslanbas, A., Asmatulu, R. 2001. Flotation of colored impurities from feldspar ores. Mining Metall. & Explor. 18 (2), 101-105. doi:10.1007/BF03402879
  • Croarkin, C., Tobias, P. Engineering Statistics e-Handbook; http://www.itl. nist.gov/div898/handbook/. Accessed 5 October 2015.
  • Guerra, M.J.P., de Oliveira, E.C., Frota, M.N., Marques, R.P. 2018. Design of experiments for optimising acceptance calibration criteria for pressure and temperature transmitters of gas flowmeters. J. Nat. Gas Sci. Eng. 58, 26-33. doi:10.1016/j.jngse.2018.07.021
  • Gulgonul, I., Çelik, M.S. 2018. Understanding the flotation separation of Na and K feldspars in the presence of KCl through ion exchange and ion adsorption. Miner. Eng. 129, 41-46. doi:10.1016/j.mineng.2018.08.038
  • Güngör, G., Gedikli, S., Toptaş, Y., Akgün, D.E., Demirbilek, M., Yazıhan, N., Celik, P.A., Denkbaş, E.B., Cabuk, A. 2019. Bacterial hyaluronic acid production through an alternative extraction method and its characterization. J. Chem. Technol. Biotechnol. 94(6), 1843-1852 (2019) doi:10.1002/jctb.5957
  • Heyes, G.W., Allan, G.C., Bruckard, W.J., 2012. Sparrow GJ. Review of flotation of feldspar. Miner. Process. Extr. Metall. 121(2), 72-78. doi:10.117 9/1743285512Y.0000000004
  • Karimi, P., Abdollahi, H., Aslan, N., Noaparast, M., Shafaei, S.Z. 2010. Application of Response Surface Method and Central Composite Design for Modeling and Optimization of Gold and Silver Recovery in Cyanidation Process. Miner. Process Extr. Metall. Rev. 32 (1), 1-16. doi:10.1080/08 827508.2010.508828
  • Koca, S., Aksoy, D.O., Cabuk, A., Celik, P.A., Sagol, E., Toptaş, Y., Oluklulu, S., Koca, H. 2017. Evaluation of combined lignite cleaning processes, flotation and microbial treatment, and its modelling by Box Behnken methodology. Fuel 192, 178-186. doi:10.1016/j.fuel.2016.12.015
  • Larsen. E., Kleiv, R.A. 2016. Flotation of quartz from quartz-feldspar mixtures by the HF method. Miner. Eng. 98, 49-51. doi:10.1016/j.mineng. 2016.07.021
  • Larsen. E., Kleiv, R.A. 2017. Flotation of Metallurgical Grade Silicon and Silicon Metal from Slag by Selective Hydrogen Fluoride-Assisted Flotation. Metall. Mater. Trans. B. 48(6), 2859-2865. doi:10.1007/s11663- 017-1082-x
  • Mehrabani. J.V., Noaparast. M., Mousavi. S.M., Dehghan. R., Ghorbani. A. 2010. Process optimization and modelling of sphalerite flotation from a low-grade Zn-Pb ore using response surface methodology. Sep. Purif. Technol. 72(3), 242-249. doi:10.1016/j.seppur.2010.02.005
  • Oluklulu. S., Koca. S. 2018. Modeling some of the operational parameters of MGS for lignite cleaning by full factorial design methodology. Energy Sources, Part A: Recovery, Util. Environment Effects 40(12), 1520- 1531. doi:10.1080/15567036.2018.1477878
  • Onay. O., Koca. H. 2019. Modelling and optimization of the pyrolysis of low-rank lignite by central composite design (CCD) method. Int. J. Coal Prep. Util. 1-11. doi:10.1080/19392699.2019.1656201
  • Orhan. E.C., Bayraktar İ. 2006. Amine–oleate interactions in feldspar flotation. Miner. Eng. 19 (1), 48-55. doi:10.1016/j.mineng.2005.06.001
  • Sadhukhan. B., Mondal. N.K., Chattoraj. S. 2016. Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major. Karbala Int. J. Mod. Sci. 2(3) 145-155. doi:10.1016/j.kijoms.2016.03.005
  • Sahiner. M. 2017. Turkish Foreign Trade of Mine in 2016. Natural Resources and Economic Bulletin 24, 49-72.
  • Seyrankaya. A. 2003. Removal of mica and heavy minerals from albite of Mugla-Milas district by flotation. DEU Engineering Faculty Journal of Science and Engineering 5(3), 171-180.
  • Silva. A.C., Carolina. S.D., Sousa. D.N., Silva. E.M.S. 2019. Feldspar production from dimension stone tailings for application in the ceramic industry. J. Mater. Res. Technol. 8(1), 1-7 doi:10.1016/j.jmrt.2018.02.011
  • Sulaymonova. V.A., Fuchs. M.C., Gloaguen. R., Möckel. R., Merchel. S., Rudolph. M., Krbetschek. M. R. 2018. Feldspar flotation as a quartz-purification method in cosmogenic nuclide dating: A case study of fluvial sediments from the Pamir. MethodsX 5, 717-726. doi:10.1016/j. mex.2018.06.014
  • Tian. J., Xu. L., Deng. W., Jiang. H., Gao. Z., Hu. Y. 2017. Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system. Chem. Eng. Sci. 164, 99-107. doi:10.1016/j. ces.2017.02.013
  • Tian. J., Xu. L., Wu. H., Fang. S., Deng. T., Peng. T., Sun. W., Hu. Y. 2018. A novel approach for flotation recovery of spodumene, mica and feldspar from a lithium pegmatite ore. J. Clean. Prod. 174, 625-633. doi:10.1016/j. jclepro.2017.10.331
  • Wang. X.T., Wang. L.L., Li. X.Y., Xu. Y.P. 2016. Response surface methodology based optimization for degradation of align in Laminaria japonica feedstuff via fermentation by Bacillus in Apostichopus japonicas farming. Electron. J. Biotechnol. 22, 1-8. doi:10.1016/j.ejbt.2016.04.003 Wu. H., Tian. J., Xu. L., Fang. S., Zhang. Z., Chi. R. 2018. Flotation and adsorption of a new mixed anionic/cationic collector in the spodumene-feldspar system. Miner. Eng. 127, 42-47. doi:10.1016/j.mineng.2018.07.024 Xu. L., Tian. J., Wu. H., Deng. W., Yang. Y., Sun. W., Gao. Z., Hu, Y. 2017. New insights into the oleate flotation response of feldspar particles of different sizes: Anisotropic adsorption model. J. Colloid Interface Sci. 505, 500-508. doi:10.1016/j.jcis.2017.06.009 Zhang. Y., Hu. Y., Sun. N., Liu. R., Wang. Z., Wang. L., Sun. W. 2018. Systematic review of feldspar beneficiation and its comprehensive application. Miner. Eng. 128, 141-152. doi:10.1016/j.mineng.2018.08.043

-
https://doi.org/10.30797/madencilik.1216734

Abstract

Project Number

201715D18

References

  • References Aksoy D.O., Sagol, E. 2016. Application of central composite design method to coal flotation: Modelling, optimization and verification. Fuel 183, 609-616 doi:10.1016/j.fuel.2016.06.111
  • Aslan, N. 2007. Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a Multi-Gravity Separator for coal cleaning. Fuel 86(5), 769-776. doi:10.1016/j.fuel.2006.10.020
  • Aytar, P., Aksoy D.O., Toptas, Y., Çabuk, A., Koca, S., Koca, H. 2014. Isolation and characterization of native microorganism from Turkish lignite and usability at fungal desulphurization. Fuel 116, 634-641.doi:10.1016/j. fuel.2013.08.077
  • Bai, X., Wen, S.M., Liu, J., Lin, Y.L. 2018. Response Surface Methodology for Optimization of Copper Leaching from Refractory Flotation Tailings. Minerals 8(4), 165. doi:10.3390/min8040165
  • Celik, M.S., Pehlivanoglu, B., Aslanbas, A., Asmatulu, R. 2001. Flotation of colored impurities from feldspar ores. Mining Metall. & Explor. 18 (2), 101-105. doi:10.1007/BF03402879
  • Croarkin, C., Tobias, P. Engineering Statistics e-Handbook; http://www.itl. nist.gov/div898/handbook/. Accessed 5 October 2015.
  • Guerra, M.J.P., de Oliveira, E.C., Frota, M.N., Marques, R.P. 2018. Design of experiments for optimising acceptance calibration criteria for pressure and temperature transmitters of gas flowmeters. J. Nat. Gas Sci. Eng. 58, 26-33. doi:10.1016/j.jngse.2018.07.021
  • Gulgonul, I., Çelik, M.S. 2018. Understanding the flotation separation of Na and K feldspars in the presence of KCl through ion exchange and ion adsorption. Miner. Eng. 129, 41-46. doi:10.1016/j.mineng.2018.08.038
  • Güngör, G., Gedikli, S., Toptaş, Y., Akgün, D.E., Demirbilek, M., Yazıhan, N., Celik, P.A., Denkbaş, E.B., Cabuk, A. 2019. Bacterial hyaluronic acid production through an alternative extraction method and its characterization. J. Chem. Technol. Biotechnol. 94(6), 1843-1852 (2019) doi:10.1002/jctb.5957
  • Heyes, G.W., Allan, G.C., Bruckard, W.J., 2012. Sparrow GJ. Review of flotation of feldspar. Miner. Process. Extr. Metall. 121(2), 72-78. doi:10.117 9/1743285512Y.0000000004
  • Karimi, P., Abdollahi, H., Aslan, N., Noaparast, M., Shafaei, S.Z. 2010. Application of Response Surface Method and Central Composite Design for Modeling and Optimization of Gold and Silver Recovery in Cyanidation Process. Miner. Process Extr. Metall. Rev. 32 (1), 1-16. doi:10.1080/08 827508.2010.508828
  • Koca, S., Aksoy, D.O., Cabuk, A., Celik, P.A., Sagol, E., Toptaş, Y., Oluklulu, S., Koca, H. 2017. Evaluation of combined lignite cleaning processes, flotation and microbial treatment, and its modelling by Box Behnken methodology. Fuel 192, 178-186. doi:10.1016/j.fuel.2016.12.015
  • Larsen. E., Kleiv, R.A. 2016. Flotation of quartz from quartz-feldspar mixtures by the HF method. Miner. Eng. 98, 49-51. doi:10.1016/j.mineng. 2016.07.021
  • Larsen. E., Kleiv, R.A. 2017. Flotation of Metallurgical Grade Silicon and Silicon Metal from Slag by Selective Hydrogen Fluoride-Assisted Flotation. Metall. Mater. Trans. B. 48(6), 2859-2865. doi:10.1007/s11663- 017-1082-x
  • Mehrabani. J.V., Noaparast. M., Mousavi. S.M., Dehghan. R., Ghorbani. A. 2010. Process optimization and modelling of sphalerite flotation from a low-grade Zn-Pb ore using response surface methodology. Sep. Purif. Technol. 72(3), 242-249. doi:10.1016/j.seppur.2010.02.005
  • Oluklulu. S., Koca. S. 2018. Modeling some of the operational parameters of MGS for lignite cleaning by full factorial design methodology. Energy Sources, Part A: Recovery, Util. Environment Effects 40(12), 1520- 1531. doi:10.1080/15567036.2018.1477878
  • Onay. O., Koca. H. 2019. Modelling and optimization of the pyrolysis of low-rank lignite by central composite design (CCD) method. Int. J. Coal Prep. Util. 1-11. doi:10.1080/19392699.2019.1656201
  • Orhan. E.C., Bayraktar İ. 2006. Amine–oleate interactions in feldspar flotation. Miner. Eng. 19 (1), 48-55. doi:10.1016/j.mineng.2005.06.001
  • Sadhukhan. B., Mondal. N.K., Chattoraj. S. 2016. Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major. Karbala Int. J. Mod. Sci. 2(3) 145-155. doi:10.1016/j.kijoms.2016.03.005
  • Sahiner. M. 2017. Turkish Foreign Trade of Mine in 2016. Natural Resources and Economic Bulletin 24, 49-72.
  • Seyrankaya. A. 2003. Removal of mica and heavy minerals from albite of Mugla-Milas district by flotation. DEU Engineering Faculty Journal of Science and Engineering 5(3), 171-180.
  • Silva. A.C., Carolina. S.D., Sousa. D.N., Silva. E.M.S. 2019. Feldspar production from dimension stone tailings for application in the ceramic industry. J. Mater. Res. Technol. 8(1), 1-7 doi:10.1016/j.jmrt.2018.02.011
  • Sulaymonova. V.A., Fuchs. M.C., Gloaguen. R., Möckel. R., Merchel. S., Rudolph. M., Krbetschek. M. R. 2018. Feldspar flotation as a quartz-purification method in cosmogenic nuclide dating: A case study of fluvial sediments from the Pamir. MethodsX 5, 717-726. doi:10.1016/j. mex.2018.06.014
  • Tian. J., Xu. L., Deng. W., Jiang. H., Gao. Z., Hu. Y. 2017. Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system. Chem. Eng. Sci. 164, 99-107. doi:10.1016/j. ces.2017.02.013
  • Tian. J., Xu. L., Wu. H., Fang. S., Deng. T., Peng. T., Sun. W., Hu. Y. 2018. A novel approach for flotation recovery of spodumene, mica and feldspar from a lithium pegmatite ore. J. Clean. Prod. 174, 625-633. doi:10.1016/j. jclepro.2017.10.331
  • Wang. X.T., Wang. L.L., Li. X.Y., Xu. Y.P. 2016. Response surface methodology based optimization for degradation of align in Laminaria japonica feedstuff via fermentation by Bacillus in Apostichopus japonicas farming. Electron. J. Biotechnol. 22, 1-8. doi:10.1016/j.ejbt.2016.04.003 Wu. H., Tian. J., Xu. L., Fang. S., Zhang. Z., Chi. R. 2018. Flotation and adsorption of a new mixed anionic/cationic collector in the spodumene-feldspar system. Miner. Eng. 127, 42-47. doi:10.1016/j.mineng.2018.07.024 Xu. L., Tian. J., Wu. H., Deng. W., Yang. Y., Sun. W., Gao. Z., Hu, Y. 2017. New insights into the oleate flotation response of feldspar particles of different sizes: Anisotropic adsorption model. J. Colloid Interface Sci. 505, 500-508. doi:10.1016/j.jcis.2017.06.009 Zhang. Y., Hu. Y., Sun. N., Liu. R., Wang. Z., Wang. L., Sun. W. 2018. Systematic review of feldspar beneficiation and its comprehensive application. Miner. Eng. 128, 141-152. doi:10.1016/j.mineng.2018.08.043
There are 26 citations in total.

Details

Primary Language English
Subjects Mining Engineering
Authors

Derya Öz Aksoy 0000-0003-0604-3661

Bahri Öteyaka 0000-0002-5221-2414

Sabiha Koca 0000-0002-9115-0957

Project Number 201715D18
Publication Date
Submission Date December 12, 2022

Cite

APA Öz Aksoy, D., Öteyaka, B., & Koca, S. (n.d.). Modelling of the flotation process by Central Composite Design for obtaining superior grade feldspar. Bilimsel Madencilik Dergisi. https://doi.org/10.30797/madencilik.1216734
AMA Öz Aksoy D, Öteyaka B, Koca S. Modelling of the flotation process by Central Composite Design for obtaining superior grade feldspar. Madencilik. doi:10.30797/madencilik.1216734
Chicago Öz Aksoy, Derya, Bahri Öteyaka, and Sabiha Koca. “Modelling of the Flotation Process by Central Composite Design for Obtaining Superior Grade Feldspar”. Bilimsel Madencilik Dergisin.d. https://doi.org/10.30797/madencilik.1216734.
EndNote Öz Aksoy D, Öteyaka B, Koca S Modelling of the flotation process by Central Composite Design for obtaining superior grade feldspar. Bilimsel Madencilik Dergisi
IEEE D. Öz Aksoy, B. Öteyaka, and S. Koca, “Modelling of the flotation process by Central Composite Design for obtaining superior grade feldspar”, Madencilik, doi: 10.30797/madencilik.1216734.
ISNAD Öz Aksoy, Derya et al. “Modelling of the Flotation Process by Central Composite Design for Obtaining Superior Grade Feldspar”. Bilimsel Madencilik Dergisi. n.d. https://doi.org/10.30797/madencilik.1216734.
JAMA Öz Aksoy D, Öteyaka B, Koca S. Modelling of the flotation process by Central Composite Design for obtaining superior grade feldspar. Madencilik. doi:10.30797/madencilik.1216734.
MLA Öz Aksoy, Derya et al. “Modelling of the Flotation Process by Central Composite Design for Obtaining Superior Grade Feldspar”. Bilimsel Madencilik Dergisi, doi:10.30797/madencilik.1216734.
Vancouver Öz Aksoy D, Öteyaka B, Koca S. Modelling of the flotation process by Central Composite Design for obtaining superior grade feldspar. Madencilik.

22562 22561 22560 22590 22558