Modelling of the flotation process by Central Composite Design for obtaining superior grade feldspar
-
Derya Öz Aksoy
,
Bahri Öteyaka
,
Sabiha Koca
Abstract
Feldspar is usually found in conjunction with titanium and iron minerals. Feldspar should be separated from other minerals by generally magnetic separation or/and flotation with high grade. However, due to the similarities in the properties, feldspars are difficult to separate from gangue minerals by flotation.
In this study, the degradability of iron was investigated by mica flotation, and Central Composite Design (CCD) was used to plan and analyze the results. During the study, the effect of solid ratio, pH, collector amount and airflow on the iron content and the yield of the obtained clean feldspar were modelled. Then, estimation of the optimum conditions and verification tests were performed. The iron content was reduced to 0.14% by mica flotation. However, this reduction amount was found to be insufficient. Finally, iron content was reduced to 0.05%. Considering that the maximum iron content of the superior grade feldspar is 0.1%, it can be said that two stage flotation is successful without different processes such as magnetic separation.
Supporting Institution
ESOGÜ BAP
Thanks
The authors would like to thank Eskisehir Osmangazi University, Scientific Research Project Commission (Project # 201715D18) for the financial support of this project.
References
- References
Aksoy D.O., Sagol, E. 2016. Application of central composite design method
to coal flotation: Modelling, optimization and verification. Fuel 183,
609-616 doi:10.1016/j.fuel.2016.06.111
- Aslan, N. 2007. Application of response surface methodology and central
composite rotatable design for modeling the influence of some operating
variables of a Multi-Gravity Separator for coal cleaning. Fuel 86(5),
769-776. doi:10.1016/j.fuel.2006.10.020
- Aytar, P., Aksoy D.O., Toptas, Y., Çabuk, A., Koca, S., Koca, H. 2014. Isolation
and characterization of native microorganism from Turkish lignite and
usability at fungal desulphurization. Fuel 116, 634-641.doi:10.1016/j.
fuel.2013.08.077
- Bai, X., Wen, S.M., Liu, J., Lin, Y.L. 2018. Response Surface Methodology for
Optimization of Copper Leaching from Refractory Flotation Tailings.
Minerals 8(4), 165. doi:10.3390/min8040165
- Celik, M.S., Pehlivanoglu, B., Aslanbas, A., Asmatulu, R. 2001. Flotation of
colored impurities from feldspar ores. Mining Metall. & Explor. 18 (2),
101-105. doi:10.1007/BF03402879
- Croarkin, C., Tobias, P. Engineering Statistics e-Handbook; http://www.itl.
nist.gov/div898/handbook/. Accessed 5 October 2015.
- Guerra, M.J.P., de Oliveira, E.C., Frota, M.N., Marques, R.P. 2018. Design of experiments
for optimising acceptance calibration criteria for pressure
and temperature transmitters of gas flowmeters. J. Nat. Gas Sci. Eng.
58, 26-33. doi:10.1016/j.jngse.2018.07.021
- Gulgonul, I., Çelik, M.S. 2018. Understanding the flotation separation of Na
and K feldspars in the presence of KCl through ion exchange and ion adsorption.
Miner. Eng. 129, 41-46. doi:10.1016/j.mineng.2018.08.038
- Güngör, G., Gedikli, S., Toptaş, Y., Akgün, D.E., Demirbilek, M., Yazıhan, N.,
Celik, P.A., Denkbaş, E.B., Cabuk, A. 2019. Bacterial hyaluronic acid
production through an alternative extraction method and its characterization.
J. Chem. Technol. Biotechnol. 94(6), 1843-1852 (2019)
doi:10.1002/jctb.5957
- Heyes, G.W., Allan, G.C., Bruckard, W.J., 2012. Sparrow GJ. Review of flotation
of feldspar. Miner. Process. Extr. Metall. 121(2), 72-78. doi:10.117
9/1743285512Y.0000000004
- Karimi, P., Abdollahi, H., Aslan, N., Noaparast, M., Shafaei, S.Z. 2010. Application
of Response Surface Method and Central Composite Design for
Modeling and Optimization of Gold and Silver Recovery in Cyanidation
Process. Miner. Process Extr. Metall. Rev. 32 (1), 1-16. doi:10.1080/08
827508.2010.508828
- Koca, S., Aksoy, D.O., Cabuk, A., Celik, P.A., Sagol, E., Toptaş, Y., Oluklulu,
S., Koca, H. 2017. Evaluation of combined lignite cleaning processes,
flotation and microbial treatment, and its modelling by Box Behnken
methodology. Fuel 192, 178-186. doi:10.1016/j.fuel.2016.12.015
- Larsen. E., Kleiv, R.A. 2016. Flotation of quartz from quartz-feldspar mixtures
by the HF method. Miner. Eng. 98, 49-51. doi:10.1016/j.mineng.
2016.07.021
- Larsen. E., Kleiv, R.A. 2017. Flotation of Metallurgical Grade Silicon and
Silicon Metal from Slag by Selective Hydrogen Fluoride-Assisted Flotation.
Metall. Mater. Trans. B. 48(6), 2859-2865. doi:10.1007/s11663-
017-1082-x
- Mehrabani. J.V., Noaparast. M., Mousavi. S.M., Dehghan. R., Ghorbani. A.
2010. Process optimization and modelling of sphalerite flotation from
a low-grade Zn-Pb ore using response surface methodology. Sep. Purif.
Technol. 72(3), 242-249. doi:10.1016/j.seppur.2010.02.005
- Oluklulu. S., Koca. S. 2018. Modeling some of the operational parameters
of MGS for lignite cleaning by full factorial design methodology. Energy
Sources, Part A: Recovery, Util. Environment Effects 40(12), 1520-
1531. doi:10.1080/15567036.2018.1477878
- Onay. O., Koca. H. 2019. Modelling and optimization of the pyrolysis of
low-rank lignite by central composite design (CCD) method. Int. J. Coal
Prep. Util. 1-11. doi:10.1080/19392699.2019.1656201
- Orhan. E.C., Bayraktar İ. 2006. Amine–oleate interactions in feldspar flotation.
Miner. Eng. 19 (1), 48-55. doi:10.1016/j.mineng.2005.06.001
- Sadhukhan. B., Mondal. N.K., Chattoraj. S. 2016. Optimisation using central
composite design (CCD) and the desirability function for sorption of
methylene blue from aqueous solution onto Lemna major. Karbala Int.
J. Mod. Sci. 2(3) 145-155. doi:10.1016/j.kijoms.2016.03.005
- Sahiner. M. 2017. Turkish Foreign Trade of Mine in 2016. Natural Resources
and Economic Bulletin 24, 49-72.
- Seyrankaya. A. 2003. Removal of mica and heavy minerals from albite of
Mugla-Milas district by flotation. DEU Engineering Faculty Journal of
Science and Engineering 5(3), 171-180.
- Silva. A.C., Carolina. S.D., Sousa. D.N., Silva. E.M.S. 2019. Feldspar production
from dimension stone tailings for application in the ceramic industry.
J. Mater. Res. Technol. 8(1), 1-7 doi:10.1016/j.jmrt.2018.02.011
- Sulaymonova. V.A., Fuchs. M.C., Gloaguen. R., Möckel. R., Merchel. S., Rudolph.
M., Krbetschek. M. R. 2018. Feldspar flotation as a quartz-purification
method in cosmogenic nuclide dating: A case study of fluvial
sediments from the Pamir. MethodsX 5, 717-726. doi:10.1016/j.
mex.2018.06.014
- Tian. J., Xu. L., Deng. W., Jiang. H., Gao. Z., Hu. Y. 2017. Adsorption mechanism
of new mixed anionic/cationic collectors in a spodumene-feldspar
flotation system. Chem. Eng. Sci. 164, 99-107. doi:10.1016/j.
ces.2017.02.013
- Tian. J., Xu. L., Wu. H., Fang. S., Deng. T., Peng. T., Sun. W., Hu. Y. 2018. A novel
approach for flotation recovery of spodumene, mica and feldspar from
a lithium pegmatite ore. J. Clean. Prod. 174, 625-633. doi:10.1016/j.
jclepro.2017.10.331
- Wang. X.T., Wang. L.L., Li. X.Y., Xu. Y.P. 2016. Response surface methodology
based optimization for degradation of align in Laminaria japonica feedstuff
via fermentation by Bacillus in Apostichopus japonicas farming.
Electron. J. Biotechnol. 22, 1-8. doi:10.1016/j.ejbt.2016.04.003
Wu. H., Tian. J., Xu. L., Fang. S., Zhang. Z., Chi. R. 2018. Flotation and adsorption
of a new mixed anionic/cationic collector in the spodumene-feldspar
system. Miner. Eng. 127, 42-47. doi:10.1016/j.mineng.2018.07.024
Xu. L., Tian. J., Wu. H., Deng. W., Yang. Y., Sun. W., Gao. Z., Hu, Y. 2017. New
insights into the oleate flotation response of feldspar particles of different
sizes: Anisotropic adsorption model. J. Colloid Interface Sci. 505,
500-508. doi:10.1016/j.jcis.2017.06.009
Zhang. Y., Hu. Y., Sun. N., Liu. R., Wang. Z., Wang. L., Sun. W. 2018. Systematic
review of feldspar beneficiation and its comprehensive application.
Miner. Eng. 128, 141-152. doi:10.1016/j.mineng.2018.08.043
-
Derya Öz Aksoy
,
Bahri Öteyaka
,
Sabiha Koca
References
- References
Aksoy D.O., Sagol, E. 2016. Application of central composite design method
to coal flotation: Modelling, optimization and verification. Fuel 183,
609-616 doi:10.1016/j.fuel.2016.06.111
- Aslan, N. 2007. Application of response surface methodology and central
composite rotatable design for modeling the influence of some operating
variables of a Multi-Gravity Separator for coal cleaning. Fuel 86(5),
769-776. doi:10.1016/j.fuel.2006.10.020
- Aytar, P., Aksoy D.O., Toptas, Y., Çabuk, A., Koca, S., Koca, H. 2014. Isolation
and characterization of native microorganism from Turkish lignite and
usability at fungal desulphurization. Fuel 116, 634-641.doi:10.1016/j.
fuel.2013.08.077
- Bai, X., Wen, S.M., Liu, J., Lin, Y.L. 2018. Response Surface Methodology for
Optimization of Copper Leaching from Refractory Flotation Tailings.
Minerals 8(4), 165. doi:10.3390/min8040165
- Celik, M.S., Pehlivanoglu, B., Aslanbas, A., Asmatulu, R. 2001. Flotation of
colored impurities from feldspar ores. Mining Metall. & Explor. 18 (2),
101-105. doi:10.1007/BF03402879
- Croarkin, C., Tobias, P. Engineering Statistics e-Handbook; http://www.itl.
nist.gov/div898/handbook/. Accessed 5 October 2015.
- Guerra, M.J.P., de Oliveira, E.C., Frota, M.N., Marques, R.P. 2018. Design of experiments
for optimising acceptance calibration criteria for pressure
and temperature transmitters of gas flowmeters. J. Nat. Gas Sci. Eng.
58, 26-33. doi:10.1016/j.jngse.2018.07.021
- Gulgonul, I., Çelik, M.S. 2018. Understanding the flotation separation of Na
and K feldspars in the presence of KCl through ion exchange and ion adsorption.
Miner. Eng. 129, 41-46. doi:10.1016/j.mineng.2018.08.038
- Güngör, G., Gedikli, S., Toptaş, Y., Akgün, D.E., Demirbilek, M., Yazıhan, N.,
Celik, P.A., Denkbaş, E.B., Cabuk, A. 2019. Bacterial hyaluronic acid
production through an alternative extraction method and its characterization.
J. Chem. Technol. Biotechnol. 94(6), 1843-1852 (2019)
doi:10.1002/jctb.5957
- Heyes, G.W., Allan, G.C., Bruckard, W.J., 2012. Sparrow GJ. Review of flotation
of feldspar. Miner. Process. Extr. Metall. 121(2), 72-78. doi:10.117
9/1743285512Y.0000000004
- Karimi, P., Abdollahi, H., Aslan, N., Noaparast, M., Shafaei, S.Z. 2010. Application
of Response Surface Method and Central Composite Design for
Modeling and Optimization of Gold and Silver Recovery in Cyanidation
Process. Miner. Process Extr. Metall. Rev. 32 (1), 1-16. doi:10.1080/08
827508.2010.508828
- Koca, S., Aksoy, D.O., Cabuk, A., Celik, P.A., Sagol, E., Toptaş, Y., Oluklulu,
S., Koca, H. 2017. Evaluation of combined lignite cleaning processes,
flotation and microbial treatment, and its modelling by Box Behnken
methodology. Fuel 192, 178-186. doi:10.1016/j.fuel.2016.12.015
- Larsen. E., Kleiv, R.A. 2016. Flotation of quartz from quartz-feldspar mixtures
by the HF method. Miner. Eng. 98, 49-51. doi:10.1016/j.mineng.
2016.07.021
- Larsen. E., Kleiv, R.A. 2017. Flotation of Metallurgical Grade Silicon and
Silicon Metal from Slag by Selective Hydrogen Fluoride-Assisted Flotation.
Metall. Mater. Trans. B. 48(6), 2859-2865. doi:10.1007/s11663-
017-1082-x
- Mehrabani. J.V., Noaparast. M., Mousavi. S.M., Dehghan. R., Ghorbani. A.
2010. Process optimization and modelling of sphalerite flotation from
a low-grade Zn-Pb ore using response surface methodology. Sep. Purif.
Technol. 72(3), 242-249. doi:10.1016/j.seppur.2010.02.005
- Oluklulu. S., Koca. S. 2018. Modeling some of the operational parameters
of MGS for lignite cleaning by full factorial design methodology. Energy
Sources, Part A: Recovery, Util. Environment Effects 40(12), 1520-
1531. doi:10.1080/15567036.2018.1477878
- Onay. O., Koca. H. 2019. Modelling and optimization of the pyrolysis of
low-rank lignite by central composite design (CCD) method. Int. J. Coal
Prep. Util. 1-11. doi:10.1080/19392699.2019.1656201
- Orhan. E.C., Bayraktar İ. 2006. Amine–oleate interactions in feldspar flotation.
Miner. Eng. 19 (1), 48-55. doi:10.1016/j.mineng.2005.06.001
- Sadhukhan. B., Mondal. N.K., Chattoraj. S. 2016. Optimisation using central
composite design (CCD) and the desirability function for sorption of
methylene blue from aqueous solution onto Lemna major. Karbala Int.
J. Mod. Sci. 2(3) 145-155. doi:10.1016/j.kijoms.2016.03.005
- Sahiner. M. 2017. Turkish Foreign Trade of Mine in 2016. Natural Resources
and Economic Bulletin 24, 49-72.
- Seyrankaya. A. 2003. Removal of mica and heavy minerals from albite of
Mugla-Milas district by flotation. DEU Engineering Faculty Journal of
Science and Engineering 5(3), 171-180.
- Silva. A.C., Carolina. S.D., Sousa. D.N., Silva. E.M.S. 2019. Feldspar production
from dimension stone tailings for application in the ceramic industry.
J. Mater. Res. Technol. 8(1), 1-7 doi:10.1016/j.jmrt.2018.02.011
- Sulaymonova. V.A., Fuchs. M.C., Gloaguen. R., Möckel. R., Merchel. S., Rudolph.
M., Krbetschek. M. R. 2018. Feldspar flotation as a quartz-purification
method in cosmogenic nuclide dating: A case study of fluvial
sediments from the Pamir. MethodsX 5, 717-726. doi:10.1016/j.
mex.2018.06.014
- Tian. J., Xu. L., Deng. W., Jiang. H., Gao. Z., Hu. Y. 2017. Adsorption mechanism
of new mixed anionic/cationic collectors in a spodumene-feldspar
flotation system. Chem. Eng. Sci. 164, 99-107. doi:10.1016/j.
ces.2017.02.013
- Tian. J., Xu. L., Wu. H., Fang. S., Deng. T., Peng. T., Sun. W., Hu. Y. 2018. A novel
approach for flotation recovery of spodumene, mica and feldspar from
a lithium pegmatite ore. J. Clean. Prod. 174, 625-633. doi:10.1016/j.
jclepro.2017.10.331
- Wang. X.T., Wang. L.L., Li. X.Y., Xu. Y.P. 2016. Response surface methodology
based optimization for degradation of align in Laminaria japonica feedstuff
via fermentation by Bacillus in Apostichopus japonicas farming.
Electron. J. Biotechnol. 22, 1-8. doi:10.1016/j.ejbt.2016.04.003
Wu. H., Tian. J., Xu. L., Fang. S., Zhang. Z., Chi. R. 2018. Flotation and adsorption
of a new mixed anionic/cationic collector in the spodumene-feldspar
system. Miner. Eng. 127, 42-47. doi:10.1016/j.mineng.2018.07.024
Xu. L., Tian. J., Wu. H., Deng. W., Yang. Y., Sun. W., Gao. Z., Hu, Y. 2017. New
insights into the oleate flotation response of feldspar particles of different
sizes: Anisotropic adsorption model. J. Colloid Interface Sci. 505,
500-508. doi:10.1016/j.jcis.2017.06.009
Zhang. Y., Hu. Y., Sun. N., Liu. R., Wang. Z., Wang. L., Sun. W. 2018. Systematic
review of feldspar beneficiation and its comprehensive application.
Miner. Eng. 128, 141-152. doi:10.1016/j.mineng.2018.08.043