Review
BibTex RIS Cite

Memeli hücrelerinde otofajinin moleküler mekanizması

Year 2017, Volume: 5 Issue: 2, 205 - 218, 25.12.2017
https://doi.org/10.24998/maeusabed.355164

Abstract

Mayadan insana kadar
evrimsel olarak korunmuş bir mekanizma olan makrootofaji (bundan sonra otofaji),
hücreleri açlıktan ve buna bağlı streslerden korumakta ve makromolekülleri
enerji sağlamak için kullanılabilecek olan yapı taşlarına indirgemektedir.
Otofaji, bir parça sitoplazma yığınını, organelleri (örneğin mitokondri ve
peroksizomlar), agregat oluşturmaya eğilim gösteren proteinleri ve enfeksiyöz
ajanları otofagozomlar olarak adlandırılan çift-membranlı veziküllerle
lizozomlara taşıyan hücre içi degredasyon yoludur. Memeli sistemi üzerine
yapılan çalışmalar, sağlık ve hastalıkta otofajinin diğer önemli rollerini
göstermiştir.
Klinik öncesi hem
nörodejeneratif hem de enfeksiyöz hastalıklarla ilgili hayvan modellerinde
yapılan araştırmalar, otofaji upregülasyonunun, demans formları (tau'nun neden
olduğu), Parkinson hastalığı (α-sinüklein) ve Huntington hastalığı (mutant
huntingtin) gibi çeşitli nörodejeneratif hastalıklara neden olan agregata
eğilimli intrasitoplazmik proteinlerin degradasyonunda; Salmonella typhi ve Mycobacterium
tuberculosis
gibi patojenik ajanlardan kaynaklanan belli bulaşıcı hastalıklara
karşı korunmada önemli bir rol oynadığını göstermiştir. Fare hematopoietik kök
hücrelerin (HSCs) devamlılığının sürdürülmesinde gerekliliği vurgulanan
otofaji, fonksiyonelliği bozulduğunda HSC'leri normalden pre-lökemik bir duruma
geçirmektedir. Mutasyonlar veya önemli otofaji regülatörlerinin ifadelerinin
azalması nedeniyle otofajik aktivitede gerçekleşen düşüş, pre-lösemi gelişimini
desteklerken, bu mekanizmanın tedavide kullanılan ajanlarla yeniden
etkinleştirilmesi hastalığın nüksetmesine yol açmaktadır. Otofaji aktivasyon
düzeyi, kanser progresyonu ile anabolik ve katabolik işlemlerde üstlendiği
rollerden dolayı obezite ve metabolik hastalıklarda önemli rol oynamaktadır.
Otofajinin sağlıkta ve çeşitli hastalıkların patogenezindeki moleküler
mekanizmalarına ilişkin çalışmaların sayısı gün geçtikçe artmaktadır. Bu
derlemede, memeli hücrelerinde gerçekleşen otofaji ve moleküler mekanizması
hakkında genel bir bakış sunulması ve bilgi verilmesi amaçlanmıştır.

References

  • 1. Al Rawi S, Louvet-Vallee S, Djeddi, A, Sachse M, Culetto E, Hajjar C, Boyd, L, Legouis, R, and Galy V. 2011. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science. 334: 1144-1147.
  • 2. Anding AL, Baehrecke EH. 2017. Cleaning house: selective autophagy of organelles. Developmental Cell.41(1): 10-22.
  • 3. Antonucci L, Fagman JB, Kim JY, ve ark. 2015. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc. Natl. Acad. Sci. USA.112(45): 6166–6174.
  • 4. Axe EL, Walker SA, Manifava M, ve ark. 2008. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182:685-701.
  • 5. Barnard RA, Wittenburg LA, Amaravadi RK, ve ark. 2014. Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. Autophagy. 10:1415–1425.
  • 6. Bento C, Renna M, Ghislat G, ve ark. 2016. Mammalian autophagy: how does ıt work? Annu. Rev. Biochem. 85: 685–713.
  • 7. Biazik J, Yla-Anttila P, Vihinen H, ve ark. 2015. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy. 11: 439-51.
  • 8. Brandstaetter H, Kishi-Itakura C, Tumbarello DA, ve ark. 2014. Loss of functional MYO1C/ myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion. Autophagy. 10: 2310-23.
  • 9. Cook KL, Warri A, Soto-Pantoja DR, Clarke PA, ve ark. 2014. Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER+ breast cancer. Clin. Cancer Res. 20: 3222–3232.
  • 10. Cheng XT, Zhou B, Lin MY, ve ark. 2015. Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes. J. Cell Biol. 209:377-86. 11. Chude CI, Amaravadi RK. 2017. Targeting autophagy in cancer: update on clinical trials and novel inhibitors. Int. J. Mol. Sci. 18(6): 1279.
  • 12. Davis S, Wang J, Ferro-Novick S. 2017. Crosstalk between the secretory and autophagy pathways regulates autophagosome formation. Dev. Cell. 41: 23-32.
  • 13. Diao JJ, Liu R, Rong YG, ve ark. 2015. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature. 520: 563-566.
  • 14. Di Bartolomeo S, Nazio F, Cecconi F. 2010. The role of autophagy during development in higher eukaryotes. Traffic. 11(10): 1280–1289.
  • 15. Donohue E, Thomas A, Maurer N, ve ark. 2013. The autophagy inhibitor verteporfin moderately enhances the antitumor activity of gemcitabine in a pancreatic ductal adenocarcinoma model. J. Cancer. 4: 585–596.
  • 16. Dooley HC, Razi M, Polson HE, ve ark. 2014. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12–5-16L1. Molecular cell. 55: 238-52.
  • 17. Fass E, Shvets E, Degani I, ve ark. 2006.Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J. Biol. Chem. 281: 36303-16.
  • 18. Fu D, Zhou J, Zhu WS,ve ark. 2014. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat. Chem. 6: 614–622.
  • 19. Gao M, Monian P, Pan Q,ve ark. 2016. Ferroptosis is an autophagic cell death process. Cell Res. Microb. 5(6): 527–549.
  • 20. Ge L, Melville D, Zhang M, ve ark. 2013. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. eLife. 2: e00947.
  • 21. Goldberg SB, Supko JG, Neal JW, ve ark. 2012. A phase I study of erlotinib and hydroxychloroquine in advanced non-small-cell lung cancer. J. Thorac. Oncol. 7: 1602–1608.
  • 22. Hamasaki M, Furuta N, Matsuda A, ve ark. 2013. Autophagosomes form at ER-mitochondria contact sites. Nature. 495: 389-393.
  • 23. Hao F, Itoh T, Morita E, ve ark. 2016. The PtdIns3-phosphatase MTMR3 interacts with mTORC1 and suppresses its activity. FEBS Lett. 590: 161–173.
  • 24. He C, Klionsky D. 2009. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43: 67–93
  • 25. Heuser J.1989. Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH. J. Cell Bio. 108: 855-64.
  • 26. Itakura E, Kishi C, Inoue K, ve ark. 2008. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell. 19: 5360-5372.
  • 27. Itakura E, Kishi-Itakura C, Mizushima N. 2012. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 151: 1256-1269. 28. Jahreiss L, Menzies FM, Rubinsztein DC. 2008. The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic. 9: 574-87. 29. Johansen T, Lamark T. 2011. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 7: 279–296.
  • 30. Kabeya Y, Mizushima N, Ueno T, Yamamoto A,ve ark. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19: 5720-5728.
  • 31. Karanasios E, Walker SA, Okkenhaug H, ve ark. 2016. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat. Commun. 7: 12420.
  • 32. Khaminets A, Behl C, Dikic I. 2016. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26(1): 6–16.
  • 33. Kihara A, Noda T, Ishihara N, ve ark. 2001. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152: 519–530.
  • 34. Kimura T, Jia J, Claude-Taupin A, ve ark. 2017. Cellular and molecular mechanism for secretory autophagy .Autophagy. 13(6): 1084-1085.
  • 35. Kim YC, Guan KL. 2015. Mtor: A pharmacologic target for autophagy regulation. J. Clin. Investig. 125: 25–32.
  • 36. Knaevelsrud H, Soreng K, Raiborg C, ve ark. 2013. Membrane remodeling by the PX-BAR protein SNX18 promotes autophagosome formation. J. Cell Biol. 202: 331–349.
  • 37. Kraft C, Kijanska M, Kalie E, ve ark. 2012. Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J. 31: 3691–3703.
  • 38. Kraft C, Martens S. 2012. Mechanisms and regulation of autophagosome formation. Curr. Opin. Cell Biol. 24: 496-501.
  • 39. Lamb CA, Yoshimori T, Tooze SA. 2013. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14: 759-774.
  • 40. Lamb CA, Nuhlen S, Judith D, ve ark. 2016. TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic. EMBO J. 35: 281-301.
  • 41. Liu Y, Levine B. 2015. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ. 22(3): 367–376.
  • 42. Longatti A, Lamb CA, Razi M, ve ark. 2012. TBC1D14 regulates autophagosome formation via Rab11 and recycling endosomes. J. Cell Biol. 197: 659-75.
  • 43. Manic G, Obrist F, Kroemer G, ve ark. 2014. Chloroquine and hydroxychloroquine for cancer therapy. Mol. Cell. Oncol. 1: e29911.
  • 44. Marino G, Niso-Santano M, Baehrecke EH, ve ark. 2014. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15(2): 81–94.
  • 45. Mari M, Griffith J, Rieter E, ve ark. 2010. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol. 190: 1005-22.
  • 46. Matsunaga K, Saitoh T, Tabata K,ve ark. 2009. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11: 385–396.
  • 47. Mizushima N, Yoshimori T, Ohsumi Y. 2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27: 107-132.
  • 48. Mizushima N, Komatsu M. 2011.Autophagy: renovation of cells and tissues. Cell. 147: 728-741.
  • 49. Moreau K, Ravikumar B, Renna M, ve ark. 2011. Autophagosome precursor maturation requires homotypic fusion. Cell. 146: 303–317.
  • 50. Morozova K, Sridhar S, Zolla V, ve ark. 2015. Annexin A2 promotes phagophore assembly by enhancing Atg16L (+) vesicle biogenesis and homotypic fusion. Nat. Commun. 6: 5856.
  • 51. Morris DH, Yip CK, Shi Y. 2015. Beclin 1-Vps34 complex architecture: understanding the nuts and bolts of therapeutic targets. Front. Biol. 10: 398–426.
  • 52. Mortensen M, Ferguson DJ, Edelmann M,ve ark. 2010. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc. Natl. Acad. Sci. USA. 107(2): 832–837.
  • 53. Nakamura S, Yoshimori T. 2017. New insights into autophagosome–lysosome fusion.J. Cell Sci. 1209-1216.
  • 54. Noda T. 2017. Regulation of autophagy through TORC1 and mTORC, biomolecules. 7(3): 52.
  • 55. Ozpolat B, Benbrook DM. 2015. Targeting autophagy in cancer management- strategies and developments. Cancer Manag. Res. 7: 291–299.
  • 56. Pellegrini P, Strambi A, Zipoli C,ve ark. 2014. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy. 10: 562–571.
  • 57. Puri C, Renna M, Bento CF, ve ark. 2013. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell. 154: 1285–1299.
  • 58. Ravikumar B, Acevedo-Arozena A, Imarisio S, ve ark. 2005. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat. Genet. 37: 771-6.
  • 59. Ravikumar B, Moreau K, Jahreiss L, ve ark. 2010. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12: 747–757.
  • 60. Reggiori F, Ungermann C. 2017. Autophagosome maturation and fusion. Journal of Molecular Biology. 429(4): 486-496.
  • 61. Rieder SE, Emr SD. 1997. A novel ring finger protein complex essential for a late step in protein transport to the yeast vacuole. Mol. Biol. Cell. 8: 2307-27.
  • 62. Rubinsztein DC, Marino G, Kroemer G. 2011. Autophagy and aging. Cell. 146(5): 682–695.
  • 63. Russell RC, Yuan HX, Guan KL. 2014. Autophagy regulation by nutrient signaling. Cell Res. 24: 42–57.
  • 64. Russell RC, Tian Y, Yuan H, ve ark. 2013. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15: 741–750.
  • 65. Sato M. and Sato K. 2011. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science. 334: 1141-1144.
  • 66. Seals DF, Eitzen G, Margolis N. 2000. A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc. Natl. Acad. Sci. 97: 9402-7.
  • 67. Shuhei Nakamura S., Tamotsu Yoshimori T. 2017. New insights into autophagosome–lysosome fusion. J. Cell Sci. 1209-1216.
  • 68. Shi TT, Yu XX, Yan LJ, ve ark. 2017. Research progress of hydroxychloroquine and autophagy inhibitors on cancer. Cancer Chemother. Pharmacol. 79: 287–294.
  • 69. Song WH, Yi YJ, Sutovsky M, ve ark. 2016. Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc. Natl. Acad. Sci. 113(36): e526-570
  • 70. Steegmaier M, Yang B, Yoo JS, ve ark. 1998. Three novel proteins of the Syntaxin/SNAP-25 family. Journal of Biological Chemistry. 273: 34171-9.
  • 71. Stitzel ML, Seydoux G. 2007. Regulation of the oocyte-to-zygote transition. Science. 316(5823): 407–408.
  • 72. Sui X, Chen R, Wang Z,ve ark. 2013. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis. 4: e838.
  • 73. Suzuki H, Osawa T, FujiokaY, ve ark. 2017. Structural biology of the core autophagy machinery, Current Opinion in Structural Biology. 43: 10-17.
  • 74. Taguchi-Atarashi N, Hamasaki M, Matsunaga K, ve ark. 2010. Modulation of local PtdIns3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy. Traffic. 11: 468–478.
  • 75. Takats S, Nagy P, Varga A, ve ark. 2013. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol. 201: 531-539.
  • 76. Takats S, Pircs K, Nagy P, ve ark. 2014. Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila.Mol. Biol. Cell. 25: 1338 - 54 .
  • 77. Takahashi Y, Tsotakos N, Liu Y, ve ark. 2016. The Bif-1-Dynamin 2 membrane fission machinery regulates Atg9-containing vesicle generation at the Rab11-positive reservoirs. Oncotarget. 7(15): 20855-68
  • 78. Tanida I, Minematsu-Ikeguchi N, Ueno T, ve ark. 2005. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy. 1: 84–91.
  • 79. Tsuboyama K, Koyama-Honda I, Sakamaki Y, ve ark. 2016. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science. 354: 1036-41.
  • 80. Tumbarello DA, Waxse BJ, Arden SD, ve ark. 2012. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat. Cell Biol. 14: 1024-35.
  • 81. Yamamoto H, Kakuta S, Watanabe TM, ve ark. 2012. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198: 219-33.
  • 82. Yang Z, Huang J, Geng J, ve ark. 2006. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol. Biol. Cell. 17: 5094–104.
  • 83. Yoshida GJ. 2017. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. J. Hematol. Oncol. 10: 67.
  • 84. Yu L, Chen Y, Tooze SA. 2017. Autophagy pathway: cellular and molecular mechanisms. Autophagy. Received 15 May.
  • 85. Yu L, McPhee CK, Zheng L, ve ark. 2010. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 465: 942-6.
  • 86. Zhangyuan Y, Pascual C, Klionsky DJ. 2017. Autophagy: machinery and regulation. Microb. Cell.Dec 5: 3(12): 588–596.
  • 87. Wang Y, Peng RQ, Li DD, ve ark. 2011. Chloroquine enhances the cytotoxicity of topotecan by inhibiting autophagy in lung cancer cells. Chin. J. Cancer. 30: 690–700.
  • 88. White E. 2012. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer. 12: 401–410.
  • 89. Wurmser AE, Sato TK, Emr SD. 2000. New component of the vacuolar class C-Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion. J. Cell Biol. 151: 551-62.
  • 90. Wang J, Davis S, Zhu M, ve ark. 2017. Autophagosome formation: Where the secretory and autophagy pathways meet. Autophagy. 13(5): 973–974.
  • 91. Webber JL, Tooze SA. 2009. Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP. EMBO J. 29: 27-40.
Year 2017, Volume: 5 Issue: 2, 205 - 218, 25.12.2017
https://doi.org/10.24998/maeusabed.355164

Abstract

References

  • 1. Al Rawi S, Louvet-Vallee S, Djeddi, A, Sachse M, Culetto E, Hajjar C, Boyd, L, Legouis, R, and Galy V. 2011. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science. 334: 1144-1147.
  • 2. Anding AL, Baehrecke EH. 2017. Cleaning house: selective autophagy of organelles. Developmental Cell.41(1): 10-22.
  • 3. Antonucci L, Fagman JB, Kim JY, ve ark. 2015. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc. Natl. Acad. Sci. USA.112(45): 6166–6174.
  • 4. Axe EL, Walker SA, Manifava M, ve ark. 2008. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182:685-701.
  • 5. Barnard RA, Wittenburg LA, Amaravadi RK, ve ark. 2014. Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. Autophagy. 10:1415–1425.
  • 6. Bento C, Renna M, Ghislat G, ve ark. 2016. Mammalian autophagy: how does ıt work? Annu. Rev. Biochem. 85: 685–713.
  • 7. Biazik J, Yla-Anttila P, Vihinen H, ve ark. 2015. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy. 11: 439-51.
  • 8. Brandstaetter H, Kishi-Itakura C, Tumbarello DA, ve ark. 2014. Loss of functional MYO1C/ myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion. Autophagy. 10: 2310-23.
  • 9. Cook KL, Warri A, Soto-Pantoja DR, Clarke PA, ve ark. 2014. Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER+ breast cancer. Clin. Cancer Res. 20: 3222–3232.
  • 10. Cheng XT, Zhou B, Lin MY, ve ark. 2015. Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes. J. Cell Biol. 209:377-86. 11. Chude CI, Amaravadi RK. 2017. Targeting autophagy in cancer: update on clinical trials and novel inhibitors. Int. J. Mol. Sci. 18(6): 1279.
  • 12. Davis S, Wang J, Ferro-Novick S. 2017. Crosstalk between the secretory and autophagy pathways regulates autophagosome formation. Dev. Cell. 41: 23-32.
  • 13. Diao JJ, Liu R, Rong YG, ve ark. 2015. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature. 520: 563-566.
  • 14. Di Bartolomeo S, Nazio F, Cecconi F. 2010. The role of autophagy during development in higher eukaryotes. Traffic. 11(10): 1280–1289.
  • 15. Donohue E, Thomas A, Maurer N, ve ark. 2013. The autophagy inhibitor verteporfin moderately enhances the antitumor activity of gemcitabine in a pancreatic ductal adenocarcinoma model. J. Cancer. 4: 585–596.
  • 16. Dooley HC, Razi M, Polson HE, ve ark. 2014. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12–5-16L1. Molecular cell. 55: 238-52.
  • 17. Fass E, Shvets E, Degani I, ve ark. 2006.Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J. Biol. Chem. 281: 36303-16.
  • 18. Fu D, Zhou J, Zhu WS,ve ark. 2014. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat. Chem. 6: 614–622.
  • 19. Gao M, Monian P, Pan Q,ve ark. 2016. Ferroptosis is an autophagic cell death process. Cell Res. Microb. 5(6): 527–549.
  • 20. Ge L, Melville D, Zhang M, ve ark. 2013. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. eLife. 2: e00947.
  • 21. Goldberg SB, Supko JG, Neal JW, ve ark. 2012. A phase I study of erlotinib and hydroxychloroquine in advanced non-small-cell lung cancer. J. Thorac. Oncol. 7: 1602–1608.
  • 22. Hamasaki M, Furuta N, Matsuda A, ve ark. 2013. Autophagosomes form at ER-mitochondria contact sites. Nature. 495: 389-393.
  • 23. Hao F, Itoh T, Morita E, ve ark. 2016. The PtdIns3-phosphatase MTMR3 interacts with mTORC1 and suppresses its activity. FEBS Lett. 590: 161–173.
  • 24. He C, Klionsky D. 2009. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43: 67–93
  • 25. Heuser J.1989. Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH. J. Cell Bio. 108: 855-64.
  • 26. Itakura E, Kishi C, Inoue K, ve ark. 2008. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell. 19: 5360-5372.
  • 27. Itakura E, Kishi-Itakura C, Mizushima N. 2012. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 151: 1256-1269. 28. Jahreiss L, Menzies FM, Rubinsztein DC. 2008. The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic. 9: 574-87. 29. Johansen T, Lamark T. 2011. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 7: 279–296.
  • 30. Kabeya Y, Mizushima N, Ueno T, Yamamoto A,ve ark. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19: 5720-5728.
  • 31. Karanasios E, Walker SA, Okkenhaug H, ve ark. 2016. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat. Commun. 7: 12420.
  • 32. Khaminets A, Behl C, Dikic I. 2016. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26(1): 6–16.
  • 33. Kihara A, Noda T, Ishihara N, ve ark. 2001. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152: 519–530.
  • 34. Kimura T, Jia J, Claude-Taupin A, ve ark. 2017. Cellular and molecular mechanism for secretory autophagy .Autophagy. 13(6): 1084-1085.
  • 35. Kim YC, Guan KL. 2015. Mtor: A pharmacologic target for autophagy regulation. J. Clin. Investig. 125: 25–32.
  • 36. Knaevelsrud H, Soreng K, Raiborg C, ve ark. 2013. Membrane remodeling by the PX-BAR protein SNX18 promotes autophagosome formation. J. Cell Biol. 202: 331–349.
  • 37. Kraft C, Kijanska M, Kalie E, ve ark. 2012. Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J. 31: 3691–3703.
  • 38. Kraft C, Martens S. 2012. Mechanisms and regulation of autophagosome formation. Curr. Opin. Cell Biol. 24: 496-501.
  • 39. Lamb CA, Yoshimori T, Tooze SA. 2013. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14: 759-774.
  • 40. Lamb CA, Nuhlen S, Judith D, ve ark. 2016. TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic. EMBO J. 35: 281-301.
  • 41. Liu Y, Levine B. 2015. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ. 22(3): 367–376.
  • 42. Longatti A, Lamb CA, Razi M, ve ark. 2012. TBC1D14 regulates autophagosome formation via Rab11 and recycling endosomes. J. Cell Biol. 197: 659-75.
  • 43. Manic G, Obrist F, Kroemer G, ve ark. 2014. Chloroquine and hydroxychloroquine for cancer therapy. Mol. Cell. Oncol. 1: e29911.
  • 44. Marino G, Niso-Santano M, Baehrecke EH, ve ark. 2014. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15(2): 81–94.
  • 45. Mari M, Griffith J, Rieter E, ve ark. 2010. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol. 190: 1005-22.
  • 46. Matsunaga K, Saitoh T, Tabata K,ve ark. 2009. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11: 385–396.
  • 47. Mizushima N, Yoshimori T, Ohsumi Y. 2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27: 107-132.
  • 48. Mizushima N, Komatsu M. 2011.Autophagy: renovation of cells and tissues. Cell. 147: 728-741.
  • 49. Moreau K, Ravikumar B, Renna M, ve ark. 2011. Autophagosome precursor maturation requires homotypic fusion. Cell. 146: 303–317.
  • 50. Morozova K, Sridhar S, Zolla V, ve ark. 2015. Annexin A2 promotes phagophore assembly by enhancing Atg16L (+) vesicle biogenesis and homotypic fusion. Nat. Commun. 6: 5856.
  • 51. Morris DH, Yip CK, Shi Y. 2015. Beclin 1-Vps34 complex architecture: understanding the nuts and bolts of therapeutic targets. Front. Biol. 10: 398–426.
  • 52. Mortensen M, Ferguson DJ, Edelmann M,ve ark. 2010. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc. Natl. Acad. Sci. USA. 107(2): 832–837.
  • 53. Nakamura S, Yoshimori T. 2017. New insights into autophagosome–lysosome fusion.J. Cell Sci. 1209-1216.
  • 54. Noda T. 2017. Regulation of autophagy through TORC1 and mTORC, biomolecules. 7(3): 52.
  • 55. Ozpolat B, Benbrook DM. 2015. Targeting autophagy in cancer management- strategies and developments. Cancer Manag. Res. 7: 291–299.
  • 56. Pellegrini P, Strambi A, Zipoli C,ve ark. 2014. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy. 10: 562–571.
  • 57. Puri C, Renna M, Bento CF, ve ark. 2013. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell. 154: 1285–1299.
  • 58. Ravikumar B, Acevedo-Arozena A, Imarisio S, ve ark. 2005. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat. Genet. 37: 771-6.
  • 59. Ravikumar B, Moreau K, Jahreiss L, ve ark. 2010. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12: 747–757.
  • 60. Reggiori F, Ungermann C. 2017. Autophagosome maturation and fusion. Journal of Molecular Biology. 429(4): 486-496.
  • 61. Rieder SE, Emr SD. 1997. A novel ring finger protein complex essential for a late step in protein transport to the yeast vacuole. Mol. Biol. Cell. 8: 2307-27.
  • 62. Rubinsztein DC, Marino G, Kroemer G. 2011. Autophagy and aging. Cell. 146(5): 682–695.
  • 63. Russell RC, Yuan HX, Guan KL. 2014. Autophagy regulation by nutrient signaling. Cell Res. 24: 42–57.
  • 64. Russell RC, Tian Y, Yuan H, ve ark. 2013. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15: 741–750.
  • 65. Sato M. and Sato K. 2011. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science. 334: 1141-1144.
  • 66. Seals DF, Eitzen G, Margolis N. 2000. A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc. Natl. Acad. Sci. 97: 9402-7.
  • 67. Shuhei Nakamura S., Tamotsu Yoshimori T. 2017. New insights into autophagosome–lysosome fusion. J. Cell Sci. 1209-1216.
  • 68. Shi TT, Yu XX, Yan LJ, ve ark. 2017. Research progress of hydroxychloroquine and autophagy inhibitors on cancer. Cancer Chemother. Pharmacol. 79: 287–294.
  • 69. Song WH, Yi YJ, Sutovsky M, ve ark. 2016. Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc. Natl. Acad. Sci. 113(36): e526-570
  • 70. Steegmaier M, Yang B, Yoo JS, ve ark. 1998. Three novel proteins of the Syntaxin/SNAP-25 family. Journal of Biological Chemistry. 273: 34171-9.
  • 71. Stitzel ML, Seydoux G. 2007. Regulation of the oocyte-to-zygote transition. Science. 316(5823): 407–408.
  • 72. Sui X, Chen R, Wang Z,ve ark. 2013. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis. 4: e838.
  • 73. Suzuki H, Osawa T, FujiokaY, ve ark. 2017. Structural biology of the core autophagy machinery, Current Opinion in Structural Biology. 43: 10-17.
  • 74. Taguchi-Atarashi N, Hamasaki M, Matsunaga K, ve ark. 2010. Modulation of local PtdIns3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy. Traffic. 11: 468–478.
  • 75. Takats S, Nagy P, Varga A, ve ark. 2013. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol. 201: 531-539.
  • 76. Takats S, Pircs K, Nagy P, ve ark. 2014. Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila.Mol. Biol. Cell. 25: 1338 - 54 .
  • 77. Takahashi Y, Tsotakos N, Liu Y, ve ark. 2016. The Bif-1-Dynamin 2 membrane fission machinery regulates Atg9-containing vesicle generation at the Rab11-positive reservoirs. Oncotarget. 7(15): 20855-68
  • 78. Tanida I, Minematsu-Ikeguchi N, Ueno T, ve ark. 2005. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy. 1: 84–91.
  • 79. Tsuboyama K, Koyama-Honda I, Sakamaki Y, ve ark. 2016. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science. 354: 1036-41.
  • 80. Tumbarello DA, Waxse BJ, Arden SD, ve ark. 2012. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat. Cell Biol. 14: 1024-35.
  • 81. Yamamoto H, Kakuta S, Watanabe TM, ve ark. 2012. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198: 219-33.
  • 82. Yang Z, Huang J, Geng J, ve ark. 2006. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol. Biol. Cell. 17: 5094–104.
  • 83. Yoshida GJ. 2017. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. J. Hematol. Oncol. 10: 67.
  • 84. Yu L, Chen Y, Tooze SA. 2017. Autophagy pathway: cellular and molecular mechanisms. Autophagy. Received 15 May.
  • 85. Yu L, McPhee CK, Zheng L, ve ark. 2010. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 465: 942-6.
  • 86. Zhangyuan Y, Pascual C, Klionsky DJ. 2017. Autophagy: machinery and regulation. Microb. Cell.Dec 5: 3(12): 588–596.
  • 87. Wang Y, Peng RQ, Li DD, ve ark. 2011. Chloroquine enhances the cytotoxicity of topotecan by inhibiting autophagy in lung cancer cells. Chin. J. Cancer. 30: 690–700.
  • 88. White E. 2012. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer. 12: 401–410.
  • 89. Wurmser AE, Sato TK, Emr SD. 2000. New component of the vacuolar class C-Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion. J. Cell Biol. 151: 551-62.
  • 90. Wang J, Davis S, Zhu M, ve ark. 2017. Autophagosome formation: Where the secretory and autophagy pathways meet. Autophagy. 13(5): 973–974.
  • 91. Webber JL, Tooze SA. 2009. Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP. EMBO J. 29: 27-40.
There are 88 citations in total.

Details

Subjects Health Care Administration
Journal Section Review
Authors

Yasemin Sahın

Dilara Akcora Yıldız

Publication Date December 25, 2017
Submission Date November 17, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Sahın, Y., & Akcora Yıldız, D. (2017). Memeli hücrelerinde otofajinin moleküler mekanizması. Mehmet Akif Ersoy University Journal of Health Sciences Institute, 5(2), 205-218. https://doi.org/10.24998/maeusabed.355164
AMA Sahın Y, Akcora Yıldız D. Memeli hücrelerinde otofajinin moleküler mekanizması. Mehmet Akif Ersoy University Journal of Health Sciences Institute. December 2017;5(2):205-218. doi:10.24998/maeusabed.355164
Chicago Sahın, Yasemin, and Dilara Akcora Yıldız. “Memeli hücrelerinde Otofajinin moleküler Mekanizması”. Mehmet Akif Ersoy University Journal of Health Sciences Institute 5, no. 2 (December 2017): 205-18. https://doi.org/10.24998/maeusabed.355164.
EndNote Sahın Y, Akcora Yıldız D (December 1, 2017) Memeli hücrelerinde otofajinin moleküler mekanizması. Mehmet Akif Ersoy University Journal of Health Sciences Institute 5 2 205–218.
IEEE Y. Sahın and D. Akcora Yıldız, “Memeli hücrelerinde otofajinin moleküler mekanizması”, Mehmet Akif Ersoy University Journal of Health Sciences Institute, vol. 5, no. 2, pp. 205–218, 2017, doi: 10.24998/maeusabed.355164.
ISNAD Sahın, Yasemin - Akcora Yıldız, Dilara. “Memeli hücrelerinde Otofajinin moleküler Mekanizması”. Mehmet Akif Ersoy University Journal of Health Sciences Institute 5/2 (December 2017), 205-218. https://doi.org/10.24998/maeusabed.355164.
JAMA Sahın Y, Akcora Yıldız D. Memeli hücrelerinde otofajinin moleküler mekanizması. Mehmet Akif Ersoy University Journal of Health Sciences Institute. 2017;5:205–218.
MLA Sahın, Yasemin and Dilara Akcora Yıldız. “Memeli hücrelerinde Otofajinin moleküler Mekanizması”. Mehmet Akif Ersoy University Journal of Health Sciences Institute, vol. 5, no. 2, 2017, pp. 205-18, doi:10.24998/maeusabed.355164.
Vancouver Sahın Y, Akcora Yıldız D. Memeli hücrelerinde otofajinin moleküler mekanizması. Mehmet Akif Ersoy University Journal of Health Sciences Institute. 2017;5(2):205-18.

The Mehmet Akif Ersoy University Journal of Health Sciences Institute uses the Creative Commons Attribution License (CC BY) for all published articles.