Research Article
BibTex RIS Cite

Escherichia coli ve Klebsiella pneumoniea izolatlarında AmpC beta laktamaz sıklığının belirlenmesi ve tespit yöntemlerinin karşılaştırılması

Year 2019, Volume: 11 Issue: 2, 23 - 27, 29.08.2019

Abstract

Bu çalışmanın amacı altın standart olarak PZR yöntemini kullanarak klinik izolatlardan üreyen E.coli ve K. pneumoniae suşlarında plazmid ile kodlanmış AmpC beta-laktamazın araştırılması ve plazmid aracılı AmpC beta-laktamazların saptanması için sefoksitin-Hodge testinin ve kloksasilin inhibisyon testinin etkinliğinin karşılaştırılmasıdır. İki yıl boyunca 3,450 hastanın klinik izolatlarından sefoksitine dirençli 22 E.coli ve 18 K. pneumoniae suşu toplanmıştır. Disk difuzyon testinde sefoksitin dirençli olan suşlara AmpC geni varlığının araştırılması amacı ile MOX,CIT, EBC, FOX, DHA, EBC primerleri kullanılarak multipleks PZR uygulanmıştır. AmpC geni tesbit edilen suşlar Sefoksitin-Hodge testi ve kloksasilin inhibisyon testi ile fenotipik olarak incelenmiştir. 40 izolattan dokuzu, GSBL üretimini teyit edenklavulanik asit tarafından, altısı ise kloksasilin tarafındaninhibe edildi, dokuzu sefoksitin-Hodge testi ile pozitif saptandı. Dört izolat, kombinasyon halinde GSBL ve AmpC beta-laktamaz eksprese etti. AmpC betalaktamaz genleri PZR ile incelenmiş, 40 sefoksitine dirençli izolattan 11 tanesinin plasmid aracılı AmpC beta laktamaz sentezlediği görülmüştür (Beş E.coli ve altı K. pneumoniae). 11 izolattan iki CIT, iki EBC, altı FOX, bir izolatta hem FOX ve EBC tipi gen saptanmıştır. İki fenotipik tarama yöntemi kappa analizi ile karşılaştırılmış, Hodge testi plazmid aracılı AmpC laktamazların saptanmasında rehberlerin aksine kloksasilin inhibisyon testinden daha hassas olduğu görülmüştür. Rutin laboratuvarlarda uygulanabilecek daha kolay, ekonomik ve güvenilir bir fenotipik yönteme ihtiyaç olduğu tesbit edilmiştir.

References

  • 1) Alain Philippon, Guillaume Arlet, George A. Jacoby. Plazmid-determined AmpC- type beta-lactamases. Antimicrobial Agents Chemotheraphy 2002;1–11. 2) A.S. Khan, S.J. Dancer, H. Humphreys. Priorities in the prevention and control of multidrug-resistant Enterobacteriaceae in hospitals. Journal of Hospital Infection, 2002; 85-93. 3) Bengtake Jaurin, Thomas Grundstrom , Thomas Edlund, et al. The E. coli beta-lactamase attenuator mediates growth rate-dependent regulation. Nature 1981; 221–225. 4) David L. Paterson., Resistance in Gram-Negative Bacteria. The American Journal of Medicine 2006; 520- 528. 5) David L. Paterson, Robert A. Bonomo. Extended- Spectrum beta-lactamases: a Clinical Update. Clinical Microbiology Reviews 2005; 657-686. 6) Demirbakan H., Midilli K., Ogunc D., ve ark. Investigation of plazmid-mediated AmpC beta-lactamase types in Klebsiella spp. and Escherichia coli isolates resistant or intermediate to cefoxitin. Mikrobiyoloji Bulteni 2008; 545-551. 7) Dobryan M. Tracz, David A. Boyd, Louis Bryden, et al. Mulvey.Increase in AmpC promoter strength due to mutations and deletion of the attenuator in a clinical isolate of cefoxitin- resistant Escherichia coli as determined by RT-PZR. Journal of Antimicrobial Chemotherapy 2005; 768–772 8) F. Javier Perez-Perez.Nancy D. Hanson. Detection of Plazmid-Mediated AmpC beta-Lactamase Genes in Clinical Isolates by Using Multiplex PZR. Journal of Clinical Microbiology 2002; 2153-2162. 9) George A. Jacoby. AmpC beta-lactamases. Clinical Microbiology Reviews 2009; 161–182. 10) Guilene Barnaud, Guillama Arlet, Charlotte Verdet, et al. Salmonella enteritidis: AmpC Plazmid- Mediated Inducible β-Lactamase (DHA-1) with an AmpR Gene from Morganella morganii. Antimicrobial Agents and Chemotherapy 1998; 2352-2358. 11) Guilene Barnaud, G., Roger Labia., Laurent Raskine. Extension of resistance to cefepime and cefpirome associated to a six amino acid deletion in the H-10 helix of the cephalosporinase of an Enterobacter cloacae clinical isolate. FEMS Microbiology Letters 2001; 185-190. 12) Kenneth S. Thomson., Controversies about Extended-Spectrum and AmpC beta-lactamases. Emerging Infectious Diseases 2001; 333-336. 13) L. K. Siu, Po-Liang Lu, J.-Y. Chen, et al. High-level expression of AmpC beta-lactamase due to insertion of nucleotides between 10 and 35 promoter sequences in Escherichia coli clinical isolates: cases not responsive to extended-spectrum-cephalosporin treatment. Antimicrobial Agents and Chemotherapy 2003; 2138– 2144. 14) Louis B. Rice, Robert A. Bonomo. betalactamases: which ones are clinically important?. Drug Resistance Updates 2000 ; 178-189. 15) Michael A. Pfaller, and John Segreti. Overview of the epidemiological profile and laboratory detection of extended-spectrum beta-lactamases. Clinical Infectious Diseases 2006; 153-163. 16) Michael R. Mulvey, Elizabeth Bryce, David A. Boyd, et al. Molecular characterization of cefoxitin-resistant Escherichia coli from Canadian hospitals. Antimicrobial Agents and Chemotherapy 2005 ; 358–365. 17) Nadine Honore, Marie Helene Nicolas, Stawart T. Cole. Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. The EMBO Journal 1986; 3709-3714. 18) Nancy D. Hanson. AmpC β-lactamases: what do we need to know for the future? Journal of Antimicrobial Chemotheraphy 2003; 2-4. 19) Nancy D. Hanson, Christine C. Sanders. Regulation of inducible AmpC β-lactamase expression among Enterobacteriaceae. Current Pharmaceutical Design 1999; 881–894. 20) CLSI. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Approve Standard M100-S20. Wayne:ABD;2011 21) EUCAST Klinik ve/veya epidemiyolojik önemi olan direnç mekanizmaları ve direnç özelliklerini saptama kılavuzu. Versiyon 2.0, 2017. 22) Philip E. Coudron, Ellen S. Moland, Kenneth S. Thomson. Occurrence and detection of AmpC ß-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. Journal of Clinical Microbiology 2000; 38:1791-1796. 23) Ronald N. Jones., Important and emerging β-lactamase- mediated resistances in hospital-based pathogens: the AmpC enzymes. Diagnostic Microbiology and Infectious Disease 1998; 461–466. 24) S. Peter-Getzlaff, S. Polsfuss, M. Poledica, et al. Detection of AmpC Beta-Lactamase in Escherichia coli: Comparison of Three Phenotypic Confirmation Assays and Genetic Analysis. Journal of Clinical Microbiology 2011; 2924-2932. 25) Serpil Coskun, Nurten Altanlar , Sefoksitine Dirençli Escherichia coli ve Klebsiella Pneumoniae Klinik İzolatlarında Plazmid Aracılı AmpC Beta-Laktamaz Tespiti. Mikrobiyoloji Bulteni 2012; 375-385.
Year 2019, Volume: 11 Issue: 2, 23 - 27, 29.08.2019

Abstract

References

  • 1) Alain Philippon, Guillaume Arlet, George A. Jacoby. Plazmid-determined AmpC- type beta-lactamases. Antimicrobial Agents Chemotheraphy 2002;1–11. 2) A.S. Khan, S.J. Dancer, H. Humphreys. Priorities in the prevention and control of multidrug-resistant Enterobacteriaceae in hospitals. Journal of Hospital Infection, 2002; 85-93. 3) Bengtake Jaurin, Thomas Grundstrom , Thomas Edlund, et al. The E. coli beta-lactamase attenuator mediates growth rate-dependent regulation. Nature 1981; 221–225. 4) David L. Paterson., Resistance in Gram-Negative Bacteria. The American Journal of Medicine 2006; 520- 528. 5) David L. Paterson, Robert A. Bonomo. Extended- Spectrum beta-lactamases: a Clinical Update. Clinical Microbiology Reviews 2005; 657-686. 6) Demirbakan H., Midilli K., Ogunc D., ve ark. Investigation of plazmid-mediated AmpC beta-lactamase types in Klebsiella spp. and Escherichia coli isolates resistant or intermediate to cefoxitin. Mikrobiyoloji Bulteni 2008; 545-551. 7) Dobryan M. Tracz, David A. Boyd, Louis Bryden, et al. Mulvey.Increase in AmpC promoter strength due to mutations and deletion of the attenuator in a clinical isolate of cefoxitin- resistant Escherichia coli as determined by RT-PZR. Journal of Antimicrobial Chemotherapy 2005; 768–772 8) F. Javier Perez-Perez.Nancy D. Hanson. Detection of Plazmid-Mediated AmpC beta-Lactamase Genes in Clinical Isolates by Using Multiplex PZR. Journal of Clinical Microbiology 2002; 2153-2162. 9) George A. Jacoby. AmpC beta-lactamases. Clinical Microbiology Reviews 2009; 161–182. 10) Guilene Barnaud, Guillama Arlet, Charlotte Verdet, et al. Salmonella enteritidis: AmpC Plazmid- Mediated Inducible β-Lactamase (DHA-1) with an AmpR Gene from Morganella morganii. Antimicrobial Agents and Chemotherapy 1998; 2352-2358. 11) Guilene Barnaud, G., Roger Labia., Laurent Raskine. Extension of resistance to cefepime and cefpirome associated to a six amino acid deletion in the H-10 helix of the cephalosporinase of an Enterobacter cloacae clinical isolate. FEMS Microbiology Letters 2001; 185-190. 12) Kenneth S. Thomson., Controversies about Extended-Spectrum and AmpC beta-lactamases. Emerging Infectious Diseases 2001; 333-336. 13) L. K. Siu, Po-Liang Lu, J.-Y. Chen, et al. High-level expression of AmpC beta-lactamase due to insertion of nucleotides between 10 and 35 promoter sequences in Escherichia coli clinical isolates: cases not responsive to extended-spectrum-cephalosporin treatment. Antimicrobial Agents and Chemotherapy 2003; 2138– 2144. 14) Louis B. Rice, Robert A. Bonomo. betalactamases: which ones are clinically important?. Drug Resistance Updates 2000 ; 178-189. 15) Michael A. Pfaller, and John Segreti. Overview of the epidemiological profile and laboratory detection of extended-spectrum beta-lactamases. Clinical Infectious Diseases 2006; 153-163. 16) Michael R. Mulvey, Elizabeth Bryce, David A. Boyd, et al. Molecular characterization of cefoxitin-resistant Escherichia coli from Canadian hospitals. Antimicrobial Agents and Chemotherapy 2005 ; 358–365. 17) Nadine Honore, Marie Helene Nicolas, Stawart T. Cole. Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. The EMBO Journal 1986; 3709-3714. 18) Nancy D. Hanson. AmpC β-lactamases: what do we need to know for the future? Journal of Antimicrobial Chemotheraphy 2003; 2-4. 19) Nancy D. Hanson, Christine C. Sanders. Regulation of inducible AmpC β-lactamase expression among Enterobacteriaceae. Current Pharmaceutical Design 1999; 881–894. 20) CLSI. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Approve Standard M100-S20. Wayne:ABD;2011 21) EUCAST Klinik ve/veya epidemiyolojik önemi olan direnç mekanizmaları ve direnç özelliklerini saptama kılavuzu. Versiyon 2.0, 2017. 22) Philip E. Coudron, Ellen S. Moland, Kenneth S. Thomson. Occurrence and detection of AmpC ß-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. Journal of Clinical Microbiology 2000; 38:1791-1796. 23) Ronald N. Jones., Important and emerging β-lactamase- mediated resistances in hospital-based pathogens: the AmpC enzymes. Diagnostic Microbiology and Infectious Disease 1998; 461–466. 24) S. Peter-Getzlaff, S. Polsfuss, M. Poledica, et al. Detection of AmpC Beta-Lactamase in Escherichia coli: Comparison of Three Phenotypic Confirmation Assays and Genetic Analysis. Journal of Clinical Microbiology 2011; 2924-2932. 25) Serpil Coskun, Nurten Altanlar , Sefoksitine Dirençli Escherichia coli ve Klebsiella Pneumoniae Klinik İzolatlarında Plazmid Aracılı AmpC Beta-Laktamaz Tespiti. Mikrobiyoloji Bulteni 2012; 375-385.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Research Article
Authors

Ahmet Balıkçı This is me

Publication Date August 29, 2019
Submission Date July 16, 2019
Published in Issue Year 2019 Volume: 11 Issue: 2

Cite

Vancouver Balıkçı A. Escherichia coli ve Klebsiella pneumoniea izolatlarında AmpC beta laktamaz sıklığının belirlenmesi ve tespit yöntemlerinin karşılaştırılması. Maltepe tıp derg. 2019;11(2):23-7.