Research Article
BibTex RIS Cite

Isıl işlemin ahşap malzemenin yüzey pürüzlülük ve yapışma direncine etkileri

Year 2022, , 17 - 28, 30.06.2022
https://doi.org/10.33725/mamad.1119735

Abstract

Bu çalışmanın amacı, ısıl işlemin karaçam (Pinus nigra A.) ve lareks (Larix decidua), odunlarının bazı fiziksel ve mekanik özellikleri üzerine etkilerini belirlemektir. Bu amaçla, deney örneklerine 140, 160, 180 ve 200 °C'de 2 ve 5 saat ısıl işlem uygulanmıştır. Deney örneklerinin hava kurusu yoğunluk, denge rutubet miktarı (EMC), yüzey pürüzlülüğü ve yapışma dirençleri belirlenmiştir. Ortalama yüzey pürüzlülük parametresi (Ra) liflere paralel olarak analiz edilmiştir. Sonuçlar, ağaç türüne, ısıl işlem sıcaklığına ve işlem süresine bağlı olarak önemli farklılıklar göstermiştir. Bu çalışmadaki bulgulara göre tüm parametreler ısıl işlem sıcaklığına ve işlem süresine bağlı olarak azalmıştır. Kontrol örneklerinin yoğunluk ve EMC değerleri, ısıl işlem uygulanmış örneklere göre daha yüksek çıkmıştır. Ayrıca karaçam numunelerinde elde edilen yüzey pürüzlülük değerleri, larex numunelerine göre daha yüksektir. Öte yandan, larex numunelerinde elde edilen yapışma direnci değerleri, karaçam numunelerinden önemli ölçüde daha yüksek bulunmuştur. Ağaç işleri endüstrisindeki kullanımı sürekli olarak gelişen ısıl işlem uygulanmış ahşap malzemenin uygulama yerlerinde bu parametrelerin göz önünde bulundurulması gerekir.

References

  • Akyıldız, M.H., Ateş, S., (2008), Effect of heat treatment on equilibrium moisture content (EMC) of some wood species in Turkey. Research Journal of Agriculture and Biological Sciences, 4(6), 660-665.
  • Alia-Syahirah, Y., Paridah, M.T., Hamdan, H., Anwar, U.M.K., Nordahlia, A.S., Lee, S.H., (2019), Effects of anatomical characteristics and wood density on surface roughness and their relation to surface wettability of hardwood. Journal of Tropical Forest Science, 31(3), 269-277. DOI:10.26525/jtfs2019.31.3.269
  • Aras, O., Sofuoglu, S.D., (2021), The relationship of machining parameters with surface roughness in machining of chestnut (Castenia sativa Mill.) tree species with CNC, Furniture and Wooden Material Research Journal, 4(2), 114-125. DOI:10.33725/mamad.992157
  • Ayata, U., Gurleyen, T., Gurleyen, L., Cakicier, N., (2018), Determination of surface roughness parameters of heat-treated and untreated scotch pine, oak and beech woods. Furniture and Wooden Material Research Journal, 1(1), 46-50.
  • Aydın, İ., Çolakoğlu, G., (2003), Roughness on wood surfaces and roughness measurement methods, Artvin Coruh University Journal of Forestry Faculty, 1-2; 92-102.
  • Ayrilmis, N., Winandy, J.E., (2008), Efects of post heat-treatment on surface characterization and adhesive bonding performance of medium density fiberboard, Materials and Manufacturing Processes, 24, 594-599.
  • Aytin, A., Korkut, S., Ünsal, Ö., Çakıcıer, N., (2015), The effects of heat treatment with the ThermoWood® method on the equilibrium moisture content and dimensional stability of wild cherry wood, BioResources, 10(2), 2083-2093.
  • Bal, B.C., (2015), Physical properties of beech wood thermally modified in hot oil and in hot air at various temperatures, Maderas. Ciencia y tecnología 17(4), 789-798. DOI: 10.4067/S0718-221X2015005000068
  • Bal, B.C., Gündeş, Z., (2020), Surface roughness of medium-density fiberboard processed with CNC machine, Measurement, 153, (2020), 107421. DOI: 10.1016/j.measurement.2019.107421
  • Baysal, E., Kart, S., Toker, H., Degirmentepe, S., (2014), Some physical characteristics of thermally modified oriental-beech wood, Maderas. Ciencia y tecnología, 16(3), 291-298. DOI:10.4067/S0718-221X2014005000022
  • Bekhta, P., Sedliačik, J., Bekhta, N. (2020). Effects of selected parameters on the bonding quality and temperature evolution inside plywood during pressing. Polymers, 12(5), 1035. DOI:10.3390/polym12051035
  • Boonstra, M.J., Van Acker J., Tjeerdsma B.F., Kegel E.V., (2007), Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents, Annals of Forest Science, 64(7), 679-690. DOI: 10.1051/forest:2007048
  • Buyuksari, U., Akbulut, T., Guler, C., As, N., (2011), Wettability and surface roughness of natural and plantation-grown narrow-leaved ash (Fraxinus angustifolia Vahl.) wood. BioResources, 6(4), 4721- 4730.
  • Can, A., Krystofiak, T., Lis, B., (2021), Shear and adhesion strength of open and closed system heat-treated wood samples, Maderas. Ciencia y tecnología, 23(32), 1-10. DOI: 10.4067/s0718-221x2021000100432
  • Cui, X., Matsumura, J., (2019), Wood surface changes of heat-treated Cunninghamia lanceolate following natural weathering, Forests, 10(9), 791. DOI:10.3390/f10090791
  • de Moura Palermo, G.P., de Figueiredo Latorraca J.V., de Moura, L.F., Nolasco A.M., de Carvalho A.M., Garcia, R.A., (2014), Surface roughness of heat treated Eucalyptus grandis wood, Maderas. Ciencia y tecnología, 16(1), 3-12. DOI:10.4067/S0718-221X2014005000001
  • Dilik, T., Hiziroglu S., (2012), Bonding strength of heat treated compressed Eastern redcedar wood, Materials and Design, 42, 317-320. DOI: 10.1016/j.matdes.2012.05.050
  • Durmaz, E., Ucuncu, T., Karamanoglu, M., Kaymakcı, A., (2019), Effects of heat treatment on some characteristics of Scots pine (Pinus sylvestris L.) wood, BioResources, 14(4), 9531-9543.
  • Esteves, B., Pereira, H., (2009), Wood modifıcation by heat treatment: A review, BioResources 4(1), 370-404.
  • Hill, C. (2006), Wood modifcation: Chemical, thermal and other processes. New York: Wiley, 2006.
  • Hiziroglu S., Zhong, Z.W., Tan H.L., (2013), Measurement of bonding strength of pine, kapur and meranti wood species as function of their surface quality, Measurement, 46(9); 3198-3201. DOI: 10.1016/j.measurement.2013.05.005
  • Jirouš-Rajković, V., Miklečić, J., (2019), Heat-treated wood as a substrate for coatings, weathering of heat-treated wood, and coating performance on heat-treated wood. Advances in Materials Science and Engineering, 2019, Article ID 8621486, 1-9. DOI: 10.1155/2019/8621486
  • Kaygin, B., Tankut, A.N., (2008), Comparison of bonding strengths of the sapwoods and heartwoods of tree species used in wooden shipboard building, African Journal of Biotechnology, 7(24), 4620-4627.
  • Kilic, M., Hiziroglu S., Burdurlu, E., (2006), Effect of machining on surface roughness of wood, Building and Environment 41(8),1074-1078. DOI:10.1016/j.buildenv.2005.05.008
  • Korkut, D.S., Hiziroglu, H., Aytin, A., (2013), Effect of heat treatment on surface characteristics of wild cherry wood, BioResources 8(2), 1582-1590.
  • Korkut, D.S., Korkut, S., Bekar, I., Budakçı, M., Dilik, T., Çakıcıer, N., (2008), The effects of heat treatment on the physical properties and surface roughness of Turkish hazel (Corylus colurna L.) wood. International Journal of Molecular Sciences, 9(9), 1772-1783. DOI:10.3390/ijms9091772
  • Korkut, S., (2012), Performance of three thermally treated tropical wood species commonly used in Turkey, Industrial Crops and Products, 36(1); 355-362. DOI: 10.1016/j.indcrop.2011.10.004
  • Korkut, D.S., Guller, B., (2008), The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood, Bioresource Technology, 99(8), 2846-2851. DOI:10.1016/j.biortech.2007.06.043
  • Korkut, S., and Budakci, M. (2010), The effects of high-temperature heat-treatment on physical properties and surface roughness of rowan (Sorbus aucuparia L.) wood. Wood Research, 55(1), 67-78.
  • Lengowski, E.C., Bonfatti Júnior, E.A., Nisgoski, S., Bolzon de Muñiz, G.I., Klock, U., (2021), Properties of thermally modified teakwood. Maderas. Ciencia y tecnología, 23(10),1-16. DOI: 10.4067/s0718-221x2021000100410
  • Ozcan, S., Ozcifci, A., Hiziroglu, S., Toker, H. (2012), Effects of heat treatment and surface roughness on bonding strength. Construction and Building Materials, 33, 7-13. DOI: 10.1016/j.conbuildmat.2012.01.008
  • Pelit, H., Budakçı, M., Sönmez, A., Burdurlu, E., (2015), Surface roughness and brightness of scots pine (Pinus sylvestris) applied with water-based varnish after densification and heat treatment. Journal of Wood Science, 61(6), 586-594. DOI:10.1007/s10086-015-1506-7
  • Pinkowski, G., Szymański, W., Krauss, A., Stefanowski, S., (2018), Effect of sharpness angle and feeding speed on the surface roughness during milling of various wood species. BioResources, 13(3), 6952-6962.
  • Polisan (2018). https://global.polisan.com.tr/tr/Urunler/CP/156/tutkal-grubu(01.05.2022)
  • Poncsak, S., Kocaefe, D., Younsi., R., (2010), Improvement of heat treatment of jack pine (Pinus banksiana) using Thermo Wood technology, European Journal of Wood and Woods Products, 69(2); 281-286. DOI:10.1007/s00107-010-0426-x
  • Rohumaa, A., Kallakas, H., Mäetalu, M., Savest, N., Kers, J., (2021), The effect of surface properties on bond strength of birch, black alder, grey alder and aspen veneers. International Journal of Adhesion and Adhesives, 110(2021), 102945. DOI: 10.1016/j.ijadhadh.2021.102945
  • Sahin Kol, H., Özbay G., Altun, S., (2009), Shear strength of heat-treated tali (Erythrophleum ivorense) and iroko (Chlorophora excelsa) woods bonded with various adhesives. BioResources, 4(4), 1545-1554.
  • Sahin Kol H., Özbay, G., (2016), Adhesive bond performance of heat-treated wood at various conditions. Journal of Environmental Biology, 37(4), 557-564.
  • Sofuoglu, S.D., (2021), A mini review of the studies on massive wood materials machining and surface quality, Wood Industry and Engineering, 3(2), 48-59.
  • Sogutlu, C., (2017), Determination of the effect of surface roughness on the bonding strength of wooden materials. BioResources, 12(1), 1417-1429.
  • Sogutlu, C., (2005), The effect of some factors on surface roughness of sanded wood material, Journal of Polytechnic, 8(4), 345-350.
  • Söğütlü, C., (2017), Determination of the effect of surface roughness on the bonding strength of wooden materials, BioResources. 12(1), 1417-1429.
  • Söğütlü, C., Döngel N., (2009), The effect of the impregnate process of wooden material to color changes and surface roughness, Journal of Polytechnic, 2(3);179-184.
  • Thoma, H., Peri, L., Lato, E., (2015), Evaluation of wood surface roughness depending on species characteristics. Maderas. Ciencia y tecnología, 17(2), 285-292. DOI:10.4067/S0718-221X2015005000027
  • TS 2470, (1976), Wood-Sampling Methods and General Requirements for Physical and Mechanical Tests, Ankara
  • TS 2471, (1976), Wood- determination of moisture content for physical and mechanical tests, Ankara
  • TS 2472, (1976), Wood- determination of density for physical and mechanical tests, Ankara.
  • TS 6956 EN ISO 4287/A1 (2013) Geometrical product specifications - Surface texture: Profile method - Terms, definitions and surface texture parameters - Amendment 1: Peak count number (ISO 4287:1997/Amd 1:2009)
  • TS EN 205, (2017), Adhesives - Wood adhesives for non-structural applications - Determination of tensile shear strength of lap joints, Ankara.
  • Yang, T., Xue, W., Liu, Y., (2012), Influence of machining methods on wood surface roughness and adhesion strength, in: International Conference on Biobase Material Science and Engineering (BMSE), 2012, pp. 284-287, IEEE, Changsha, China. DOI: 10.1109/BMSE.2012.6466231
  • Yorur, H., (2018), Investigation of factors influencing on wood adhesion capability, Kastamonu Univ., Journal of Forestry Faculty, 18(1), 99-107. DOI:10.17475/kastorman.409206
  • Yorur, H., Aydemir, D., Uysal, B., (2010), The factors affecting on bonding strength of impregnated wood material, Journal of Bartin Faculty of Forestry 12(18), 99-106.

Effects of heat treatment on surface roughness and bonding strength of wood material

Year 2022, , 17 - 28, 30.06.2022
https://doi.org/10.33725/mamad.1119735

Abstract

The purpose of this paper is to determine the effects of heat treatment on some properties of black pine (Pinus nigra A.) and larex (Larix decidua), woods. For this purpose, test samples were heat treated at 140, 160, 180 and 200°C for 2 and 5 hours. The air-dried density, equilibrium moisture content (EMC), surface roughness and bonding strengths of the test samples were analyzed. The average surface roughness parameter (Ra) was analyzed parallel to the grains. The results indicated significant differences depending on the wood species, heat treatment temperatures and treatment times. Based on the findings in this study, all parameters decreased depending on the heat treatment conditions. The density and EMC values of the control specimens were higher than the heat-treated samples. Also the surface roughness values obtained in black pine samples were higher than larex samples. On the other hand, bonding strength values obtained in larex samples were significantly higher than that of black pine samples. These parameters should be taken into account in the application areas of heat-treated wood material, the usage amount of which is constantly evolving in the woodworking industry.

References

  • Akyıldız, M.H., Ateş, S., (2008), Effect of heat treatment on equilibrium moisture content (EMC) of some wood species in Turkey. Research Journal of Agriculture and Biological Sciences, 4(6), 660-665.
  • Alia-Syahirah, Y., Paridah, M.T., Hamdan, H., Anwar, U.M.K., Nordahlia, A.S., Lee, S.H., (2019), Effects of anatomical characteristics and wood density on surface roughness and their relation to surface wettability of hardwood. Journal of Tropical Forest Science, 31(3), 269-277. DOI:10.26525/jtfs2019.31.3.269
  • Aras, O., Sofuoglu, S.D., (2021), The relationship of machining parameters with surface roughness in machining of chestnut (Castenia sativa Mill.) tree species with CNC, Furniture and Wooden Material Research Journal, 4(2), 114-125. DOI:10.33725/mamad.992157
  • Ayata, U., Gurleyen, T., Gurleyen, L., Cakicier, N., (2018), Determination of surface roughness parameters of heat-treated and untreated scotch pine, oak and beech woods. Furniture and Wooden Material Research Journal, 1(1), 46-50.
  • Aydın, İ., Çolakoğlu, G., (2003), Roughness on wood surfaces and roughness measurement methods, Artvin Coruh University Journal of Forestry Faculty, 1-2; 92-102.
  • Ayrilmis, N., Winandy, J.E., (2008), Efects of post heat-treatment on surface characterization and adhesive bonding performance of medium density fiberboard, Materials and Manufacturing Processes, 24, 594-599.
  • Aytin, A., Korkut, S., Ünsal, Ö., Çakıcıer, N., (2015), The effects of heat treatment with the ThermoWood® method on the equilibrium moisture content and dimensional stability of wild cherry wood, BioResources, 10(2), 2083-2093.
  • Bal, B.C., (2015), Physical properties of beech wood thermally modified in hot oil and in hot air at various temperatures, Maderas. Ciencia y tecnología 17(4), 789-798. DOI: 10.4067/S0718-221X2015005000068
  • Bal, B.C., Gündeş, Z., (2020), Surface roughness of medium-density fiberboard processed with CNC machine, Measurement, 153, (2020), 107421. DOI: 10.1016/j.measurement.2019.107421
  • Baysal, E., Kart, S., Toker, H., Degirmentepe, S., (2014), Some physical characteristics of thermally modified oriental-beech wood, Maderas. Ciencia y tecnología, 16(3), 291-298. DOI:10.4067/S0718-221X2014005000022
  • Bekhta, P., Sedliačik, J., Bekhta, N. (2020). Effects of selected parameters on the bonding quality and temperature evolution inside plywood during pressing. Polymers, 12(5), 1035. DOI:10.3390/polym12051035
  • Boonstra, M.J., Van Acker J., Tjeerdsma B.F., Kegel E.V., (2007), Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents, Annals of Forest Science, 64(7), 679-690. DOI: 10.1051/forest:2007048
  • Buyuksari, U., Akbulut, T., Guler, C., As, N., (2011), Wettability and surface roughness of natural and plantation-grown narrow-leaved ash (Fraxinus angustifolia Vahl.) wood. BioResources, 6(4), 4721- 4730.
  • Can, A., Krystofiak, T., Lis, B., (2021), Shear and adhesion strength of open and closed system heat-treated wood samples, Maderas. Ciencia y tecnología, 23(32), 1-10. DOI: 10.4067/s0718-221x2021000100432
  • Cui, X., Matsumura, J., (2019), Wood surface changes of heat-treated Cunninghamia lanceolate following natural weathering, Forests, 10(9), 791. DOI:10.3390/f10090791
  • de Moura Palermo, G.P., de Figueiredo Latorraca J.V., de Moura, L.F., Nolasco A.M., de Carvalho A.M., Garcia, R.A., (2014), Surface roughness of heat treated Eucalyptus grandis wood, Maderas. Ciencia y tecnología, 16(1), 3-12. DOI:10.4067/S0718-221X2014005000001
  • Dilik, T., Hiziroglu S., (2012), Bonding strength of heat treated compressed Eastern redcedar wood, Materials and Design, 42, 317-320. DOI: 10.1016/j.matdes.2012.05.050
  • Durmaz, E., Ucuncu, T., Karamanoglu, M., Kaymakcı, A., (2019), Effects of heat treatment on some characteristics of Scots pine (Pinus sylvestris L.) wood, BioResources, 14(4), 9531-9543.
  • Esteves, B., Pereira, H., (2009), Wood modifıcation by heat treatment: A review, BioResources 4(1), 370-404.
  • Hill, C. (2006), Wood modifcation: Chemical, thermal and other processes. New York: Wiley, 2006.
  • Hiziroglu S., Zhong, Z.W., Tan H.L., (2013), Measurement of bonding strength of pine, kapur and meranti wood species as function of their surface quality, Measurement, 46(9); 3198-3201. DOI: 10.1016/j.measurement.2013.05.005
  • Jirouš-Rajković, V., Miklečić, J., (2019), Heat-treated wood as a substrate for coatings, weathering of heat-treated wood, and coating performance on heat-treated wood. Advances in Materials Science and Engineering, 2019, Article ID 8621486, 1-9. DOI: 10.1155/2019/8621486
  • Kaygin, B., Tankut, A.N., (2008), Comparison of bonding strengths of the sapwoods and heartwoods of tree species used in wooden shipboard building, African Journal of Biotechnology, 7(24), 4620-4627.
  • Kilic, M., Hiziroglu S., Burdurlu, E., (2006), Effect of machining on surface roughness of wood, Building and Environment 41(8),1074-1078. DOI:10.1016/j.buildenv.2005.05.008
  • Korkut, D.S., Hiziroglu, H., Aytin, A., (2013), Effect of heat treatment on surface characteristics of wild cherry wood, BioResources 8(2), 1582-1590.
  • Korkut, D.S., Korkut, S., Bekar, I., Budakçı, M., Dilik, T., Çakıcıer, N., (2008), The effects of heat treatment on the physical properties and surface roughness of Turkish hazel (Corylus colurna L.) wood. International Journal of Molecular Sciences, 9(9), 1772-1783. DOI:10.3390/ijms9091772
  • Korkut, S., (2012), Performance of three thermally treated tropical wood species commonly used in Turkey, Industrial Crops and Products, 36(1); 355-362. DOI: 10.1016/j.indcrop.2011.10.004
  • Korkut, D.S., Guller, B., (2008), The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood, Bioresource Technology, 99(8), 2846-2851. DOI:10.1016/j.biortech.2007.06.043
  • Korkut, S., and Budakci, M. (2010), The effects of high-temperature heat-treatment on physical properties and surface roughness of rowan (Sorbus aucuparia L.) wood. Wood Research, 55(1), 67-78.
  • Lengowski, E.C., Bonfatti Júnior, E.A., Nisgoski, S., Bolzon de Muñiz, G.I., Klock, U., (2021), Properties of thermally modified teakwood. Maderas. Ciencia y tecnología, 23(10),1-16. DOI: 10.4067/s0718-221x2021000100410
  • Ozcan, S., Ozcifci, A., Hiziroglu, S., Toker, H. (2012), Effects of heat treatment and surface roughness on bonding strength. Construction and Building Materials, 33, 7-13. DOI: 10.1016/j.conbuildmat.2012.01.008
  • Pelit, H., Budakçı, M., Sönmez, A., Burdurlu, E., (2015), Surface roughness and brightness of scots pine (Pinus sylvestris) applied with water-based varnish after densification and heat treatment. Journal of Wood Science, 61(6), 586-594. DOI:10.1007/s10086-015-1506-7
  • Pinkowski, G., Szymański, W., Krauss, A., Stefanowski, S., (2018), Effect of sharpness angle and feeding speed on the surface roughness during milling of various wood species. BioResources, 13(3), 6952-6962.
  • Polisan (2018). https://global.polisan.com.tr/tr/Urunler/CP/156/tutkal-grubu(01.05.2022)
  • Poncsak, S., Kocaefe, D., Younsi., R., (2010), Improvement of heat treatment of jack pine (Pinus banksiana) using Thermo Wood technology, European Journal of Wood and Woods Products, 69(2); 281-286. DOI:10.1007/s00107-010-0426-x
  • Rohumaa, A., Kallakas, H., Mäetalu, M., Savest, N., Kers, J., (2021), The effect of surface properties on bond strength of birch, black alder, grey alder and aspen veneers. International Journal of Adhesion and Adhesives, 110(2021), 102945. DOI: 10.1016/j.ijadhadh.2021.102945
  • Sahin Kol, H., Özbay G., Altun, S., (2009), Shear strength of heat-treated tali (Erythrophleum ivorense) and iroko (Chlorophora excelsa) woods bonded with various adhesives. BioResources, 4(4), 1545-1554.
  • Sahin Kol H., Özbay, G., (2016), Adhesive bond performance of heat-treated wood at various conditions. Journal of Environmental Biology, 37(4), 557-564.
  • Sofuoglu, S.D., (2021), A mini review of the studies on massive wood materials machining and surface quality, Wood Industry and Engineering, 3(2), 48-59.
  • Sogutlu, C., (2017), Determination of the effect of surface roughness on the bonding strength of wooden materials. BioResources, 12(1), 1417-1429.
  • Sogutlu, C., (2005), The effect of some factors on surface roughness of sanded wood material, Journal of Polytechnic, 8(4), 345-350.
  • Söğütlü, C., (2017), Determination of the effect of surface roughness on the bonding strength of wooden materials, BioResources. 12(1), 1417-1429.
  • Söğütlü, C., Döngel N., (2009), The effect of the impregnate process of wooden material to color changes and surface roughness, Journal of Polytechnic, 2(3);179-184.
  • Thoma, H., Peri, L., Lato, E., (2015), Evaluation of wood surface roughness depending on species characteristics. Maderas. Ciencia y tecnología, 17(2), 285-292. DOI:10.4067/S0718-221X2015005000027
  • TS 2470, (1976), Wood-Sampling Methods and General Requirements for Physical and Mechanical Tests, Ankara
  • TS 2471, (1976), Wood- determination of moisture content for physical and mechanical tests, Ankara
  • TS 2472, (1976), Wood- determination of density for physical and mechanical tests, Ankara.
  • TS 6956 EN ISO 4287/A1 (2013) Geometrical product specifications - Surface texture: Profile method - Terms, definitions and surface texture parameters - Amendment 1: Peak count number (ISO 4287:1997/Amd 1:2009)
  • TS EN 205, (2017), Adhesives - Wood adhesives for non-structural applications - Determination of tensile shear strength of lap joints, Ankara.
  • Yang, T., Xue, W., Liu, Y., (2012), Influence of machining methods on wood surface roughness and adhesion strength, in: International Conference on Biobase Material Science and Engineering (BMSE), 2012, pp. 284-287, IEEE, Changsha, China. DOI: 10.1109/BMSE.2012.6466231
  • Yorur, H., (2018), Investigation of factors influencing on wood adhesion capability, Kastamonu Univ., Journal of Forestry Faculty, 18(1), 99-107. DOI:10.17475/kastorman.409206
  • Yorur, H., Aydemir, D., Uysal, B., (2010), The factors affecting on bonding strength of impregnated wood material, Journal of Bartin Faculty of Forestry 12(18), 99-106.
There are 52 citations in total.

Details

Primary Language English
Subjects Timber, Pulp and Paper
Journal Section Articles
Authors

Osman Perçin 0000-0003-0033-0918

Publication Date June 30, 2022
Submission Date May 22, 2022
Acceptance Date June 11, 2022
Published in Issue Year 2022

Cite

APA Perçin, O. (2022). Effects of heat treatment on surface roughness and bonding strength of wood material. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 5(1), 17-28. https://doi.org/10.33725/mamad.1119735

Uluslararası Dergidir

32217    18332 18333   3221918334 18335   18336   18339   18434   32216 32218  32220 32221 download download    

32275   32308  32309 


32332  32384  32385 32400