Research Article
BibTex RIS Cite

Kayın odununda statik ile dinamik elastikiyet modülü arasındaki ilişkinin belirlenmesi

Year 2023, , 47 - 54, 30.06.2023
https://doi.org/10.33725/mamad.1288875

Abstract

Bu çalışmada, tahribatsız test yöntemlerinden birisi olan stres dalga yöntemi kullanılarak belirlenen dinamik elastikiyet modülü ile TS ISO 13061-2 (2021) standardına göre belirlenen statik elastikiyet modülü arasındaki ilişki incelenmiştir. Bu kapsamda rastgele seçilmiş 12x13x110 cm3 boyutlarındaki kayın (Fagus orientalis Lipsky) keresteler kullanılmıştır. Kerestelerin radyal ve boyuna yöndeki uçuş süreleri, 1 μs hassasiyetteki FAKOPP marka mikro saniye zamanlayıcı kullanılarak belirlenmiştir. Kayın kerestelerin tam kuru yoğunlukları TS ISO 13061-2 (2021) standardına göre belirlenmiştir. Elde edilen veriler ile öncelikle stres dalga hızı ve daha sonra dinamik elastikiyet modülü değerleri hesaplanmıştır. Kayın keresteler daha sonra statik elastikiyet modülü testlerinin yürütülebilmesi için 20x20x320 mm boyutlarına getirilmiştir. Numunelerin statik elastikiyet modülü direnci testleri Shimadzu AGIC/20/50KN üniversal test cihazında TS ISO 13061-4 (2021) standardına göre gerçekleştirilmiştir. Statik ve dinamik elastikiyet modülü sonuçlarının lineer regresyon analizleri yapılmıştır. Analiz sonuçlarına göre statik ve dinamik elastikiyet modülü arasında güçlü bir ilişki olduğu tespit edilmiştir.

References

  • Bozkurt, A. Y. (1986), Ağaç teknolojisi, İstanbul: İstanbul Üniversitesi, Taş Matbaası.
  • Bozkurt, A. Y., Göker, Y. (1987), Fiziksel ve mekanik ağaç teknolojisi, İstanbul: İstanbul Üniversitesi, Orman Fakültesi.
  • Bucur, V. (2003, Nondestructive Characterization and Imaging of Wood, Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: 10.1007/978-3-662-08986-6
  • Dackermann, U., Crews, K., Kasal, B., Li, J., Riggio, M., Rinn, F., Tannert, T. (2014), In situ assessment of structural timber using stress-wave measurements, Materials and Structures, 47(5), 787–803. DOI: 10.1617/s11527-013-0095-4
  • Divos, F. (2000), Stress wave based tomography for tree evaluation, Proceedings of the 12th International Symposium on Nondestructive Testing of Wood.
  • Divos, F., Sismandy, F., Takats, P. (2011), Evaluation of historical wooden structures using nondestructive methods, Proceedings of the International Conference on Structural Health Assessment of Timber Structures (SHATIS). Lisbon.
  • Divos, F., Toshinari, T. (2005), Relation between static and dynamic modulus of elasticity of wood, Acta Silvatica et Lignaria Hungarica, 1, 105–110.
  • Dündar, T., Divos, F. (2014), European wood NDT&NDE research and practical applications, Eurasscience Journals, 1(1), 35–43.
  • Dündar, T., Kurt, Ş., As, N., Uysal, B. (2012), Nondestructive evaluation of wood strength using thermal conductivity, BioResources, 7(3), 3306–3316.
  • Dündar, T., Wang, X., As, N., Avcı, E. (2013), Assessing the dimensional stability of two hardwood species grown in Turkey with acoustic measurements. Proceedings of the 18th International Nondestructive Testing and Evaluation of Wood Symposium, 459–468. Madison: United States Department of Agriculture, Forest Service.
  • FAKOPP. (2022), FAKOPP microsecond timer manual. Hungary.
  • Görgün, H. V., Dündar, T. (2016), Yapı kerestelerinde eğilme özelliklerinin incelenmesinde akustik esaslı tahribatsız test yöntemlerinin karşılaştırılması, Kastamonu Üniversitesi, Orman Fakültesi Dergisi, 16(2), 616–621.
  • Görgün, H. V., Dündar, T. (2018), Strength grading of Turkish black pine structural timber by visual evaluation and nondestructive testing, Maderas. Ciencia y Tecnología, 20(1), 57–66.
  • Guntekin, E., Ozkan, S., Yilmaz, T. (2014), Prediction of bending properties for beech lumber using stress wave method, Maderas. Ciencia y Tecnología, 16(1), 93–98. DOI: 10.4067/S0718-221X2014005000008
  • Hoyle, R. J. (1961), A nondestructive test for stiffness of structural lumber. Forest Products Journal, 11(6), 251–254.
  • İçel, B., Beram, A. (2016), Tarihi ahşap yapılarda bazı odun özelliklerinin belirlenmesinde kullanılabilecek tahribatsız muayene yöntemleri, Türkiye Ormancılık Dergisi, 17(2), 201. DOI: 10.18182/tjf.02775
  • Niemz, P. (2008), Methods of non-destructive wood testing. Wood Science for Conservation of Cultural Heritage - Proceedings of the International Conference Held by COST Action. Braga: Firenze University Press.
  • Pellerin, R. F. (1965), A vibrational approach to nondestructive testing of structural lumber. Forest Products Journal, 15(3), 93–101.
  • Perstorper, M. (1994), Strength and stiffness prediction of timber using conventional and dynamic methodes, First European Symposium on Nondestructive Evaluation of Wood, Sopron, Hungary: University of Sopron.
  • Ross, R. J., Pellerin, R. F. (1994), Nondestructive testing for assessing wood members in structures.
  • Senft, J. F., Stanley K.S., Hugh D.A. (1962), A new approach to stress grading of lumber, Forest Products Journal, 12(4), 183–186.
  • Tanaka, T., Nagao, H., Nakai, T. (1991), Nondestructive evaluation of bending and tensile strength by longitudinal and transverse vibration of lumber, 8th International Symposium on Nondestructive Testing of Wood. Pullman, USA: Washington State University.
  • Tanasoiu, V., Miclea, C., Tanasoiu, C. (2002), Nondestructive testing techniques and piezoelectric ultrasonics transducers for wood and built in wooden structures. Journal of Optoelectronics and Advanced Materials, 4(4), 949–957.
  • Teles, R. F., Del Menezzi, C. H. S., de Souza, F., de Souza, M. R. (2011), Nondestructive evaluation of a tropical hardwood: interrelationship between methods and physical-acoustical variables, Revista Ciência Da Madeira (Brazilian Journal of Wood Science), 2(1), 10–12953.
  • White, R. H., & Ross, R. J. (2014), Wood and timber condition assessment manual, Madison

Determination of the relationship between static and dynamic modulus of elasticity in beech wood

Year 2023, , 47 - 54, 30.06.2023
https://doi.org/10.33725/mamad.1288875

Abstract

In this study, the relationship between the dynamic modulus of elasticity determined using the stress wave method, which is one of the non-destructive test methods, and the static modulus of elasticity determined according to the TS ISO 13061-2 (2021) standard was investigated. In this context, randomly selected beech (Fagus orientalis Lipsky) timbers of 12x13x110 cm3 in dimensions were used. The time of flight of the timber in the radial and longitudinal directions was determined by using a FAKOPP microsecond timer with an accuracy of 1 μs. Oven-dry densities of the beech timbers were determined according to the TS ISO 13061-2 (2021) standard. Firstly, stress wave velocity and then dynamic modulus of elasticity values were calculated with the obtained data. The beech timbers were then cut into 20x20x320 mm dimensions for the static modulus of elasticity tests. Static modulus of elasticity resistance tests of the specimens were carried out in a Shimadzu AGIC/20/50KN universal test machine according to the TS ISO 13061-4 (2021) standard. Linear regression analyses of static and dynamic modulus of elasticity results were performed. According to the results of the analyses, it was determined that there is a strong relationship between the static and dynamic modulus of elasticity.

References

  • Bozkurt, A. Y. (1986), Ağaç teknolojisi, İstanbul: İstanbul Üniversitesi, Taş Matbaası.
  • Bozkurt, A. Y., Göker, Y. (1987), Fiziksel ve mekanik ağaç teknolojisi, İstanbul: İstanbul Üniversitesi, Orman Fakültesi.
  • Bucur, V. (2003, Nondestructive Characterization and Imaging of Wood, Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: 10.1007/978-3-662-08986-6
  • Dackermann, U., Crews, K., Kasal, B., Li, J., Riggio, M., Rinn, F., Tannert, T. (2014), In situ assessment of structural timber using stress-wave measurements, Materials and Structures, 47(5), 787–803. DOI: 10.1617/s11527-013-0095-4
  • Divos, F. (2000), Stress wave based tomography for tree evaluation, Proceedings of the 12th International Symposium on Nondestructive Testing of Wood.
  • Divos, F., Sismandy, F., Takats, P. (2011), Evaluation of historical wooden structures using nondestructive methods, Proceedings of the International Conference on Structural Health Assessment of Timber Structures (SHATIS). Lisbon.
  • Divos, F., Toshinari, T. (2005), Relation between static and dynamic modulus of elasticity of wood, Acta Silvatica et Lignaria Hungarica, 1, 105–110.
  • Dündar, T., Divos, F. (2014), European wood NDT&NDE research and practical applications, Eurasscience Journals, 1(1), 35–43.
  • Dündar, T., Kurt, Ş., As, N., Uysal, B. (2012), Nondestructive evaluation of wood strength using thermal conductivity, BioResources, 7(3), 3306–3316.
  • Dündar, T., Wang, X., As, N., Avcı, E. (2013), Assessing the dimensional stability of two hardwood species grown in Turkey with acoustic measurements. Proceedings of the 18th International Nondestructive Testing and Evaluation of Wood Symposium, 459–468. Madison: United States Department of Agriculture, Forest Service.
  • FAKOPP. (2022), FAKOPP microsecond timer manual. Hungary.
  • Görgün, H. V., Dündar, T. (2016), Yapı kerestelerinde eğilme özelliklerinin incelenmesinde akustik esaslı tahribatsız test yöntemlerinin karşılaştırılması, Kastamonu Üniversitesi, Orman Fakültesi Dergisi, 16(2), 616–621.
  • Görgün, H. V., Dündar, T. (2018), Strength grading of Turkish black pine structural timber by visual evaluation and nondestructive testing, Maderas. Ciencia y Tecnología, 20(1), 57–66.
  • Guntekin, E., Ozkan, S., Yilmaz, T. (2014), Prediction of bending properties for beech lumber using stress wave method, Maderas. Ciencia y Tecnología, 16(1), 93–98. DOI: 10.4067/S0718-221X2014005000008
  • Hoyle, R. J. (1961), A nondestructive test for stiffness of structural lumber. Forest Products Journal, 11(6), 251–254.
  • İçel, B., Beram, A. (2016), Tarihi ahşap yapılarda bazı odun özelliklerinin belirlenmesinde kullanılabilecek tahribatsız muayene yöntemleri, Türkiye Ormancılık Dergisi, 17(2), 201. DOI: 10.18182/tjf.02775
  • Niemz, P. (2008), Methods of non-destructive wood testing. Wood Science for Conservation of Cultural Heritage - Proceedings of the International Conference Held by COST Action. Braga: Firenze University Press.
  • Pellerin, R. F. (1965), A vibrational approach to nondestructive testing of structural lumber. Forest Products Journal, 15(3), 93–101.
  • Perstorper, M. (1994), Strength and stiffness prediction of timber using conventional and dynamic methodes, First European Symposium on Nondestructive Evaluation of Wood, Sopron, Hungary: University of Sopron.
  • Ross, R. J., Pellerin, R. F. (1994), Nondestructive testing for assessing wood members in structures.
  • Senft, J. F., Stanley K.S., Hugh D.A. (1962), A new approach to stress grading of lumber, Forest Products Journal, 12(4), 183–186.
  • Tanaka, T., Nagao, H., Nakai, T. (1991), Nondestructive evaluation of bending and tensile strength by longitudinal and transverse vibration of lumber, 8th International Symposium on Nondestructive Testing of Wood. Pullman, USA: Washington State University.
  • Tanasoiu, V., Miclea, C., Tanasoiu, C. (2002), Nondestructive testing techniques and piezoelectric ultrasonics transducers for wood and built in wooden structures. Journal of Optoelectronics and Advanced Materials, 4(4), 949–957.
  • Teles, R. F., Del Menezzi, C. H. S., de Souza, F., de Souza, M. R. (2011), Nondestructive evaluation of a tropical hardwood: interrelationship between methods and physical-acoustical variables, Revista Ciência Da Madeira (Brazilian Journal of Wood Science), 2(1), 10–12953.
  • White, R. H., & Ross, R. J. (2014), Wood and timber condition assessment manual, Madison
There are 25 citations in total.

Details

Primary Language English
Subjects Timber, Pulp and Paper, Wood Physics and Mechanics
Journal Section Articles
Authors

Emre Birinci 0000-0003-0727-1789

Early Pub Date June 25, 2023
Publication Date June 30, 2023
Submission Date April 27, 2023
Acceptance Date June 7, 2023
Published in Issue Year 2023

Cite

APA Birinci, E. (2023). Determination of the relationship between static and dynamic modulus of elasticity in beech wood. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 6(1), 47-54. https://doi.org/10.33725/mamad.1288875

Uluslararası Dergidir

32217    18332 18333   3221918334 18335   18336   18339   18434   32216 32218  32220 32221 download download    

32275   32308  32309 


32332  32384  32385 32400