Research Article
BibTex RIS Cite

Properties of biocomposites produced with polypropylene and willow (Salix babylonica L.) wood/bark

Year 2023, , 134 - 145, 29.12.2023
https://doi.org/10.33725/mamad.1382624

Abstract

The present study investigates the influence of various components of wood-plastic composites (WPCs) namely wood (W), inner bark (IB), outer bark (OB), and their varied percentage mixture on the mechanical behaviour. To achieve this goal, willow W, IB and OB flours were used as reinforcements at different weight percentages (17%, 27%, and 40%) in combination with polypropylene (PP) at varying weight percentages (44%, 58%, and 64%) along with a 2% compatibilizer. These constituents were processed in a twin-screw extruder with each treatment having a distinct mass proportion of reinforcement to polypropylene. Subsequently, test samples were fabricated using an injection molding machine from the obtained pellets. The mechanical properties of the resulting biocomposites were evaluated in accordance with ASTM standards. It was observed that, the flexural and tensile characteristics of the WPCs improved by the increasing inner bark content. Based on the findings of this investigation, a formulation comprising 27% wood, 27% inner bark, 44% polypropylene and 2% compatibilizing agent (W/IB/PP/MAPP) can be recommended where high mechanical properties are required. However, the other reinforced biocomposites exhibited notably lower notched impact strength compared to pure polypropylene.

References

  • Bersenev RS, (1975), Использованиекорынаудобрения (The use of bark for fertilizer), DerevoobrabatyvajushhajaPromyshlennost, 12(27).
  • Bick A, (2012) Die Steinzeit (Thesis WissenKompakt) [The Stone Age (Thesis Knowledge Compact)], Thesis, Stuttgart, Germany.
  • Blanchet P, Cloutier A, Riedl B, (2000), Particleboard made from hammer milled black spruce bark residues, Wood Science and Technology, 34(1):11-19. DOI: https://doi.org/10.1007/s002260050003
  • Bouafif H, Koubaa A, Perre P, Cloutier A, (2009), Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites, Composites Part A: Applied Science and Manufacturing, 40(12):1975-1981. DOI: https://doi.org/10.1016/j.compositesa.2009.06.003
  • Bouafif H, Koubaa A, Perre P, Cloutier A, Riedl B, (2008), Analysis of among-species variability in wood fiber surface using DRIFTS and XPS: Effects on esterification efficiency, Journal of Wood Chemistry and Technology, 28(4):296-315. DOI: https://doi.org/10.1080/02773810802485139
  • Doczekalska B, Bartkowiak M, Zakrzewski R, (2014), Esterification of willow wood with cyclic acid anhydride, Wood Research, 59(1):85-96.
  • Dou J, Galvis L, Holopainen-Mantila U, Reza M, Tamminen T, Vuorinen T, (2016), Morphology and overall chemical characterization of willow (Salix sp.) inner bark and wood: Toward controlled deconstruction of willow biomass, ACS Sustainable Chemistry and Engineering, 4(7):3871-3876. DOI: https://doi.org/10.1021/acssuschemeng.6b00641
  • Dou J, (2015), Willow inner bark as a potential source of fibers and chemicals. Master’s thesis for the degree of Master of Science in Technology submitted for inspection, Espoo.
  • Ek M, Gellerstedt G, Henriksson G, (2009), Pulp and Paper Chemistry and Technology: Volume 1. Wood Chemistry and Wood Biotechnology, De Gruyter, Berlin, Germany.
  • Gamstedt KE, Nygard P, Lindström M, (2007), Transfer of knowledge from papermaking to manufacture of composite materials, In: Proceeding of 3rd symposium international surles composites bois polymères, Bordeaux, France.
  • Guidi W, Piccioni E, Ginanni M, Bonari E, (2008), Bark content estimation in poplar (Populus deltoids L.) short-rotation coppice in central Italy, Biomass and Bioenergy, 32(6):518-524. DOI: https://doi.org/10.1016/j.biombioe.2007.11.012
  • Han G, Wu Q, Lu JZ, (2006), Selected properties of wood strand and oriented strand board from small-diameter southern pine trees, Wood and Fiber Science, 38(4):621-632.
  • Han S-H, Shin S-J, (2014), Investigation of solid energy potential of wood and bark obtained from four clones of a 2-year old goat willow, Frontiers in Energy Research, 2:5. DOI: https://doi.org/10.3389/fenrg.2014.00005
  • Harper DP, Eberhardt TL, (2010), Evaluation of micron-sized wood and bark particles as filler in thermoplastic composites, In: 10th international conference on wood &biofiber plastic composites, Madison, WI.
  • Hosseinihashemi SK, Shamspour M-H, Safdari V, Pourmousa S, Ayrilmis N, (2017), The influences of poplar inner and outer bark content on mechanical properties of wood/polypropylene composites, Journal of the Chilean Chemical Society, 62(1):3365-3369. DOI: https://doi.org/10.4067/S0717-97072017000100012
  • Kaboorani A, Gray N, Hamzeh Y, Abdulkhani A, Shirmohammadli Y, (2021), Tailoring the low-density polyethylene-thermoplastic starch composites using cellulose nanocrystals and compatibilizer, Polymer Testing, 93:107007. DOI: https://doi.org/10.1016/j.polymertesting.2020.107007
  • Makarychev SV, (2015), Thermophysical properties of thermoplastics made on the basis of wood wastes, Altai State Agricultural University Bulletin, 6(128):139-142.
  • Migneault S, Koubaa A, Erchiqui F, Chaala A, Englund K, Wolcott MP, (2009), Effects of processing method and fiber size on the structure and properties of wood-plastic composites, Composites Part A: Applied Science and Manufacturing, 40(91):80-85. DOI: https://doi.org/10.1016/j.compositesa.2008.10.004
  • Muñoz F, Ballerini A, Gacitúa W, (2013), Variability of physical, morphological and thermal properties of Eucalyptus nitens bark fiber, MaderasCiencia y Tecnología, 15(1):17-30.
  • Muszynski Z, McNatt JD, (1984), Investigations on the use of spruce bark in the manufacture of particleboard in Poland, Forest Product Journal, 34(1):28-35.
  • Nyikosov VD, (1985), Komplexnoliszpolzovaniedreveszini, Lesznejapramislenoszty, Moszkva, 264 pp.
  • Oktaee J, Lautenschläger T, Günther M, Neinhuis C, Wagenführ A, Lindner M, Winkler A, (2017), Characterization of willow bast fibers (Salix spp.) from short-rotation plantation as potential reinforcement for polymer composites, BioResources, 12(2):4270-4282. DOI: https://doi.org/10.15376/biores.12.2.4270-4282
  • Panshin AJ, de Zeeuw C, (1980), Textbook of Wood Technology: Structure, Identification, Properties, and Uses of the Commercial Woods of the United States and Canada, Volume 1, McGraw-Hill, New York, USA.
  • Pickering KL, AruanEfendy MG, Le TM, (2016), A review of recent developments in natural fiber composites and their mechanical performance, Composites Part A: Applied Science and manufacturing, 83:98-112.
  • Rowell RM, Sanadi AR, Caulfield DF, Jacobson E, (1997), Utilization of natural fibers in plastic composites: Problems and opportunities, In: Leão, A. L.; Carvalho, F. X.; Frollini, E. (eds.), Lignocellulosic-Plastic Composites, São Paulo, USP & UNESP, 23-51.
  • Rudenko BD, (2010), Influence of structure on formation of properties of plates from the bark and secondary polyethylene, Moscow State Forest University Bulletin — LesnoyVestnik, 4:151-154.
  • Safdari V, Khodadadi H, Hosseinihashemi SK, Ganjian E, (2011), The effects of poplar bark and wood content on the mechanical properties of wood-polypropylene composites, BioResources, 6(4):5180-5192. DOI: https://doi.org/10.15376/biores.6.4.5180-5192
  • Saputra H, Simonsen J, Li K, (2004), Effect of extractives on the flexural properties of wood/plastic composites, Composite Interfaces, 11(7):515-524. DOI: https://doi.org/10.1163/1568554042722964
  • Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K, (2011), Trees as bioindicator of heavy metal pollution in three European cities, Environmental Pollution, 159:3560-3570. DOI: https://doi.org/10.1016/j.envpol.2011.08.008
  • Sopp L, Kolozs L, (2000), Cubage tables of trees, ÁllamiErdészetiSzolgálat, Budapest, Hungary, pp. 24-29.
  • Stark NM, Berger MJ, (1997), Effect of particle size on properties of wood-flour reinforced composites, 4th International Conference of Woodfiber-plastic Composites, Madison, Wisconsin.
  • Stark NM, Rowlands RE, (2003), Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites, Journal of Wood Fiber and Science, 35(2):167-174.
  • Ugolev BN, (1986), Wood science with the basics of forest products, 2nd Revised Edition, Lesnajapromyshlennost, Moscow, Russia.
  • Väisänen T, Haapala A, Lappalianen R, Tomppo L, (2016), Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review, Waste Management, 54:62-73. DOI: https://doi.org/10.1016/j.wasman.2016.04.037
  • Yemele MCN, Koubaa A, Cloutier A, Soulounganga P, Wolcott M, (2010), Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites, Composites Part A: Applied Science and Manufacturing, 41(1):131-137. DOI: https://doi.org/10.1016/j.compositesa.2009.06.005

Polipropilen ve söğüt (Salix babylonica L.) odunu/kabuğu ile üretilen biyokompozitlerin özellikleri

Year 2023, , 134 - 145, 29.12.2023
https://doi.org/10.33725/mamad.1382624

Abstract

Bu çalışmada, odun-plastik kompozitlerin OPK'lar) çeşitli bileşenlerinin, yani odun (O), iç kabuk (İK), dış kabuğun (DK) ve bunların çeşitli yüzdelerdeki karışımlarının mekanik davranış üzerindeki etkisi araştırıldı. Bu amaç için, farklı ağırlık yüzdelerinde (17%, 27% ve 40%) söğüt O, İK ve DK unları, değişen ağırlık yüzdelerinde (44%, 58%, 40%) ve 64%, ayrıca 2%'lik bir bağdaştırıcı ve polipropilen (PP) ile kombinasyon halinde takviye olarak kullanıldı. Bu bileşenler çift vidalı bir ekstrüderde işlendi; her işlemde polipropilene göre farklı bir kütlesel takviye oranı vardı. Daha sonra, elde edilen peletlerden bir enjeksiyon kalıplama makinesi kullanılarak test numuneleri üretildi. Elde edilen biyokompozitlerin mekanik özellikleri ASTM standartlarına uygun olarak değerlendirildi. İç kabuk içeriğinin artmasıyla OPK’larıneğilme ve çekme özelliklerinin arttığı gözlemlendi. Bu araştırmanın bulgularına dayanarak, yüksek mekanik özelliklerin gerekli olduğu durumlarda 27% odun, 27% iç kabuk, 44% polipropilen ve 2% uyumlaştırıcı madde (O/İK/PP/MAPP) içeren bir formülasyon önerilebilir. Bununla birlikte, diğer güçlendirilmiş biyokompozitler, saf polipropilenle karşılaştırıldığında belirgin şekilde daha düşük çentikli darbe dayanımı sergiledi.

References

  • Bersenev RS, (1975), Использованиекорынаудобрения (The use of bark for fertilizer), DerevoobrabatyvajushhajaPromyshlennost, 12(27).
  • Bick A, (2012) Die Steinzeit (Thesis WissenKompakt) [The Stone Age (Thesis Knowledge Compact)], Thesis, Stuttgart, Germany.
  • Blanchet P, Cloutier A, Riedl B, (2000), Particleboard made from hammer milled black spruce bark residues, Wood Science and Technology, 34(1):11-19. DOI: https://doi.org/10.1007/s002260050003
  • Bouafif H, Koubaa A, Perre P, Cloutier A, (2009), Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites, Composites Part A: Applied Science and Manufacturing, 40(12):1975-1981. DOI: https://doi.org/10.1016/j.compositesa.2009.06.003
  • Bouafif H, Koubaa A, Perre P, Cloutier A, Riedl B, (2008), Analysis of among-species variability in wood fiber surface using DRIFTS and XPS: Effects on esterification efficiency, Journal of Wood Chemistry and Technology, 28(4):296-315. DOI: https://doi.org/10.1080/02773810802485139
  • Doczekalska B, Bartkowiak M, Zakrzewski R, (2014), Esterification of willow wood with cyclic acid anhydride, Wood Research, 59(1):85-96.
  • Dou J, Galvis L, Holopainen-Mantila U, Reza M, Tamminen T, Vuorinen T, (2016), Morphology and overall chemical characterization of willow (Salix sp.) inner bark and wood: Toward controlled deconstruction of willow biomass, ACS Sustainable Chemistry and Engineering, 4(7):3871-3876. DOI: https://doi.org/10.1021/acssuschemeng.6b00641
  • Dou J, (2015), Willow inner bark as a potential source of fibers and chemicals. Master’s thesis for the degree of Master of Science in Technology submitted for inspection, Espoo.
  • Ek M, Gellerstedt G, Henriksson G, (2009), Pulp and Paper Chemistry and Technology: Volume 1. Wood Chemistry and Wood Biotechnology, De Gruyter, Berlin, Germany.
  • Gamstedt KE, Nygard P, Lindström M, (2007), Transfer of knowledge from papermaking to manufacture of composite materials, In: Proceeding of 3rd symposium international surles composites bois polymères, Bordeaux, France.
  • Guidi W, Piccioni E, Ginanni M, Bonari E, (2008), Bark content estimation in poplar (Populus deltoids L.) short-rotation coppice in central Italy, Biomass and Bioenergy, 32(6):518-524. DOI: https://doi.org/10.1016/j.biombioe.2007.11.012
  • Han G, Wu Q, Lu JZ, (2006), Selected properties of wood strand and oriented strand board from small-diameter southern pine trees, Wood and Fiber Science, 38(4):621-632.
  • Han S-H, Shin S-J, (2014), Investigation of solid energy potential of wood and bark obtained from four clones of a 2-year old goat willow, Frontiers in Energy Research, 2:5. DOI: https://doi.org/10.3389/fenrg.2014.00005
  • Harper DP, Eberhardt TL, (2010), Evaluation of micron-sized wood and bark particles as filler in thermoplastic composites, In: 10th international conference on wood &biofiber plastic composites, Madison, WI.
  • Hosseinihashemi SK, Shamspour M-H, Safdari V, Pourmousa S, Ayrilmis N, (2017), The influences of poplar inner and outer bark content on mechanical properties of wood/polypropylene composites, Journal of the Chilean Chemical Society, 62(1):3365-3369. DOI: https://doi.org/10.4067/S0717-97072017000100012
  • Kaboorani A, Gray N, Hamzeh Y, Abdulkhani A, Shirmohammadli Y, (2021), Tailoring the low-density polyethylene-thermoplastic starch composites using cellulose nanocrystals and compatibilizer, Polymer Testing, 93:107007. DOI: https://doi.org/10.1016/j.polymertesting.2020.107007
  • Makarychev SV, (2015), Thermophysical properties of thermoplastics made on the basis of wood wastes, Altai State Agricultural University Bulletin, 6(128):139-142.
  • Migneault S, Koubaa A, Erchiqui F, Chaala A, Englund K, Wolcott MP, (2009), Effects of processing method and fiber size on the structure and properties of wood-plastic composites, Composites Part A: Applied Science and Manufacturing, 40(91):80-85. DOI: https://doi.org/10.1016/j.compositesa.2008.10.004
  • Muñoz F, Ballerini A, Gacitúa W, (2013), Variability of physical, morphological and thermal properties of Eucalyptus nitens bark fiber, MaderasCiencia y Tecnología, 15(1):17-30.
  • Muszynski Z, McNatt JD, (1984), Investigations on the use of spruce bark in the manufacture of particleboard in Poland, Forest Product Journal, 34(1):28-35.
  • Nyikosov VD, (1985), Komplexnoliszpolzovaniedreveszini, Lesznejapramislenoszty, Moszkva, 264 pp.
  • Oktaee J, Lautenschläger T, Günther M, Neinhuis C, Wagenführ A, Lindner M, Winkler A, (2017), Characterization of willow bast fibers (Salix spp.) from short-rotation plantation as potential reinforcement for polymer composites, BioResources, 12(2):4270-4282. DOI: https://doi.org/10.15376/biores.12.2.4270-4282
  • Panshin AJ, de Zeeuw C, (1980), Textbook of Wood Technology: Structure, Identification, Properties, and Uses of the Commercial Woods of the United States and Canada, Volume 1, McGraw-Hill, New York, USA.
  • Pickering KL, AruanEfendy MG, Le TM, (2016), A review of recent developments in natural fiber composites and their mechanical performance, Composites Part A: Applied Science and manufacturing, 83:98-112.
  • Rowell RM, Sanadi AR, Caulfield DF, Jacobson E, (1997), Utilization of natural fibers in plastic composites: Problems and opportunities, In: Leão, A. L.; Carvalho, F. X.; Frollini, E. (eds.), Lignocellulosic-Plastic Composites, São Paulo, USP & UNESP, 23-51.
  • Rudenko BD, (2010), Influence of structure on formation of properties of plates from the bark and secondary polyethylene, Moscow State Forest University Bulletin — LesnoyVestnik, 4:151-154.
  • Safdari V, Khodadadi H, Hosseinihashemi SK, Ganjian E, (2011), The effects of poplar bark and wood content on the mechanical properties of wood-polypropylene composites, BioResources, 6(4):5180-5192. DOI: https://doi.org/10.15376/biores.6.4.5180-5192
  • Saputra H, Simonsen J, Li K, (2004), Effect of extractives on the flexural properties of wood/plastic composites, Composite Interfaces, 11(7):515-524. DOI: https://doi.org/10.1163/1568554042722964
  • Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K, (2011), Trees as bioindicator of heavy metal pollution in three European cities, Environmental Pollution, 159:3560-3570. DOI: https://doi.org/10.1016/j.envpol.2011.08.008
  • Sopp L, Kolozs L, (2000), Cubage tables of trees, ÁllamiErdészetiSzolgálat, Budapest, Hungary, pp. 24-29.
  • Stark NM, Berger MJ, (1997), Effect of particle size on properties of wood-flour reinforced composites, 4th International Conference of Woodfiber-plastic Composites, Madison, Wisconsin.
  • Stark NM, Rowlands RE, (2003), Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites, Journal of Wood Fiber and Science, 35(2):167-174.
  • Ugolev BN, (1986), Wood science with the basics of forest products, 2nd Revised Edition, Lesnajapromyshlennost, Moscow, Russia.
  • Väisänen T, Haapala A, Lappalianen R, Tomppo L, (2016), Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review, Waste Management, 54:62-73. DOI: https://doi.org/10.1016/j.wasman.2016.04.037
  • Yemele MCN, Koubaa A, Cloutier A, Soulounganga P, Wolcott M, (2010), Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites, Composites Part A: Applied Science and Manufacturing, 41(1):131-137. DOI: https://doi.org/10.1016/j.compositesa.2009.06.005
There are 35 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials, Wood Based Composites
Journal Section Articles
Authors

Seyyed Khalil Hosseinihashemi 0000-0001-6236-0376

Ayoub Eshghi 0009-0002-6674-9017

Younes Shirmohammadli 0000-0002-4695-1368

Early Pub Date December 25, 2023
Publication Date December 29, 2023
Submission Date November 3, 2023
Acceptance Date December 3, 2023
Published in Issue Year 2023

Cite

APA Hosseinihashemi, S. K., Eshghi, A., & Shirmohammadli, Y. (2023). Properties of biocomposites produced with polypropylene and willow (Salix babylonica L.) wood/bark. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 6(2), 134-145. https://doi.org/10.33725/mamad.1382624

Uluslararası Dergidir

32217    18332 18333   3221918334 18335   18336   18339   18434   32216 32218  32220 32221 download download    

32275   32308  32309 


32332  32384  32385 32400