Research Article
BibTex RIS Cite

Some selected properties of composite material produced from plastic furniture waste and wood flour

Year 2023, , 233 - 244, 29.12.2023
https://doi.org/10.33725/mamad.1384214

Abstract

In this study, composite boards were produced using waste plastic furniture parts and wood flour. Wood flour was used at rates of 0%, 15%, 30% and 45% in the preparation of composite boards. Thus, 1 control and 3 composite groups were created. The boards are produced in dimensions of 3.5x175x175 mm (thickness, width, length). Density, flexural strength, flexural modulus, deformation at break, tensile strength, tensile modulus, elongation at break, hardness tests and thermal gravimetric analysis (TGA) and differential scanning calorimeter (DSC) analysis were performed on the produced composite boards. According to the obtained data, it was determined that as the percentage of wood flour in the composite groups increased compared to the control group, the values of flexural strength, deformation at break, tensile strength and elongation at break decreased whereas the values of density, hardness, flexural modulus and tensile modulus increased. According to the TGA and DSC analysis results, it was understood that the waste plastic furniture parts were composed of linear low density polyethylene (LLDPE) and polypropylene (PP) polymer materials, also the decomposition temperature of the composite materials partially increased with the increase in the percentage of wood flour.

References

  • Aliev, S., Egamberdiev, E., Turabdjanov, S., Rashidov, S., Juraev, A. (2023). Role of fillers in the production of wood-polymer composites. In E3S Web of Conferences (Vol. 434, p. 02030). EDP Sciences, DOI: 10.1051/e3sconf/202343402030
  • Altuntaş, E., Yılmaz, E., Salan, T. (2017), Investigation of the effect of high-fibrous filling material on the mechanical properties of wood plastic composites, Turkish Journal of Forestry, 18(3), 258-263, DOI: 10.18182/tjf.308969
  • ASTM D 638 (2022), Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA, 1–24 s.
  • ASTM D 790 (2016), Flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, Philadelphia, PA, 1–9 s.
  • ASTM D 792 (2004), Density and specific gravity (relative density) of plastics by displacement, ASTM International, West Conshohocken, PA, 1–11s.
  • ASTM D 2240 (2021), Standard test method for rubber property-durometer hardness, American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States, 1–27 s.
  • ASTM D 6662 (2001) Standard Specification for Polyolefin-Based Plastic Lumber Decking Boards, ASTM International, West Conshohocken, PA, 1–14s.
  • Atar İ., Başboğa, İ. H., Karakuş, K., Mengeloğlu, F. (2016), Utilization of eggplant (Solanum melongena) stalks as a filler ın manufacturıng of compress molded PP based composites, European Journal of Technique (EJT), 6(2), 138-144.
  • Bal, B. C., Kılavuz, M. (2015), İlk mobilya, Selcuk University Journal of Engineering Sciences, 14(2), 56-69.
  • Bal, B. C. (2022a), Mechanical Properties of Wood-plastic Composites Produced with Recycled Polyethylene, Used Tetra Pak® Boxes, and Wood Flour, BioResources, 17(4). 6569-6577, DOI: 10.15376/biores.17.4.6569-6577
  • Bal, B.C. (2022b), Lineer düşük yoğunluklu polietilen (LDYPE) ve odun unu ile üretilen kompozit malzemenin bazı mekanik özellikleri üzerine bir araştırma, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 5(1), 40-49, DOI: 10.33725/mamad.1126534
  • Bal, B.C., (2023a), Comparative study of some properties of wood plastic composite materials produced with polyethylene, wood flour and glass flour, Furniture and Wooden Material Research Journal, 6(1), 70-79, DOI: 10.33725/mamad.1301384
  • Bal B.C., (2023b), Some mechanical properties of WPCs with wood flour and walnut shell flour, Polímeros, 33 (2)1-8, DOI: 10.1590/0104-1428.20230005
  • Berger, M. J., Stark, N. M. (1997), Investigations of species effects in an injection-molding-grade, wood-filled polypropylene, In The fourth international conference on woodfiber-plastic composites (pp. 19-25).
  • Bekhta, P., Lyutyy, P., Ortynska, G. (2017), Properties of veneered flat pressed wood plastic composites by one-step process pressing, Journal of Polymers and the Environment, 25(4), 1288-1295, DOI: 10.1007/s10924-016-0904-2
  • Çavuş, V., Mengeloğlu, F. (2017), The effect of lignocellulosic filler types and concentrations on the mechanical properties of wood plastic composites produced with polypropylene having various melt flowing index (MFI), Pamukkale University Journal of Engineering Sciences, 23(8), 994-999, DOI: 10.5505/pajes.2017.80000
  • Çavus, V. (2020), Selected properties of mahogany wood flour filled polypropylene composites: The effect of maleic anhydride-grafted polypropylene (MAPP), BioResources 15(2), 2227-2236, DOI: 10.15376/biores.15.2.2227-2236
  • Dikobe, D. G., Luyt, A. S. (2010), Comparative study of the morphology and properties of PP/LLDPE/wood powder and MAPP/LLDPE/wood powder polymer blend composites. Express Polymer Letters, 4(11), DOI: 10.3144/expresspolymlett.2010.88
  • Fiore, V., Botta, L., Scaffaro, R., Valenza, A., Pirrotta, A. (2014), PLA based biocomposites reinforced with Arundo donax fillers. Composites Science and Technology, 105, 110-117, DOI: 10.1016/j.compscitech.2014.10.005
  • Fonseca, C. A., Harrison, I. R. (1998). An investigation of co-crystallization in LDPE/HDPE blends using DSC and TREF. Thermochimica Acta, 313(1), 37-41, DOI: 10.1016/S0040-6031(97)00465-6
  • Golebiewski, J., Galeski, A. (2007). Thermal stability of nanoclay polypropylene composites by simultaneous DSC and TGA. Composites Science and Technology, 67(15-16), 3442-3447, DOI: 10.1016/j.compscitech.2007.03.007
  • Klyosov, A.A. 2007. Wood-plastic composites. John Wiley & Sons, Inc., Hoboken, New Jersey, 720s, DOI: 10.1002/9780470165935
  • Li, D., Zhou, L., Wang, X., He, L., Yang, X. (2019). Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property. Materials, 12(11), 1746, DOI: 10.3390/ma12111746
  • Lyutyy, P., Bekhta, P., Ortynska, G. (2018). Lightweight flat pressed wood plastic composites: Possibility of manufacture and properties. Drvna industrija, 69(1), 55-62, DOI: 10.5552/drind.2018.1746
  • Matuana, L. M., Stark, N. M. (2015). The use of wood fibers as reinforcements in composites, in: Biofiber Reinforcements in Composite Materials, Woodhead Publishing, Swaston, UK, pp. 648-688, DOI: 10.1533/9781782421276.5.648
  • Mengeloğlu, F., Karakuş, K. (2008). Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites. Turkish journal of agriculture and forestry, 32(6), 537-546.
  • Mengeloglu, F., Basboga, İ. H., Aslan, T. (2015). Selected properties of furniture plant waste filled thermoplastic composites, Pro Ligno, 11(4), 199-206.
  • Miyahara, R. Y., Melquiades, F. L., Ligowski, E., Santos, A. D., Fávaro, S. L., Antunes Junior, O. D. R. (2018). Preparation and characterization of composites from plastic waste and sugar cane fiber. Polímeros, 28, 147-154, DOI: 10.1590/0104-1428.12216
  • Narlıoğlu, N., Salan, T., Çetin, N. S., Alma, M. H. (2018a). Evaluation of furniture industry wastes in polymer composite production, Furniture and Wooden Material Research Journal 1(2), 78-85, DOI: 10.33725/mamad.492418
  • Narlıoğlu, N., Çetin, N. S., Alma, M. H. (2018b). Effect of black pine sawdust on the mechanical properties of polypropylene composites, Furniture and Wooden Material Research Journal 1(1), 38-45, DOI: 10.33725/mamad.433532
  • Narlıoğlu, N. (2021). Evaluation of hornbeam (Carpinus betulus L.) wood sanding dust in thermoplastic composite production. Furniture and Wooden Material Research Journal, 4(1), 9-18, DOI: 10.33725/mamad.1114080
  • Nukala, S. G., Kong, I., Kakarla, A. B., Tshai, K. Y., Kong, W. (2022). Preparation and characterisation of wood polymer composites using sustainable raw materials. Polymers, 14(15), 3183, DOI: 10.3390/polym14153183
  • Özkaya, K., Dizel, T., Imirzi, H. Ö. (2021). Study of effect of waste tire rubber which is a recycling material in production of laminated veneer lumber (LVL) boards. Progress in Rubber, Plastics and Recycling Technology, 37(4), 412-421, DOI: 10.1177/14777606211019408
  • Özmen, N., Çetin, N. S., Narlıoğlu, N., Çavuş, V., Altuntaş, E. (2014). MDF atıklarının odun plastik kompozitlerin üretiminde değerlendirilmesi. SDÜ Orman Fakültesi Dergisi, 15, 65-71.
  • Rahman, S., Islam, M. N., Ratul, S. B., Dana, N. H., Musa, S. M., Hannan, M. O. (2018). Properties of flat-pressed wood plastic composites as a function of particle size and mixing ratio. Journal of Wood Science, 64(3), 279-286, DOI: 10.1007/s10086-018-1702-3
  • Srivabut, C., Ratanawilai, T., Hiziroglu, S. (2021). Statistical modeling and response surface optimization on natural weathering of wood–plastic composites with calcium carbonate filler. Journal of Material Cycles and Waste Management, 23(4), 1503-1517, DOI: 10.1007/s10163-021-01230-7
  • Stark, N.M., Matuana, L.M. 2004. Surface chemistry and mechanical property changes of wood-flour/high-density-polyethylene composites after accelerated weathering. Journal of Applied Polymer Science, 94(6): 2263-2273, DOI: 10.1002/app.20996
  • Smith, P.M. Wolcott, M.P. 2006. Opportunities for wood/natural fiber-plastic composites in residential and industrial applications. Forest Products Journal, 56(3): 4-11.
  • Xanthos, M. (2005). Calcium carbonate. Functional Fillers for Plastics. Wiley-VCH Verlag GmbH & Co. KGaA, 271-284, DOI: 10.1002/3527605096

Plastik mobilya atıkları ve odun unu ile üretilen kompozit malzemenin seçili bazı özellikleri

Year 2023, , 233 - 244, 29.12.2023
https://doi.org/10.33725/mamad.1384214

Abstract

Bu çalışmada, atık plastik mobilya parçaları ve odun unu kullanılarak kompozit levhalar üretilmiştir. Kompozit levhaların hazırlanmasında, %0, %15, %30 ve %45 oranlarında odun unu kullanılmıştır. Böylece 1 kontrol ve 3 kompozit grubu oluşturulmuştur. Levhalar 3.5x175x175 mm (kalınlık, genişlik, uzunluk) ölçülerinde üretilmiştir. Üretilen kompozit levhaların yoğunluk, eğilme direnci, eğilmede elastikiyet modülü, kopmada deformasyon, çekme direnci, çekmede elastikiyet modülü, kopmada uzama ve sertlik testleri ile termo gravimetrik analiz (TGA) ve diferansiyel taramalı kalorimetre (DSC) analizi yapılmıştır. Elde edilen verilere göre; kontrol grubuna göre kompozit gruplarındaki odun unu yüzdesi arttıkça eğilme direnci, kopmada deformasyon, çekme direnci ve kopmada uzama değerlerinin azaldığı, buna karşılık, yoğunluk, sertlik, eğilmede elastikiyet ve çekmede elastikiyet değerlerinin arttığı belirlenmiştir. TGA ve DSC analizi sonuçlarına göre atık plastik mobilya parçalarının doğrusal alçak yoğunluklu polietilen (DAYPE) ve polipropilen (PP) polimer malzemelerden oluştuğu, ayrıca odun unu oranının artmasıyla kompozit malzemelerin bozunma sıcaklığının kısmen arttığı anlaşılmıştır.

Ethical Statement

Yazarlar etik bir sorun olmadığını beyan eder.

Supporting Institution

Destekleyen kurum bulunmamaktadır.

References

  • Aliev, S., Egamberdiev, E., Turabdjanov, S., Rashidov, S., Juraev, A. (2023). Role of fillers in the production of wood-polymer composites. In E3S Web of Conferences (Vol. 434, p. 02030). EDP Sciences, DOI: 10.1051/e3sconf/202343402030
  • Altuntaş, E., Yılmaz, E., Salan, T. (2017), Investigation of the effect of high-fibrous filling material on the mechanical properties of wood plastic composites, Turkish Journal of Forestry, 18(3), 258-263, DOI: 10.18182/tjf.308969
  • ASTM D 638 (2022), Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA, 1–24 s.
  • ASTM D 790 (2016), Flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, Philadelphia, PA, 1–9 s.
  • ASTM D 792 (2004), Density and specific gravity (relative density) of plastics by displacement, ASTM International, West Conshohocken, PA, 1–11s.
  • ASTM D 2240 (2021), Standard test method for rubber property-durometer hardness, American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States, 1–27 s.
  • ASTM D 6662 (2001) Standard Specification for Polyolefin-Based Plastic Lumber Decking Boards, ASTM International, West Conshohocken, PA, 1–14s.
  • Atar İ., Başboğa, İ. H., Karakuş, K., Mengeloğlu, F. (2016), Utilization of eggplant (Solanum melongena) stalks as a filler ın manufacturıng of compress molded PP based composites, European Journal of Technique (EJT), 6(2), 138-144.
  • Bal, B. C., Kılavuz, M. (2015), İlk mobilya, Selcuk University Journal of Engineering Sciences, 14(2), 56-69.
  • Bal, B. C. (2022a), Mechanical Properties of Wood-plastic Composites Produced with Recycled Polyethylene, Used Tetra Pak® Boxes, and Wood Flour, BioResources, 17(4). 6569-6577, DOI: 10.15376/biores.17.4.6569-6577
  • Bal, B.C. (2022b), Lineer düşük yoğunluklu polietilen (LDYPE) ve odun unu ile üretilen kompozit malzemenin bazı mekanik özellikleri üzerine bir araştırma, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 5(1), 40-49, DOI: 10.33725/mamad.1126534
  • Bal, B.C., (2023a), Comparative study of some properties of wood plastic composite materials produced with polyethylene, wood flour and glass flour, Furniture and Wooden Material Research Journal, 6(1), 70-79, DOI: 10.33725/mamad.1301384
  • Bal B.C., (2023b), Some mechanical properties of WPCs with wood flour and walnut shell flour, Polímeros, 33 (2)1-8, DOI: 10.1590/0104-1428.20230005
  • Berger, M. J., Stark, N. M. (1997), Investigations of species effects in an injection-molding-grade, wood-filled polypropylene, In The fourth international conference on woodfiber-plastic composites (pp. 19-25).
  • Bekhta, P., Lyutyy, P., Ortynska, G. (2017), Properties of veneered flat pressed wood plastic composites by one-step process pressing, Journal of Polymers and the Environment, 25(4), 1288-1295, DOI: 10.1007/s10924-016-0904-2
  • Çavuş, V., Mengeloğlu, F. (2017), The effect of lignocellulosic filler types and concentrations on the mechanical properties of wood plastic composites produced with polypropylene having various melt flowing index (MFI), Pamukkale University Journal of Engineering Sciences, 23(8), 994-999, DOI: 10.5505/pajes.2017.80000
  • Çavus, V. (2020), Selected properties of mahogany wood flour filled polypropylene composites: The effect of maleic anhydride-grafted polypropylene (MAPP), BioResources 15(2), 2227-2236, DOI: 10.15376/biores.15.2.2227-2236
  • Dikobe, D. G., Luyt, A. S. (2010), Comparative study of the morphology and properties of PP/LLDPE/wood powder and MAPP/LLDPE/wood powder polymer blend composites. Express Polymer Letters, 4(11), DOI: 10.3144/expresspolymlett.2010.88
  • Fiore, V., Botta, L., Scaffaro, R., Valenza, A., Pirrotta, A. (2014), PLA based biocomposites reinforced with Arundo donax fillers. Composites Science and Technology, 105, 110-117, DOI: 10.1016/j.compscitech.2014.10.005
  • Fonseca, C. A., Harrison, I. R. (1998). An investigation of co-crystallization in LDPE/HDPE blends using DSC and TREF. Thermochimica Acta, 313(1), 37-41, DOI: 10.1016/S0040-6031(97)00465-6
  • Golebiewski, J., Galeski, A. (2007). Thermal stability of nanoclay polypropylene composites by simultaneous DSC and TGA. Composites Science and Technology, 67(15-16), 3442-3447, DOI: 10.1016/j.compscitech.2007.03.007
  • Klyosov, A.A. 2007. Wood-plastic composites. John Wiley & Sons, Inc., Hoboken, New Jersey, 720s, DOI: 10.1002/9780470165935
  • Li, D., Zhou, L., Wang, X., He, L., Yang, X. (2019). Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property. Materials, 12(11), 1746, DOI: 10.3390/ma12111746
  • Lyutyy, P., Bekhta, P., Ortynska, G. (2018). Lightweight flat pressed wood plastic composites: Possibility of manufacture and properties. Drvna industrija, 69(1), 55-62, DOI: 10.5552/drind.2018.1746
  • Matuana, L. M., Stark, N. M. (2015). The use of wood fibers as reinforcements in composites, in: Biofiber Reinforcements in Composite Materials, Woodhead Publishing, Swaston, UK, pp. 648-688, DOI: 10.1533/9781782421276.5.648
  • Mengeloğlu, F., Karakuş, K. (2008). Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites. Turkish journal of agriculture and forestry, 32(6), 537-546.
  • Mengeloglu, F., Basboga, İ. H., Aslan, T. (2015). Selected properties of furniture plant waste filled thermoplastic composites, Pro Ligno, 11(4), 199-206.
  • Miyahara, R. Y., Melquiades, F. L., Ligowski, E., Santos, A. D., Fávaro, S. L., Antunes Junior, O. D. R. (2018). Preparation and characterization of composites from plastic waste and sugar cane fiber. Polímeros, 28, 147-154, DOI: 10.1590/0104-1428.12216
  • Narlıoğlu, N., Salan, T., Çetin, N. S., Alma, M. H. (2018a). Evaluation of furniture industry wastes in polymer composite production, Furniture and Wooden Material Research Journal 1(2), 78-85, DOI: 10.33725/mamad.492418
  • Narlıoğlu, N., Çetin, N. S., Alma, M. H. (2018b). Effect of black pine sawdust on the mechanical properties of polypropylene composites, Furniture and Wooden Material Research Journal 1(1), 38-45, DOI: 10.33725/mamad.433532
  • Narlıoğlu, N. (2021). Evaluation of hornbeam (Carpinus betulus L.) wood sanding dust in thermoplastic composite production. Furniture and Wooden Material Research Journal, 4(1), 9-18, DOI: 10.33725/mamad.1114080
  • Nukala, S. G., Kong, I., Kakarla, A. B., Tshai, K. Y., Kong, W. (2022). Preparation and characterisation of wood polymer composites using sustainable raw materials. Polymers, 14(15), 3183, DOI: 10.3390/polym14153183
  • Özkaya, K., Dizel, T., Imirzi, H. Ö. (2021). Study of effect of waste tire rubber which is a recycling material in production of laminated veneer lumber (LVL) boards. Progress in Rubber, Plastics and Recycling Technology, 37(4), 412-421, DOI: 10.1177/14777606211019408
  • Özmen, N., Çetin, N. S., Narlıoğlu, N., Çavuş, V., Altuntaş, E. (2014). MDF atıklarının odun plastik kompozitlerin üretiminde değerlendirilmesi. SDÜ Orman Fakültesi Dergisi, 15, 65-71.
  • Rahman, S., Islam, M. N., Ratul, S. B., Dana, N. H., Musa, S. M., Hannan, M. O. (2018). Properties of flat-pressed wood plastic composites as a function of particle size and mixing ratio. Journal of Wood Science, 64(3), 279-286, DOI: 10.1007/s10086-018-1702-3
  • Srivabut, C., Ratanawilai, T., Hiziroglu, S. (2021). Statistical modeling and response surface optimization on natural weathering of wood–plastic composites with calcium carbonate filler. Journal of Material Cycles and Waste Management, 23(4), 1503-1517, DOI: 10.1007/s10163-021-01230-7
  • Stark, N.M., Matuana, L.M. 2004. Surface chemistry and mechanical property changes of wood-flour/high-density-polyethylene composites after accelerated weathering. Journal of Applied Polymer Science, 94(6): 2263-2273, DOI: 10.1002/app.20996
  • Smith, P.M. Wolcott, M.P. 2006. Opportunities for wood/natural fiber-plastic composites in residential and industrial applications. Forest Products Journal, 56(3): 4-11.
  • Xanthos, M. (2005). Calcium carbonate. Functional Fillers for Plastics. Wiley-VCH Verlag GmbH & Co. KGaA, 271-284, DOI: 10.1002/3527605096
There are 39 citations in total.

Details

Primary Language English
Subjects Wood Based Composites, Forest Industry Engineering (Other)
Journal Section Articles
Authors

Bekir Cihad Bal 0000-0001-7097-4132

Ertuğrul Altuntaş 0000-0002-1853-3206

Nasır Narlıoğlu 0000-0002-1295-6558

Early Pub Date December 25, 2023
Publication Date December 29, 2023
Submission Date October 31, 2023
Acceptance Date December 18, 2023
Published in Issue Year 2023

Cite

APA Bal, B. C., Altuntaş, E., & Narlıoğlu, N. (2023). Some selected properties of composite material produced from plastic furniture waste and wood flour. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 6(2), 233-244. https://doi.org/10.33725/mamad.1384214

Uluslararası Dergidir

32217    18332 18333   3221918334 18335   18336   18339   18434   32216 32218  32220 32221 download download    

32275   32308  32309 


32332  32384  32385 32400