Research Article
BibTex RIS Cite

N-octadecane /bio-char composite: preparation, characterization and energy storage properties

Year 2023, , 245 - 255, 29.12.2023
https://doi.org/10.33725/mamad.1390872

Abstract

Biochar (BC) is a carbonized material rich in functional groups that has many different uses such as soil reclamation, energy storage, anodic material in batteries and electromagnetic emission capture in buildings. The n-octadecane (OD) is a favourable organic phase change material (PCM) for thermal energy storage which can be applied in building energy storage materials due to its proper phase change temperature. In this study, BC was impregnated with the OD in the vacuum oven at 0.08 Mbar at 70 °C for 3h. The weight percentage gain was found to be 50% after impregnation. Leakage of OD from BC after impregnation was detected by leakage test. The physico-chemically characterize of thermally treated wood samples were examined by Fourier Transform Infrared Spectroscopy (FT-IR). Thermal degradation stability of the samples were analyzed by thermogravimetric analyses (TGA) and diffential scanning calorimetry (DSC) analysis. According to results, no leakage was observed after the leakage test in BC samples impregnated with OD. A significant amount of residue was evident in the BC after it was infused with OD indicating that its decomposition commenced only at markedly high temperatures according to TGA results. The FTIR spectrum doesn't show any extra absorbance peaks. According to obtained results, BC/OD exhibits favourable characteristics suitable for energy storage in buildings or similar applications.

References

  • Amini, M. H. M., Temiz, A., Zuraik, M. A., Hermawan, A., Sulaiman, N. S. (2023), Shape stabilized phase change material by pine wood absorption. Materials Today: Proceedings. DOI: 10.1016/j.matpr.2023.10.079
  • Atinafu, D. G., Ok, Y. S., Kua, H. W., Kim, S. (2020), Thermal properties of composite organic phase change materials (PCMs): A critical review on their engineering chemistry, Applied thermal engineering, 181, 115960. DOI: 10.1016/j.applthermaleng.2020.115960
  • Can, A. (2023), Thermal characterization of phase‐changing materials as stabilized thermal energy storage materials in impregnated wood, Energy Storage, 5(1), e397. DOI: 10.1002/est2.397
  • Can, A., Žigon, J. (2022), n-Heptadecane-Impregnated Wood as a Potential Material for Energy-Saving Buildings, Forests, 13(12), 2137. DOI: 10.3390/f13122137
  • Chen, Z., Shan, F., Cao, L., Fang, G. (2012), Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage, Solar Energy Materials and Solar Cells, 102, 131-136. DOI: 10.1016/j.solmat.2012.03.013
  • Cheng, X., Li, G., Yu, G., Li, Y., Han, J. (2017), Effect of expanded graphite and carbon nanotubes on the thermal performance of stearic acid phase change materials. Journal of Materials Science, 52(20), 12370-12379. Cunha da , S. R. L., de Aguiar, J. L. B. (2020), Phase change materials and energy efficiency of buildings: A review of knowledge, Journal of Energy Storage, 27, DOI: 10.1016/j.est.2019.101083
  • Demirel, G.K., (2023), Evaluation of Lauric-Myristic Acid as Phase Change Material in Thermally Modified Wood for Thermal Energy Storage, BioResources, 18(4). DOI: 10.15376/biores.18.4.7186-7201
  • Dincer, I., & Ezan, M. A. (2018), Heat storage: a unique solution for energy systems, Springer.
  • Fan, Z., Zhao, Y., Shi, Y., Liu, X., Jiang, D. (2023), Thermal performance evaluation of a novel building wall for lightweight building containing phase change materials and interlayer ventilation: An experimental study, Energy and Buildings, 278, DOI: 10.1016/j.enbuild.2022.112677
  • Farid, M. M., Khudhair, A. M., Razack, S. A. K., & Al-Hallaj, S. (2004), A review on phase change energy storage: materials and applications, Energy conversion and management, 45(9-10), 1597-1615. DOI: 10.1016/j.enconman.2003.09.015
  • Gencel, O., Harja, M., Sarı, A., Hekimoğlu, G., Ustaoğlu, A., Sutcu, M., & Bayraktar, O. Y. (2022), Development, characterization, and performance analysis of shape‐stabilized phase change material included‐geopolymer for passive thermal management of buildings, International Journal of Energy Research, 46(15), DOI: 10.1002/er.8735
  • Gu, X., Liu, P., Liu, C., Peng, L., & He, H. (2019), A novel form-stable phase change material of palmitic acid-carbonized pepper straw for thermal energy storage, Materials Letters, 248, 12-15. DOI: 10.1016/j.matlet.2019.03.130
  • Hasan, M. N., Wahid, H., Nayan, N., & Mohamed Ali, M. S. (2020), Inorganic thermoelectric materials: A review, International Journal of Energy Research, 44(8), 6170-6222. DOI: 10.1002/er.5313
  • Hekimoğlu, G., Sarı, A., Arunachalam, S., Arslanoğlu, H., & Gencel, O. (2021), Porous biochar/heptadecane composite phase change material with leak-proof, high thermal energy storage capacity and enhanced thermal conductivity, Powder Technology, 394, 1017-1025. DOI: 10.1016/j.powtec.2021.09.030
  • Hekimoğlu, G., Sarı, A., Gencel, O., Tyagi, V. V., & Sharma, R. K. (2023), Activated carbon/expanded graphite hybrid structure for development of nonadecane based composite PCM with excellent shape stability, enhanced thermal conductivity and heat charging-discharging performance, Thermal Science and Engineering Progress, 44, 102081. DOI: 10.1016/j.tsep.2023.102081
  • Hussein, M. Z., Khadiran, T., Zainal, Z., & Rusli, R. (2015), Properties of n-octadecaneencapsulated activated carbon nanocomposite for energy storage medium: the effect of surface area and pore structure, Aust. J. Basic Appl. Sci, 9(8), 82-88.
  • Jeon, J., Park, J. H., Wi, S., Yang, S., Ok, Y. S., Kim, S. (2019), Latent heat storage biocomposites of phase change material-biochar as feasible eco-friendly building materials, Environmental research, 172, 637-648.DOI: 10.1016/j.envres.2019.01.058
  • Khadiran, T., Hussein, M. Z., Zainal, Z., Rusli, R. (2015a), Activated carbon derived from peat soil as a framework for the preparation of shape-stabilized phase change material, Energy, 82, 468-478. DOI: 10.1016/j.energy.2015.01.057
  • Khadiran, T., Hussein, M. Z., Zainal, Z., Rusli, R. (2015b), Shape-stabilised n-octadecane/activated carbon nanocomposite phase change material for thermal energy storage, Journal of the Taiwan Institute of Chemical Engineers, 55, 189-197. DOI: 10.1016/j.jtice.2015.03.028
  • Lee, J., Wi, S., Jeong, S. G., Chang, S. J., Kim, S. (2017), Development of thermal enhanced n-octadecane/porous nano carbon-based materials using 3-step filtered vacuum impregnation method, Thermochimica Acta, 655, 194-201. DOI: 10.1016/j.tca.2017.06.013
  • Li, C., Wen, X., Cai, W., Yu, H., Liu, D. (2022), Phase change material for passive cooling in building envelopes: A comprehensive review. Journal of Building Engineering, 105763, DOI: 10.1016/j.jobe.2022.105763
  • Liang, K., Shi, L., Zhang, J., Cheng, J., Wang, X. (2018), Fabrication of shape-stable composite phase change materials based on lauric acid and graphene/graphene oxide complex aerogels for enhancement of thermal energy storage and electrical conduction. Thermochimica acta, 664, 1-15. DOI: 10.1016/j.tca.2018.04.002
  • Ma, G., Sun, J., Zhang, Y., Jing, Y., & Jia, Y. (2019), Preparation and thermal properties of stearic acid-benzamide eutectic mixture/expanded graphite composites as phase change materials for thermal energy storage, Powder Technology, 342, 131-140. DOI: 10.1016/j.powtec.2018.09.074
  • Oh, S. W., Nam, S. M., Kim, S. H., Yoon, T. H., Kim, W. S. (2021), Self-regulation of infrared using a liquid crystal mixture doped with push–pull azobenzene for energy-saving smart windows. ACS Applied Materials & Interfaces, 13(4), 5028-5033. DOI: 10.1021/acsami.0c19015
  • Sarı, A., Saleh, T. A., Hekimoğlu, G., Tuzen, M., Tyagi, V. V. (2020), Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage, Waste Management, 103, 352-360. DOI: 10.1016/j.wasman.2019.12.051
  • Sarier, N., & Onder, E. (2007), The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics, Thermochimica acta, 452(2), 149-160. DOI: 10.1016/j.tca.2006.08.002
  • Sharaf, M., Huzayyin, A. S., Yousef, M. S. (2022), Performance enhancement of photovoltaic cells using phase change material (PCM) in winter, Alexandria Engineering Journal, 61(6), 4229-4239. DOI: 10.1016/j.aej.2021.09.044
  • Tan, F. L., & Tso, C. P. (2004), Cooling of mobile electronic devices using phase change materials. Applied thermal engineering, 24(2-3), 159-169. DOI: 10.1016/j.applthermaleng.2003.09.005
  • Ustaoglu, A., Yaras, A., Sutcu, M., Gencel, O. (2021), Investigation of the residential building having novel environment-friendly construction materials with enhanced energy performance in diverse climate regions: Cost-efficient, low-energy and low-carbon emission, Journal of Building Engineering, 43. DOI: 10.1016/j.jobe.2021.102617
  • Wakeel, A., & Nasir, M. A. (2023), A review article on the synthesis of Silica Aerogels and their Insulation Properties, International Journal of Emerging Multidisciplinaries: Physical Sciences, 1(1). DOI: 10.54938/ijemd-ps.2023.01.1.11
  • Yuan, Y., Zhang, N., Tao, W., Cao, X., He, Y. (2014), Fatty acids as phase change materials: a review, Renewable and Sustainable Energy Reviews, 29, 482-498. 10.1016/j.rser.2013.08.107
  • Yue, X., Wu, H., Zhang, T., Yang, D., Qiu, F. (2022), Superhydrophobic waste paper-based aerogel as a thermal insulating cooler for building, Energy, 245. DOI: 10.1016/j.energy.2022.123287
  • Zalba, B., Marı́n, J. M., Cabeza, L. F., Mehling, H. (2003), Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied thermal engineering, 23(3), 251-283. DOI: 10.1016/S1359-4311(02)00192-8

N-oktadekan / biyokömür kompoziti: hazırlanması, karakterizasyonu ve enerji depolama özellikleri

Year 2023, , 245 - 255, 29.12.2023
https://doi.org/10.33725/mamad.1390872

Abstract

Biyokömür (BC) toprak ıslahı, enerji depolama, pillerde anodik malzeme olarak, binalarda elektromanyetik emisyon yakalama gibi birçok farklı kullanıma sahip, fonksiyonel gruplar açısından zengin, karbonize bir malzemedir. N-oktadekan (OD), uygun faz değişim sıcaklığı nedeniyle bina enerji depolama malzemelerinde uygulanabilen, termal enerji depolaması için uygun bir organik faz değişim malzemesidir. Bu çalışmada BC, OD ile vakumlu fırında 0,08 Mbar'da 70 °C'de 3 saat süreyle emprenye edildi. Emprenye sonrası ağırlık artışı %50 olarak bulunmuştur. Biyokömürden n-oktadekan sızıntısı, sızıntı testiyle tespit edildi. Isıl işlem görmüş ahşap numunelerinin fiziko-kimyasal olarak karakterizasyonu fourier transform kızılötesi spektroskopisi (FT-IR) ile incelenmiştir. Numunelerin termal bozunma stabilitesi, termogravimetrik analizler (TG) ve diferansiyel taramalı kalorimetri (DSC) ile analiz edildi. Sonuçlara göre OD emdirilmiş BC numunelerinde sızdırmazlık testi sonrasında herhangi bir sızıntı gözlenmemiştir. Elde edilen sonuçlara göre BC/OD, binalarda veya benzeri uygulamalarda enerji depolamaya uygun olumlu özellikler göstermektedir.

References

  • Amini, M. H. M., Temiz, A., Zuraik, M. A., Hermawan, A., Sulaiman, N. S. (2023), Shape stabilized phase change material by pine wood absorption. Materials Today: Proceedings. DOI: 10.1016/j.matpr.2023.10.079
  • Atinafu, D. G., Ok, Y. S., Kua, H. W., Kim, S. (2020), Thermal properties of composite organic phase change materials (PCMs): A critical review on their engineering chemistry, Applied thermal engineering, 181, 115960. DOI: 10.1016/j.applthermaleng.2020.115960
  • Can, A. (2023), Thermal characterization of phase‐changing materials as stabilized thermal energy storage materials in impregnated wood, Energy Storage, 5(1), e397. DOI: 10.1002/est2.397
  • Can, A., Žigon, J. (2022), n-Heptadecane-Impregnated Wood as a Potential Material for Energy-Saving Buildings, Forests, 13(12), 2137. DOI: 10.3390/f13122137
  • Chen, Z., Shan, F., Cao, L., Fang, G. (2012), Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage, Solar Energy Materials and Solar Cells, 102, 131-136. DOI: 10.1016/j.solmat.2012.03.013
  • Cheng, X., Li, G., Yu, G., Li, Y., Han, J. (2017), Effect of expanded graphite and carbon nanotubes on the thermal performance of stearic acid phase change materials. Journal of Materials Science, 52(20), 12370-12379. Cunha da , S. R. L., de Aguiar, J. L. B. (2020), Phase change materials and energy efficiency of buildings: A review of knowledge, Journal of Energy Storage, 27, DOI: 10.1016/j.est.2019.101083
  • Demirel, G.K., (2023), Evaluation of Lauric-Myristic Acid as Phase Change Material in Thermally Modified Wood for Thermal Energy Storage, BioResources, 18(4). DOI: 10.15376/biores.18.4.7186-7201
  • Dincer, I., & Ezan, M. A. (2018), Heat storage: a unique solution for energy systems, Springer.
  • Fan, Z., Zhao, Y., Shi, Y., Liu, X., Jiang, D. (2023), Thermal performance evaluation of a novel building wall for lightweight building containing phase change materials and interlayer ventilation: An experimental study, Energy and Buildings, 278, DOI: 10.1016/j.enbuild.2022.112677
  • Farid, M. M., Khudhair, A. M., Razack, S. A. K., & Al-Hallaj, S. (2004), A review on phase change energy storage: materials and applications, Energy conversion and management, 45(9-10), 1597-1615. DOI: 10.1016/j.enconman.2003.09.015
  • Gencel, O., Harja, M., Sarı, A., Hekimoğlu, G., Ustaoğlu, A., Sutcu, M., & Bayraktar, O. Y. (2022), Development, characterization, and performance analysis of shape‐stabilized phase change material included‐geopolymer for passive thermal management of buildings, International Journal of Energy Research, 46(15), DOI: 10.1002/er.8735
  • Gu, X., Liu, P., Liu, C., Peng, L., & He, H. (2019), A novel form-stable phase change material of palmitic acid-carbonized pepper straw for thermal energy storage, Materials Letters, 248, 12-15. DOI: 10.1016/j.matlet.2019.03.130
  • Hasan, M. N., Wahid, H., Nayan, N., & Mohamed Ali, M. S. (2020), Inorganic thermoelectric materials: A review, International Journal of Energy Research, 44(8), 6170-6222. DOI: 10.1002/er.5313
  • Hekimoğlu, G., Sarı, A., Arunachalam, S., Arslanoğlu, H., & Gencel, O. (2021), Porous biochar/heptadecane composite phase change material with leak-proof, high thermal energy storage capacity and enhanced thermal conductivity, Powder Technology, 394, 1017-1025. DOI: 10.1016/j.powtec.2021.09.030
  • Hekimoğlu, G., Sarı, A., Gencel, O., Tyagi, V. V., & Sharma, R. K. (2023), Activated carbon/expanded graphite hybrid structure for development of nonadecane based composite PCM with excellent shape stability, enhanced thermal conductivity and heat charging-discharging performance, Thermal Science and Engineering Progress, 44, 102081. DOI: 10.1016/j.tsep.2023.102081
  • Hussein, M. Z., Khadiran, T., Zainal, Z., & Rusli, R. (2015), Properties of n-octadecaneencapsulated activated carbon nanocomposite for energy storage medium: the effect of surface area and pore structure, Aust. J. Basic Appl. Sci, 9(8), 82-88.
  • Jeon, J., Park, J. H., Wi, S., Yang, S., Ok, Y. S., Kim, S. (2019), Latent heat storage biocomposites of phase change material-biochar as feasible eco-friendly building materials, Environmental research, 172, 637-648.DOI: 10.1016/j.envres.2019.01.058
  • Khadiran, T., Hussein, M. Z., Zainal, Z., Rusli, R. (2015a), Activated carbon derived from peat soil as a framework for the preparation of shape-stabilized phase change material, Energy, 82, 468-478. DOI: 10.1016/j.energy.2015.01.057
  • Khadiran, T., Hussein, M. Z., Zainal, Z., Rusli, R. (2015b), Shape-stabilised n-octadecane/activated carbon nanocomposite phase change material for thermal energy storage, Journal of the Taiwan Institute of Chemical Engineers, 55, 189-197. DOI: 10.1016/j.jtice.2015.03.028
  • Lee, J., Wi, S., Jeong, S. G., Chang, S. J., Kim, S. (2017), Development of thermal enhanced n-octadecane/porous nano carbon-based materials using 3-step filtered vacuum impregnation method, Thermochimica Acta, 655, 194-201. DOI: 10.1016/j.tca.2017.06.013
  • Li, C., Wen, X., Cai, W., Yu, H., Liu, D. (2022), Phase change material for passive cooling in building envelopes: A comprehensive review. Journal of Building Engineering, 105763, DOI: 10.1016/j.jobe.2022.105763
  • Liang, K., Shi, L., Zhang, J., Cheng, J., Wang, X. (2018), Fabrication of shape-stable composite phase change materials based on lauric acid and graphene/graphene oxide complex aerogels for enhancement of thermal energy storage and electrical conduction. Thermochimica acta, 664, 1-15. DOI: 10.1016/j.tca.2018.04.002
  • Ma, G., Sun, J., Zhang, Y., Jing, Y., & Jia, Y. (2019), Preparation and thermal properties of stearic acid-benzamide eutectic mixture/expanded graphite composites as phase change materials for thermal energy storage, Powder Technology, 342, 131-140. DOI: 10.1016/j.powtec.2018.09.074
  • Oh, S. W., Nam, S. M., Kim, S. H., Yoon, T. H., Kim, W. S. (2021), Self-regulation of infrared using a liquid crystal mixture doped with push–pull azobenzene for energy-saving smart windows. ACS Applied Materials & Interfaces, 13(4), 5028-5033. DOI: 10.1021/acsami.0c19015
  • Sarı, A., Saleh, T. A., Hekimoğlu, G., Tuzen, M., Tyagi, V. V. (2020), Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage, Waste Management, 103, 352-360. DOI: 10.1016/j.wasman.2019.12.051
  • Sarier, N., & Onder, E. (2007), The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics, Thermochimica acta, 452(2), 149-160. DOI: 10.1016/j.tca.2006.08.002
  • Sharaf, M., Huzayyin, A. S., Yousef, M. S. (2022), Performance enhancement of photovoltaic cells using phase change material (PCM) in winter, Alexandria Engineering Journal, 61(6), 4229-4239. DOI: 10.1016/j.aej.2021.09.044
  • Tan, F. L., & Tso, C. P. (2004), Cooling of mobile electronic devices using phase change materials. Applied thermal engineering, 24(2-3), 159-169. DOI: 10.1016/j.applthermaleng.2003.09.005
  • Ustaoglu, A., Yaras, A., Sutcu, M., Gencel, O. (2021), Investigation of the residential building having novel environment-friendly construction materials with enhanced energy performance in diverse climate regions: Cost-efficient, low-energy and low-carbon emission, Journal of Building Engineering, 43. DOI: 10.1016/j.jobe.2021.102617
  • Wakeel, A., & Nasir, M. A. (2023), A review article on the synthesis of Silica Aerogels and their Insulation Properties, International Journal of Emerging Multidisciplinaries: Physical Sciences, 1(1). DOI: 10.54938/ijemd-ps.2023.01.1.11
  • Yuan, Y., Zhang, N., Tao, W., Cao, X., He, Y. (2014), Fatty acids as phase change materials: a review, Renewable and Sustainable Energy Reviews, 29, 482-498. 10.1016/j.rser.2013.08.107
  • Yue, X., Wu, H., Zhang, T., Yang, D., Qiu, F. (2022), Superhydrophobic waste paper-based aerogel as a thermal insulating cooler for building, Energy, 245. DOI: 10.1016/j.energy.2022.123287
  • Zalba, B., Marı́n, J. M., Cabeza, L. F., Mehling, H. (2003), Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied thermal engineering, 23(3), 251-283. DOI: 10.1016/S1359-4311(02)00192-8
There are 33 citations in total.

Details

Primary Language English
Subjects Forest Industry Engineering (Other)
Journal Section Articles
Authors

Gaye Köse Demirel 0000-0002-1443-6943

Early Pub Date December 25, 2023
Publication Date December 29, 2023
Submission Date November 14, 2023
Acceptance Date December 2, 2023
Published in Issue Year 2023

Cite

APA Köse Demirel, G. (2023). N-octadecane /bio-char composite: preparation, characterization and energy storage properties. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 6(2), 245-255. https://doi.org/10.33725/mamad.1390872

Uluslararası Dergidir

32217    18332 18333   3221918334 18335   18336   18339   18434   32216 32218  32220 32221 download download    

32275   32308  32309 


32332  32384  32385 32400