Review
BibTex RIS Cite

Studies of densification of wood material by compression

Year 2021, Volume: 4 Issue: 1, 91 - 102, 28.06.2021
https://doi.org/10.33725/mamad.911947

Abstract

Wood products industry plays a very important role in the world economy. Wood and wood based materials have long been commonly used for many applications because of their many excellent features. Wood material, having a natural surface image is preferred. However, wood also suffers a number of disadvantages. Wood material can be very soft and weak in use that generally requires high physical and mechanical properties. Densified wood material can be used as an alternative to other structural materials. Due to the increase in environmental sensitivity, new environmentally friendly alternative methods have been developed that protect the wood material against biological degradation and increase its dimensional stability. These; Thermo-Mechanical (TM), Thermo-Hygro-Mechanical (THM), Thermo-Vibro-Mechanical (TVM) densification and Viscoelastic-Thermal-Compression (VTC). Studies on densifying by compressing wood material between 2004-2021 were examined and evaluated in this study. Studies in the literature are given in a table. Physical and mechanical properties improve, surface roughness and wettability decrease, hardness increases, and spring back may occur as a negative situation depending on an increase in density by compression.

References

  • Ábrahám, J, Németh, R., Molnár, S., (2010), Thermo-mechanical densification of Pannónia poplar, Proc. of the final conference of COST Action E. Vol. 53. ‘Quality control for wood and wood products’ 4-7. May. 2010, S: 282-292, Edinburgh.
  • Ábrahám, J., Németh, R., (2012), Physical and mechanical properties of thermo- mechanically densified poplar, International Scientific Conference on Sustainable Development and Ecological Foorprint - 26-27. March. 2012, Sopron/ Hungary.
  • Ahmed, S. A., Morén, T., Hagman, O., Cloutier, A., Fang, C. H., Elustondo, D., (2013), Anatomical properties and process parameters affecting blister/blow formation in densified European aspen and downy birch sapwood boards by thermo-hygro-mechanical compression, Journal of Materials Science, 48(24), 8571-79. DOI:10.1007/s10853-013-7679-9.
  • Arruda, L. M., Del Menezzi, C. H. S., (2013), Effect of thermomechanical treatment on physical properties of wood veneers, International Wood Products Journal, 4(4), 217-224. DOI:10.1179/2042645312Y.0000000022.
  • Atik, C., Candan, Z., Unsal, O., (2013), Colour characteristics of pine wood affected by thermal compressing, Ciência Florestal, 23(2), 475-479.
  • Bekhta, P., Proszyk, S., Krystofiak, T., Mamonova, M., Pinkowski, G., Lis, B., (2014), Effect of thermomechanical densification on surface roughness of wood veneers, Wood Material Science and Engineering, 9(4), 233-245. DOI: 10.1080/17480272.2014.923042.
  • Bekhta, P., Krystofiak, T., (2016), The influence of short-term thermo-mechanical densification on the surface wettability of wood veneers, Maderas: Ciencia y Tecnologia, 18(1), 79-90. DOI:10.4067/S0718-221X2016005000008.
  • Blomberg, J., Persson, B., (2004), Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process, Journal of Wood Science, 50(4), 307-314. DOI:10.1007/s10086-003-0566-2.
  • Blomberg, J., Persson, B., Blomberg, A., (2005), Effects of semi-isostatic densification of wood on the variation in strength properties with density, Wood Science and Technology, 39(5), 339-350.
  • Budakçi, M., Pelit, H., Sönmez, A., Korkmaz, M., (2016), The effects of densification and heat post-treatment on hardness and morphological properties of wood materials, BioResources, 11(3), 7822-7838. DOI:10.15376/biores.11.3.7822-7838.
  • Cruz, N., Bustos, C., Aguayo, M. G., Cloutier, A., Castillo, R., (2018), Impact of the chemical composition of pinus radiata wood on its physical and mechanical properties following thermo-hygromechanical densification, BioResources, 13(2), 2268-2282. DOI:10.15376/biores.13.2.2268-2282.
  • Diouf, P. N., Stevanovic, T., Cloutier, A., Fang, C. H., Blanchet, P., Koubaa, A., Mariotti, N., (2011), Effects of thermo-hygro-mechanical densification on the surface characteristics of trembling aspen and hybrid poplar wood veneers, Applied Surface Science, 257(8), 3558-3564. DOI:10.1016/j.apsusc.2010.11.074.
  • Esteves, B., Ribeiro, F., Cruz-Lopes, L., Ferreira, J., Domingos, I., Duarte, M., Duarte, S., Nunes, L., (2017), Densification and heat treatment of maritime pine wood, Wood Research, 62(3), 373-388.
  • Fang, C. H., Mariotti, N., Cloutier, A., Koubaa, A., Blanchet, P., (2012), Densification of wood veneers by compression combined with heat and steam, European Journal of Wood and Wood Products, 70(1-3), 155-163. DOI:10.1007/s00107-011-0524-4.
  • Fleischhauer, R., Hartig, J. U., Haller, P., Kaliske, M., (2019), Moisture-dependent thermo-mechanical constitutive modeling of wood, Engineering Computations (Swansea, Wales), 36(1), 2-24. DOI:10.1108/EC-09-2017-0368.
  • Fu, Q., Cloutier, A., Laghdir, A., (2017), Effects of heat and steam on the mechanical properties and dimensional stability of thermo-hygromechanically-densified sugar maple wood, BioResources, 12(4), 9212-9226. DOI:10.15376/biores.12.4.9212-9226.
  • Gaff, M., Gašparík, M., (2013), Shrinkage and stability of thermo-mechanically modified aspen wood, BioResources, 8(1), 1136-1146. DOI:10.15376/biores.8.1.1136-1146.
  • Gao, Z., Huang, R., Chang, J., Li, R., Wu, Y., (2019), Effects of pressurized superheated-steam heat treatment on set recovery and mechanical properties of surface-compressed wood, BioResources, 14(1), 1718-1730. DOI:10.15376/biores.14.1.1718-1730.
  • Gong, M., Lamason, C., Li, L., (2010), Interactive effect of surface densification and post-heat-treatment on aspen wood, Journal of Materials Processing Technology, DOI:10.1016/j.jmatprotec.2009.09.013.
  • Hajihassani, R., Mohebby, B., Najafi, S. K., Navi, P., (2018), Influence of combined hygro-thermomechanical treatment on technical characteristics of poplar wood, Maderas: Ciencia y Tecnologia, 20 (1), 117-128. DOI:10.4067/S0718-221X2018005011001.
  • Homan, W., Tjeerdsma, B., Beckers, E., Jorissen, A., (2000), Structural and other properties of modified wood, World Conference on Timber Engineering, 5, British Columbia.
  • Kamke, F. A., (2006), Densified radiata pine for structural composites, Maderas. Ciencia y Tecnología, 8(2), 83-92.
  • Kariz, M., Kuzman, M. K., Sernek, M., Hughes, M., Rautkari, L., Kamke, F. A., Kutnar, A., (2017), Influence of temperature of thermal treatment on surface densification of spruce, European Journal of Wood and Wood Products, 75(1), 113-123. DOI:10.1007/s00107-016-1052-z.
  • Khademi Bami, L., Mohebby, B., (2011), Bioresistance of poplar wood compressed by combined hydro-thermo-mechanical wood modification (CHTM): Soft rot and brown-rot, International Biodeterioration and Biodegradation, 65(6), 866-870. DOI:10.1016/j.ibiod.2011.03.011.
  • Korkut, S., Kocaefe, D., (2009), Isıl işlemin odun özellikleri üzerine etkisi, Düzce Üniversitesi Ormancılık Dergisi, 5(2), 11-34.
  • Kutnar, A., Šernek, M., (2007), Densification of wood, Gozdarstva in Lesarstva, 82, 53-62.
  • Laine, K., Antikainen, T., Rautkari, L., Hughes, M., (2013), Analysing density profile characteristics of surface densified solid wood using computational approach, International Wood Products Journal, 4(3), 144-149. DOI:10.1179/2042645313Y.0000000031.
  • Laine, K., Rautkari, L., Hughes, M., Kutnar, A., (2013), Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment, European Journal of Wood and Wood Products, 71(1), 17-23.
  • Laine, K., (2014), Improving the properties of wood by surface densification, Aalto University publication series Doctoral Dissertations 133/2014 (Vol. 53, Issue 9). Aalto University publication series, S.59, Finland.
  • Laine, K., Belt, T., Rautkari, L., Ramsay, J., Hill, C. A. S., Hughes, M. (2013), Measuring the thickness swelling and set-recovery of densified and thermally modified Scots pine solid wood, Journal of Materials Science, 48(24), 8530–38. DOI:10.1007/s10853-013-7671-4.
  • Lamason, C., Gong, M., (2007), Optimization of pressing parameters for mechanically surface-densified aspen, Forest Products Journal, 57(10), 64-68.
  • Laskowska, A., (2017), The influence of process parameters on the density profile and hardness of surface-densified birch wood (Betula pendula Roth), BioResources, 12(3), 6011-6023. DOI:10.15376/biores.12.3.6011-6023.
  • Laskowska, A., (2020a), Density profile and hardness of thermo-mechanically modified beech, oak and pine wood, Drewno, 63(205), 1-16. DOI:10.12841/wood.1644-3985.D06.08.
  • Laskowska, A., (2020b), The influence of ultraviolet radiation on the colour of thermo-mechanically modified beech and oak wood, Maderas. Ciencia y Tecnología, 22(1), 55-68. DOI:10.4067/S0718-221X2020005000106.
  • Lykidis, C., Moya, R., Tenorio, C., (2020), The effect of melamine formaldehyde impregnation and hot-pressing parameters on the density profile of densified poplar wood, European Journal of Wood and Wood Products, 78(3), 433–40. DOI:10.1007/s00107-020-01515-y.
  • Mania, P., Wróblewski, M., Wójciak, A., Roszyk, E., Moliński, W., (2020), Hardness of densified wood in relation to changed chemical composition, Forests, 11(5). DOI:10.3390/F11050506.
  • Özdemir, S. (2020), Bükülmüş tabakalı kaplama kereste üretiminde termo-mekanik yoğunlaştırma uygulanması ve mekanik özellikler üzerine etkisi, Bartın Üniversitesi, Fen Bilimleri Enstitüsü, Doktora tezi.
  • Pelit, H., (2014), Yoğunlaştırma ve ısıl işlemin doğu kayını ve sarıçamın bazı teknolojik özellikleriyle üstyüzey işlemlerine etkisi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Doktora tezi.
  • Pelit, H., Budakçı, M., Sönmez, A., (2018), Density and some mechanical properties of densified and heat post-treated Uludağ fir, linden and black poplar woods, European Journal of Wood and Wood Products, 76(1), 79-87. DOI:10.1007/s00107-017-1182-y.
  • Pelit, H., Budakçı, M., Sönmez, A., Burdurlu, E., (2015), Surface roughness and brightness of scots pine (Pinus sylvestris) applied with water-based varnish after densification and heat treatment, Journal of Wood Science, 61(6), 586–594. https://doi.org/10.1007/s10086-015-1506-7.
  • Pelit, H., Sönmez, A., (2015), Termo-mekanik yoğunlaştırma ve ısıl işlemin doğu kayını (Fagus Orientalis L.) odununun bazı fiziksel özelliklerine etkisi, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 3(1), 1-14.
  • Pelit, H., Sönmez, A., Budakçi, M., (2015), Effects of thermomechanical densification and heat treatment on density and Brinell hardness of scots pine (Pinus sylvestris L.) and Eastern beech (Fagus orientalis L.), BioResources, 10(2), 3097-3111. DOI: 10.15376/biores.10.2.3097-3111.
  • Pelit, H., Sönmez, A., Budakçı, M., (2014), Effects of ThermoWood® process combined with thermo-mechanical densification on some physical properties of Scots Pine (Pinus sylvestris L.), BioResources, 9(3). DOI:10.15376/biores.9.3.4552-4567.
  • Pertuzzatti, A., Missio, A. L., de Cademartori, P. H. G., Santini, E. J., Haselein, C. R., Berger, C., Gatto, D. A., Tondi, G. (2018), Effect of process parameters in the thermomechanical densification of pinus elliottii and eucalyptus grandis fast-growing wood, BioResources, 13(1), 1576-1590. DOI:10.15376/biores.13.1.1576-1590.
  • Rautkari, L., (2012), Surface modification of solid wood using different techniques. Department of Forest Products Technology, Finland Aalto University, PhD Thesis.
  • Rautkari, Lauri, Laine, K., Kutnar, A., Medved, S., Hughes, M., (2013), Hardness and density profile of surface densified and thermally modified scots pine in relation to degree of densification, Journal of Materials Science, 48(6), 2370–2375. DOI: 10.1007/s10853-012-7019-5.
  • Rautkari, Lauri, Properzi, M., Pichelin, F., Hughes, M., (2009), Surface modification of wood using friction, Wood Science and Technology, 43(3-4), 291–299. DOI:10.1007/s00226-008-0227-0.
  • Rautkari, Lauri, Properzi, M., Pichelin, F., Hughes, M., (2010), Properties and set-recovery of surface densified Norway spruce and European beech, Wood Science and Technology, 44(4), 679–691. DOI:10.1007/s00226-009-0291-0.
  • Rowell, R. M., Konkol, P., (1987), Treatments that enhance physical properties of wood. Forest Products Laboratory, United States Department of Agriculture. Madison, DOI:FPL-GTR-55.
  • Sandberg, D., Kutnar, A., Mantanis, G., (2017), Wood modification technologies - A review, IForest, 10(6), 895–908. DOI:10.3832/ifor2380-010.
  • Şenol, S., (2018), Termo- Vibro - Mekanik ( TVM )işlem görmüş bazı ağaç malzemelerin fiziksel, mekanik ve teknolojik özelliklerinin belirlenmesi, Düzce Üniversitesi, Fen Bilimleri Enstitüsü, Doktora tezi.
  • Şenol, S., Budakçi, M. (2019), Effect of Thermo-Vibro-Mechanic® densification process on the gloss and hardness values of some wood materials, BioResources, 14(4), 9611-9627. DOI:10.15376/biores.14.4.9611-9627.
  • Şenol, S., Budakçi, M., Korkmaz, M. (2017), Termo-vibro mekanik (TVM) yoğunlaştırma işleminin bazı ağaç malzemelerin yoğunluk ve aşınma direncine etkisi. İleri Teknoloji Bilimleri Dergisi Journal, 263-275.
  • Şenol, S., Budakçı, M., (2016), Mekanik odun modifikasyon metotları, Mugla Journal of Science and Technology, 2(2), 53–53. https://doi.org/10.22531/muglajsci.283619.
  • Skyba, O., Schwarze, F. W. M. R., Niemz, P. (2009), Physical and mechanical properties of Thermo-hygromechanically (THM) - Densified wood, Wood Research, 54(2), 1-18.
  • Song, J., Chen, C., Zhu, S., Zhu, M., Dai, J., Ray, U., Li, Y., Kuang, Y., Li, Y., Quispe, N., Yao, Y., Gong, A., Leiste, U. H., Bruck, H. A., Zhu, J. Y., Vellore, A., Li, H., Minus, M. L., Jia, Z., … Hu, L. (2018), Processing bulk natural wood into a high-performance structural material, Nature, 554(7691), 224-228. DOI: 10.1038/nature25476.
  • Tenorio, C., Moya, R., (2019), Development of a thermo-hydro-mechanical device for wood densification adaptable to universal testing machines and its evaluation in a tropical species, Journal of Testing and Evaluation, 49, DOI: 10.1520/JTE20180760.
  • Tenorio, C., Moya, R., Navarro-Mora, A., (2021), Flooring characteristics of thermo-mechanical densified wood from three hardwood tropical species in Costa Rica. Maderas, Ciencia y Tecnología, 23(23), 1–12. https://doi.org/10.4067/s0718-221x2021000100416.
  • Ulker, O., Imirzi, O., Burdurlu, E., (2012), The effect of densificatoin temperature on some physical ans mechanical properties of scots pine (Pinus sylvestris L.), BioResources, 7(4), 5581–5592. DOI: 10.15376/biores.7.4.5581-5592.
  • Wehsener, J., Brischke, C., Meyer-Veltrup, L., Hartig, J., Haller, P., (2018), Physical, mechanical and biological properties of thermo-mechanically densified and thermally modified timber using the Vacu3-process, European Journal of Wood and Wood Products, 76(3), 809–821. DOI:10.1007/s00107-017-1278-4.

Ağaç malzemenin sıkıştırılarak yoğunlaştırılması konusunda yapılan çalışmalar

Year 2021, Volume: 4 Issue: 1, 91 - 102, 28.06.2021
https://doi.org/10.33725/mamad.911947

Abstract

Ağaç malzeme endüstrisi dünya ekonomisinde çok önemli bir rol oynamaktadır. Ağaç ve ağaç kökenli malzemeler birçok olumlu özelliği nedeniyle uzun süredir birçok uygulamalarda yaygın olarak kullanılmaktadır. Doğal görüntüsü sebebiyle tercih edilmektedir. Bununla birlikte ağaç malzemenin bazı olumsuz özellikleri de bulunmaktadır. Ağaç malzeme genellikle yüksek fiziksel ve mekaniksel özellikler gerektiren kullanım alanlarında çok yumuşak ve zayıf olabilmektedir. Yoğunluğu artırılmış ağaç malzeme diğer yapısal malzemelere alternatif olarak kullanılabilmektedir. Son yıllarda çevresel duyarlılığın artması sonucu ağaç malzemeyi biyolojik bozunmaya karşı koruyan ve boyutsal stabilitesini arttıran çevreye zararsız yeni yöntemler geliştirilmiştir. Bunlar; Termo-Mekanik (TM), Termo- Higro-Mekanik (THM), Termo-Vibro-Mekanik (TVM) yoğunlaştırma ve Viskoelastik-Termal-Sıkıştırma (VTC) şeklinde sıralanabilmektedir. Bu çalışmada 2004-2021 yılları arasında yapılan ağaç malzemenin sıkıştırılarak yoğunlaştırılması ile ilgili çalışmalar incelenmiş ve değerlendirilmiştir. Literatürde geçen çalışmalar öz olarak tablo halinde verilmiştir. Sıkıştırılarak yoğunlaştırmada yoğunluk artışına bağlı olarak fiziksel ve mekanik özellikler iyileşmekte, yüzey pürüzlülüğü ve ıslanabilirlik azalmakta, sertlik artmakta, olumsuz bir durum olarak geri esneme meydana gelebilmektedir.

References

  • Ábrahám, J, Németh, R., Molnár, S., (2010), Thermo-mechanical densification of Pannónia poplar, Proc. of the final conference of COST Action E. Vol. 53. ‘Quality control for wood and wood products’ 4-7. May. 2010, S: 282-292, Edinburgh.
  • Ábrahám, J., Németh, R., (2012), Physical and mechanical properties of thermo- mechanically densified poplar, International Scientific Conference on Sustainable Development and Ecological Foorprint - 26-27. March. 2012, Sopron/ Hungary.
  • Ahmed, S. A., Morén, T., Hagman, O., Cloutier, A., Fang, C. H., Elustondo, D., (2013), Anatomical properties and process parameters affecting blister/blow formation in densified European aspen and downy birch sapwood boards by thermo-hygro-mechanical compression, Journal of Materials Science, 48(24), 8571-79. DOI:10.1007/s10853-013-7679-9.
  • Arruda, L. M., Del Menezzi, C. H. S., (2013), Effect of thermomechanical treatment on physical properties of wood veneers, International Wood Products Journal, 4(4), 217-224. DOI:10.1179/2042645312Y.0000000022.
  • Atik, C., Candan, Z., Unsal, O., (2013), Colour characteristics of pine wood affected by thermal compressing, Ciência Florestal, 23(2), 475-479.
  • Bekhta, P., Proszyk, S., Krystofiak, T., Mamonova, M., Pinkowski, G., Lis, B., (2014), Effect of thermomechanical densification on surface roughness of wood veneers, Wood Material Science and Engineering, 9(4), 233-245. DOI: 10.1080/17480272.2014.923042.
  • Bekhta, P., Krystofiak, T., (2016), The influence of short-term thermo-mechanical densification on the surface wettability of wood veneers, Maderas: Ciencia y Tecnologia, 18(1), 79-90. DOI:10.4067/S0718-221X2016005000008.
  • Blomberg, J., Persson, B., (2004), Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process, Journal of Wood Science, 50(4), 307-314. DOI:10.1007/s10086-003-0566-2.
  • Blomberg, J., Persson, B., Blomberg, A., (2005), Effects of semi-isostatic densification of wood on the variation in strength properties with density, Wood Science and Technology, 39(5), 339-350.
  • Budakçi, M., Pelit, H., Sönmez, A., Korkmaz, M., (2016), The effects of densification and heat post-treatment on hardness and morphological properties of wood materials, BioResources, 11(3), 7822-7838. DOI:10.15376/biores.11.3.7822-7838.
  • Cruz, N., Bustos, C., Aguayo, M. G., Cloutier, A., Castillo, R., (2018), Impact of the chemical composition of pinus radiata wood on its physical and mechanical properties following thermo-hygromechanical densification, BioResources, 13(2), 2268-2282. DOI:10.15376/biores.13.2.2268-2282.
  • Diouf, P. N., Stevanovic, T., Cloutier, A., Fang, C. H., Blanchet, P., Koubaa, A., Mariotti, N., (2011), Effects of thermo-hygro-mechanical densification on the surface characteristics of trembling aspen and hybrid poplar wood veneers, Applied Surface Science, 257(8), 3558-3564. DOI:10.1016/j.apsusc.2010.11.074.
  • Esteves, B., Ribeiro, F., Cruz-Lopes, L., Ferreira, J., Domingos, I., Duarte, M., Duarte, S., Nunes, L., (2017), Densification and heat treatment of maritime pine wood, Wood Research, 62(3), 373-388.
  • Fang, C. H., Mariotti, N., Cloutier, A., Koubaa, A., Blanchet, P., (2012), Densification of wood veneers by compression combined with heat and steam, European Journal of Wood and Wood Products, 70(1-3), 155-163. DOI:10.1007/s00107-011-0524-4.
  • Fleischhauer, R., Hartig, J. U., Haller, P., Kaliske, M., (2019), Moisture-dependent thermo-mechanical constitutive modeling of wood, Engineering Computations (Swansea, Wales), 36(1), 2-24. DOI:10.1108/EC-09-2017-0368.
  • Fu, Q., Cloutier, A., Laghdir, A., (2017), Effects of heat and steam on the mechanical properties and dimensional stability of thermo-hygromechanically-densified sugar maple wood, BioResources, 12(4), 9212-9226. DOI:10.15376/biores.12.4.9212-9226.
  • Gaff, M., Gašparík, M., (2013), Shrinkage and stability of thermo-mechanically modified aspen wood, BioResources, 8(1), 1136-1146. DOI:10.15376/biores.8.1.1136-1146.
  • Gao, Z., Huang, R., Chang, J., Li, R., Wu, Y., (2019), Effects of pressurized superheated-steam heat treatment on set recovery and mechanical properties of surface-compressed wood, BioResources, 14(1), 1718-1730. DOI:10.15376/biores.14.1.1718-1730.
  • Gong, M., Lamason, C., Li, L., (2010), Interactive effect of surface densification and post-heat-treatment on aspen wood, Journal of Materials Processing Technology, DOI:10.1016/j.jmatprotec.2009.09.013.
  • Hajihassani, R., Mohebby, B., Najafi, S. K., Navi, P., (2018), Influence of combined hygro-thermomechanical treatment on technical characteristics of poplar wood, Maderas: Ciencia y Tecnologia, 20 (1), 117-128. DOI:10.4067/S0718-221X2018005011001.
  • Homan, W., Tjeerdsma, B., Beckers, E., Jorissen, A., (2000), Structural and other properties of modified wood, World Conference on Timber Engineering, 5, British Columbia.
  • Kamke, F. A., (2006), Densified radiata pine for structural composites, Maderas. Ciencia y Tecnología, 8(2), 83-92.
  • Kariz, M., Kuzman, M. K., Sernek, M., Hughes, M., Rautkari, L., Kamke, F. A., Kutnar, A., (2017), Influence of temperature of thermal treatment on surface densification of spruce, European Journal of Wood and Wood Products, 75(1), 113-123. DOI:10.1007/s00107-016-1052-z.
  • Khademi Bami, L., Mohebby, B., (2011), Bioresistance of poplar wood compressed by combined hydro-thermo-mechanical wood modification (CHTM): Soft rot and brown-rot, International Biodeterioration and Biodegradation, 65(6), 866-870. DOI:10.1016/j.ibiod.2011.03.011.
  • Korkut, S., Kocaefe, D., (2009), Isıl işlemin odun özellikleri üzerine etkisi, Düzce Üniversitesi Ormancılık Dergisi, 5(2), 11-34.
  • Kutnar, A., Šernek, M., (2007), Densification of wood, Gozdarstva in Lesarstva, 82, 53-62.
  • Laine, K., Antikainen, T., Rautkari, L., Hughes, M., (2013), Analysing density profile characteristics of surface densified solid wood using computational approach, International Wood Products Journal, 4(3), 144-149. DOI:10.1179/2042645313Y.0000000031.
  • Laine, K., Rautkari, L., Hughes, M., Kutnar, A., (2013), Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment, European Journal of Wood and Wood Products, 71(1), 17-23.
  • Laine, K., (2014), Improving the properties of wood by surface densification, Aalto University publication series Doctoral Dissertations 133/2014 (Vol. 53, Issue 9). Aalto University publication series, S.59, Finland.
  • Laine, K., Belt, T., Rautkari, L., Ramsay, J., Hill, C. A. S., Hughes, M. (2013), Measuring the thickness swelling and set-recovery of densified and thermally modified Scots pine solid wood, Journal of Materials Science, 48(24), 8530–38. DOI:10.1007/s10853-013-7671-4.
  • Lamason, C., Gong, M., (2007), Optimization of pressing parameters for mechanically surface-densified aspen, Forest Products Journal, 57(10), 64-68.
  • Laskowska, A., (2017), The influence of process parameters on the density profile and hardness of surface-densified birch wood (Betula pendula Roth), BioResources, 12(3), 6011-6023. DOI:10.15376/biores.12.3.6011-6023.
  • Laskowska, A., (2020a), Density profile and hardness of thermo-mechanically modified beech, oak and pine wood, Drewno, 63(205), 1-16. DOI:10.12841/wood.1644-3985.D06.08.
  • Laskowska, A., (2020b), The influence of ultraviolet radiation on the colour of thermo-mechanically modified beech and oak wood, Maderas. Ciencia y Tecnología, 22(1), 55-68. DOI:10.4067/S0718-221X2020005000106.
  • Lykidis, C., Moya, R., Tenorio, C., (2020), The effect of melamine formaldehyde impregnation and hot-pressing parameters on the density profile of densified poplar wood, European Journal of Wood and Wood Products, 78(3), 433–40. DOI:10.1007/s00107-020-01515-y.
  • Mania, P., Wróblewski, M., Wójciak, A., Roszyk, E., Moliński, W., (2020), Hardness of densified wood in relation to changed chemical composition, Forests, 11(5). DOI:10.3390/F11050506.
  • Özdemir, S. (2020), Bükülmüş tabakalı kaplama kereste üretiminde termo-mekanik yoğunlaştırma uygulanması ve mekanik özellikler üzerine etkisi, Bartın Üniversitesi, Fen Bilimleri Enstitüsü, Doktora tezi.
  • Pelit, H., (2014), Yoğunlaştırma ve ısıl işlemin doğu kayını ve sarıçamın bazı teknolojik özellikleriyle üstyüzey işlemlerine etkisi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Doktora tezi.
  • Pelit, H., Budakçı, M., Sönmez, A., (2018), Density and some mechanical properties of densified and heat post-treated Uludağ fir, linden and black poplar woods, European Journal of Wood and Wood Products, 76(1), 79-87. DOI:10.1007/s00107-017-1182-y.
  • Pelit, H., Budakçı, M., Sönmez, A., Burdurlu, E., (2015), Surface roughness and brightness of scots pine (Pinus sylvestris) applied with water-based varnish after densification and heat treatment, Journal of Wood Science, 61(6), 586–594. https://doi.org/10.1007/s10086-015-1506-7.
  • Pelit, H., Sönmez, A., (2015), Termo-mekanik yoğunlaştırma ve ısıl işlemin doğu kayını (Fagus Orientalis L.) odununun bazı fiziksel özelliklerine etkisi, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 3(1), 1-14.
  • Pelit, H., Sönmez, A., Budakçi, M., (2015), Effects of thermomechanical densification and heat treatment on density and Brinell hardness of scots pine (Pinus sylvestris L.) and Eastern beech (Fagus orientalis L.), BioResources, 10(2), 3097-3111. DOI: 10.15376/biores.10.2.3097-3111.
  • Pelit, H., Sönmez, A., Budakçı, M., (2014), Effects of ThermoWood® process combined with thermo-mechanical densification on some physical properties of Scots Pine (Pinus sylvestris L.), BioResources, 9(3). DOI:10.15376/biores.9.3.4552-4567.
  • Pertuzzatti, A., Missio, A. L., de Cademartori, P. H. G., Santini, E. J., Haselein, C. R., Berger, C., Gatto, D. A., Tondi, G. (2018), Effect of process parameters in the thermomechanical densification of pinus elliottii and eucalyptus grandis fast-growing wood, BioResources, 13(1), 1576-1590. DOI:10.15376/biores.13.1.1576-1590.
  • Rautkari, L., (2012), Surface modification of solid wood using different techniques. Department of Forest Products Technology, Finland Aalto University, PhD Thesis.
  • Rautkari, Lauri, Laine, K., Kutnar, A., Medved, S., Hughes, M., (2013), Hardness and density profile of surface densified and thermally modified scots pine in relation to degree of densification, Journal of Materials Science, 48(6), 2370–2375. DOI: 10.1007/s10853-012-7019-5.
  • Rautkari, Lauri, Properzi, M., Pichelin, F., Hughes, M., (2009), Surface modification of wood using friction, Wood Science and Technology, 43(3-4), 291–299. DOI:10.1007/s00226-008-0227-0.
  • Rautkari, Lauri, Properzi, M., Pichelin, F., Hughes, M., (2010), Properties and set-recovery of surface densified Norway spruce and European beech, Wood Science and Technology, 44(4), 679–691. DOI:10.1007/s00226-009-0291-0.
  • Rowell, R. M., Konkol, P., (1987), Treatments that enhance physical properties of wood. Forest Products Laboratory, United States Department of Agriculture. Madison, DOI:FPL-GTR-55.
  • Sandberg, D., Kutnar, A., Mantanis, G., (2017), Wood modification technologies - A review, IForest, 10(6), 895–908. DOI:10.3832/ifor2380-010.
  • Şenol, S., (2018), Termo- Vibro - Mekanik ( TVM )işlem görmüş bazı ağaç malzemelerin fiziksel, mekanik ve teknolojik özelliklerinin belirlenmesi, Düzce Üniversitesi, Fen Bilimleri Enstitüsü, Doktora tezi.
  • Şenol, S., Budakçi, M. (2019), Effect of Thermo-Vibro-Mechanic® densification process on the gloss and hardness values of some wood materials, BioResources, 14(4), 9611-9627. DOI:10.15376/biores.14.4.9611-9627.
  • Şenol, S., Budakçi, M., Korkmaz, M. (2017), Termo-vibro mekanik (TVM) yoğunlaştırma işleminin bazı ağaç malzemelerin yoğunluk ve aşınma direncine etkisi. İleri Teknoloji Bilimleri Dergisi Journal, 263-275.
  • Şenol, S., Budakçı, M., (2016), Mekanik odun modifikasyon metotları, Mugla Journal of Science and Technology, 2(2), 53–53. https://doi.org/10.22531/muglajsci.283619.
  • Skyba, O., Schwarze, F. W. M. R., Niemz, P. (2009), Physical and mechanical properties of Thermo-hygromechanically (THM) - Densified wood, Wood Research, 54(2), 1-18.
  • Song, J., Chen, C., Zhu, S., Zhu, M., Dai, J., Ray, U., Li, Y., Kuang, Y., Li, Y., Quispe, N., Yao, Y., Gong, A., Leiste, U. H., Bruck, H. A., Zhu, J. Y., Vellore, A., Li, H., Minus, M. L., Jia, Z., … Hu, L. (2018), Processing bulk natural wood into a high-performance structural material, Nature, 554(7691), 224-228. DOI: 10.1038/nature25476.
  • Tenorio, C., Moya, R., (2019), Development of a thermo-hydro-mechanical device for wood densification adaptable to universal testing machines and its evaluation in a tropical species, Journal of Testing and Evaluation, 49, DOI: 10.1520/JTE20180760.
  • Tenorio, C., Moya, R., Navarro-Mora, A., (2021), Flooring characteristics of thermo-mechanical densified wood from three hardwood tropical species in Costa Rica. Maderas, Ciencia y Tecnología, 23(23), 1–12. https://doi.org/10.4067/s0718-221x2021000100416.
  • Ulker, O., Imirzi, O., Burdurlu, E., (2012), The effect of densificatoin temperature on some physical ans mechanical properties of scots pine (Pinus sylvestris L.), BioResources, 7(4), 5581–5592. DOI: 10.15376/biores.7.4.5581-5592.
  • Wehsener, J., Brischke, C., Meyer-Veltrup, L., Hartig, J., Haller, P., (2018), Physical, mechanical and biological properties of thermo-mechanically densified and thermally modified timber using the Vacu3-process, European Journal of Wood and Wood Products, 76(3), 809–821. DOI:10.1007/s00107-017-1278-4.
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Timber, Pulp and Paper
Journal Section Derleme Makaleler
Authors

Mustafa Tosun This is me 0000-0002-8853-9152

Sait Dündar Sofuoğlu 0000-0002-1847-6985

Publication Date June 28, 2021
Submission Date April 8, 2021
Acceptance Date May 11, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Tosun, M., & Sofuoğlu, S. D. (2021). Ağaç malzemenin sıkıştırılarak yoğunlaştırılması konusunda yapılan çalışmalar. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 4(1), 91-102. https://doi.org/10.33725/mamad.911947

Cited By








Open Access and International Peer-reviewed Journal

18332  18333 3221732219   18334  18335  18336 18434

32216 32218 32220 32221  32273 32274 

32275 32308 32309 32312

32332