Research Article
BibTex RIS Cite

Mobilyalar için 3B yazıcılarda geliştirilen birleştirmelerde kullanılan malzemenin vida tutma kapasitesini etkileyen bazı baskı parametreleri

Year 2024, Volume: 7 Issue: 2, 150 - 162
https://doi.org/10.33725/mamad.1555655

Abstract

Bu çalışma, çeşitli dolgu desenleri ve oranları dikkate alınarak 3D baskı ile üretilen PLA malzemelerinin vida çekme dayanımını (VÇD) karşılaştırılmasını incelemiştir. VÇD mobilya birleştirmeleri için önemli bir malzeme özelliğidir. Bu amaçla, ASTM D 6117-18 standardına göre 10 × 50 × 50 mm boyutlarında numuneler basılmıştır. 3 × 4 faktörel deney için üretim parametreleri olarak üç dolgu deseni (çizgi, ızgara ve konsantrik) ve dört dolgu oranı (%25, %50, %75 ve %100) kullanılmıştır. Çalışma sonuçlara göre, çizgi dolgu desenleri, tüm dolgu oranlarında ızgara ve konsantrik desenlere kıyasla en yüksek yoğunluğa sahip olmuştur. %100 dolgu oranına sahip konsantrik dolgu desen en yüksek VCD’na sahiptir (108,01 MPa). Düşük dolgu oranlarında ise ızgara dolgu desenleri, çizgi ve konsantrik dolgu desenlerine göre daha yüksek dayanım sağlamıştır. Burada, ipliklerin arayüzleri için oluşan difüzyon 3B baskılanan malzemelerin VDÇ’lerini etkilemektedir. Bu çalışma, mobilya mekaniği alanında 3B baskı ile üretilen birleştirmelere dair öngörüler sunacaktır.

References

  • Aiman, A.F., Sanusi, H., Haidiezul, A.H.M., & Cheong, H.Y. (2020). Design and structural analysis of 3D-printed modular furniture joints, IOP Conf. Series: Material Science and Engineering, 932, 012101, DOI: 10.1088/1757-899X/932/1/012101
  • Alvarez, K.L., Lagos, R.F., & Aizpun, M. (2016). Investigating the influence of infill percentage on the mechanical properties of fused deposition modelled ABS parts, Ingeniería e Investigación, 36 (3), 110-116, DOI: 10.15446/ing.investig.v36n3.56610
  • Ambati, S.S., & Ambatipudi, R. (2022). Effect of infill density and infill pattern on the mechanical properties of 3D printed PLA parts, Materials Today: Proceedings, 64, 804-807, DOI: 10.1016/j.matpr.2022.05.312
  • ASTM D 6117-18 (2016). Standard test methods for mechanical fasteners in plastic lumber and shapes, ASTM International, West Conshohocken, PA.
  • Aydın, M., Yıldırım, F. & Çantı, E. (2019). Farkli yazdırma parametrelerinde PLA filamentin işlem performansının incelenmesi, International Journal of 3D Printing technologies and Digital Industry, 3(2), 102-115.
  • Bardiya, S., Jerald, J., & Satheeshkumar, V. (2021). The impact of process parameters on the tensile strength, flexural strength and the manufacturing time of fused filament fabricated (FFF) parts, Materials Today: Proceedings, 39, 1362-1366, DOI: 10.1016/j.matpr.2020.04.691
  • Birosz, M.T., Ledenyak, D., & Ando, M. (2022). Effect of FDM infill patterns on mechanical properties, Polymer Testing, 13: 107654, DOI: 10.1016/j.polymertesting.2022.107654
  • Demirel, S., Kuvel, N.T., Çava, K. & Aslan, M. (2024). The performance of 3D printed dowel with three different surface designs in furniture joints, Turkish Journal of Forestry, 25 (1): 100-106, DOI: 10.18182/tjf.1387389
  • Drumright, R.E., Gruber, P.R., & Henton, D.E. (2000). Polylactic acid technology, Advanced Materials, 12(23), 1841-1846.
  • Evlen, H., Erel, G. & Yılmaz, E. (2018). 3D printer design and investigation of effects on the mechanical properties of the printing fill rates, International Journal of 3D Printing technologies and Digital Industry, 2(1), 23-31.
  • Feng. S., Du, M. Wang, W., Lu, H., Park, D. & Ji, G. (2020). 3D printed monolithic joints: A mechanically bistable joint, 25th International Conference of the Association for Computer-Aided Architectural Design Research in Asia, Bangkok, Thailand, 5-6 August 2020, pp. 173-182, DOI: 10.52842/conf.caadria.2020.1.173
  • Ghanbari, A., Madhoushi, M., & Ashori, A. (2014). Wood plastic composite panels: influence of the species, formulation variables and blending process on the density and withdrawal strength of fasteners, Journal of Polymers and the Environment, 22, 260-266, DOI: 10.1007/s10924-013-0634-7
  • Haftkhani, A.R. (2011). Investigation on withdrawal resistance of various screws in face and edge of wood-plastic composite panels, Materials and Design, 32, 4100-4106, DOI: 10.1016/j.matdes.2011.02.065
  • Hajdarevic, S., Kuzman, M.K., Obucina, M., Vratusa, S., Kusar, T., & Kariz, M. (2023). Strength and stiffness of 3D-printed connectors compared with the wooden mortise and tenon joints for chairs, Wood Material Science & Engineering, 18(3), 870-883, DOI: 10.1080/17480272.2022.2086065
  • Kam, M., Saruhan, H., & İpekçi, A. (2019). Effect of filling structures on strength of printed products by 3D printers, Duzce University Journal of Science and Technology, 7, 951-960, DOI: 10.29130/dubited.452907
  • Kamer, M.S., Doğan, O., Temiz, Ş., & Yaykaşlı, H. (2021). Investigation of the mechanical properties of flexural test samples produced using different printing parameters with a 3D printer, Çukurova University Journal of the Faculty of Engineering, 36(3), 835-846, DOI: 10.21605/cukurovaumfd.1005909
  • Kasal, A., Kuşkun, T. & Smardzewski, J. (2020). Experimental and numerical study on withdrawal strength of different types of auxetic dowels for furniture joints, Materials, 13(19), 4252, DOI: 10.3390/ma13194252
  • Kasal, A., Smardzewski, J., Kuşkun, T. & Güray, E. (2023). Analyses of L-type corner joints connected with auxetic dowels for case furniture. Materials, 16(13), 4547, DOI: 10.3390/ma16134547
  • Khalid, J., Gurrapu, D.R., & Elfakhri, F. (2023). Effects of infill line multiplier and patterns on mechanical properties of lightweight and resilient hollow section products manufactured using fused filament fabrication, Polymers, 15, 2585, DOI: 10.3390/polym15122585
  • Krzyzaniak, L., & Smardzewski, J. (2019). Strength and stiffness of new designed externally invisible and demountable joints for furniture cases, Engineering Structures, 199, 109674, DOI: 10.1016/j.engstruct.2019.109674
  • Krzyzaniak, L., Kuşkun, T., Kasal, A., & Smardzewski, J. (2021). Analysis of the internal mounting forces and strength of newly designed fastener to joints wood and wood-based panels, Materials, 14(23), 7119, DOI: 10.3390/ma14237119
  • Kuşkun, T., Smardzewski, J. & Kasal, A. (2021). Experimental and numerical analysis of mounting force of auxetic dowels for furniture joints, Engineering Structures, 226, 111351, DOI: 10.1016/j.engstruct.2020.111351
  • Nicolau, A., Pop, M.A., & Coşereanu, C. (2022). 3D Printing Application in Wood Furniture Components Assembling, Materials, 15, 2907, DOI: 10.3390/ma15082907
  • Nicolau, A., & Coşereanu, C. (2024). Mechanical properties of L-type corner joints connected with 3D printed connectors using fused deposition modelling technology, Pro Ligno, 20(2), 69-76.
  • Öz, Ö., Aydın, M., Kara, A.S., & Sancak, M.S. (2018). Determination of the infill ratio effect on the failure loads of the printed parts, International Journal of 3D Printing technologies and Digital Industry, 2(1), 32-39.
  • Podskarbi, M. & Smardzewski, J. (2019). Numerical modelling of new demountable fasteners for frame furniture. Engineering Structures, 185, 221-229, DOI: 10.1016/j.engstruct.2019.01.135
  • Premphet, P., leksakul, K., Boonyawan, D., & Vichiansan, N. (In Press). Process parameters optimization and mechanical properties of 3D PLA/HA printing scaffold, Materials Today: Proceedings, DOI: 10.1016/j.matpr.2023.04.124
  • Re, G.L., Benali, S., Habibi, Y., Raquez, J.M., & Dubois, P. (2014). Stereocomplexed PLA nanocomposites: from in situ polymerization to materials properties, European Polymer Journal, 54, 138-150, DOI: 10.1016/j.eurpolymj.2014.03.004
  • Sharma, V., Roozbahani, H., Alizadeh, M., & Handross, H. (2021). 3D printing of plant-derived compounds and proposed nozzle design design for the more effective 3D FDM printing, IEEE Access, 9(3), 57107-57119, DOI: 10.1109/ACCESS.2021.3071459
  • Sin, L.T., Rahmat, A.R., & Rahman, W.A.W.A. (2013). Thermal Properties of Poly (Lactic Acid) in Polylactic Acid: PLA Biopolymer Technology and Applications, Elsevier, Amsterdam, Netherlands, pp. 109–141.
  • Smardzewski, J., Rzepa, & Kılıç, H. (2016). Mechanical Properties of Externally Invisible Furniture Joints Made of Wood-Based Composites, Bioresources, 11(1), 1224-1239, DOI: 10.15376/biores.11.1.1224-1239 URL - 1 – eSUN: PLA+. Available online: https://platincdn.com/2631/dosyalar/files/eSUN_PLA%2B%20Filament_TDS_V4_0.pdf. Last access on September 24, 2024.
  • Wang, S., Ma, Y., Deng, Z., Zhang, S., & Cai, J. (2020). Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials, Polymer Testing, 86, 106483, DOI: 10.1016/j.polymertesting.2020.106483
  • Zurnacı, E. (2023). Optimization of 3D printing parameters to mechanical strength improvement of sustainable printing material using RSM, International Journal of 3D Printing technologies and Digital Industry, 7(1), 38-46, DOI: 10.46519/ij3dptdi.1231076

Some printing parameters affecting the screw withdrawal strength of materials used in joints developed in 3D printers for furniture

Year 2024, Volume: 7 Issue: 2, 150 - 162
https://doi.org/10.33725/mamad.1555655

Abstract

This study examined to benchmark the screw withdrawal strength (SWS) of the 3D-printed PLA materials considering various infill patterns and ratios. SWS is one of the critical material properties for furniture joints. For this purpose, dimensions of 10 × 50 × 50 mm specimens made of PLA+ were printed according to ASTM D 6117-18. Three infill patterns (line, grid, and concentric) and four infill ratios (25%, 50%, 75%, and 100%) were used as printing parameters to construct a complete 3 × 4 factorial experiment. According to the results, line infill patterns had the highest density compared to the grid and concentric patterns for all infill ratios. Concentric infill patterns with an infill ratio of 100% (108.41 MPa) had the greatest SWS. Grid infill patterns provided higher strength at the lower infill ratios than line and concentric infill patterns. Here, diffusion for interfaces of strands affected the SWSs of the 3D-printed materials. This study would provide insight into the 3D-printed joints in the field of furniture mechanics.

References

  • Aiman, A.F., Sanusi, H., Haidiezul, A.H.M., & Cheong, H.Y. (2020). Design and structural analysis of 3D-printed modular furniture joints, IOP Conf. Series: Material Science and Engineering, 932, 012101, DOI: 10.1088/1757-899X/932/1/012101
  • Alvarez, K.L., Lagos, R.F., & Aizpun, M. (2016). Investigating the influence of infill percentage on the mechanical properties of fused deposition modelled ABS parts, Ingeniería e Investigación, 36 (3), 110-116, DOI: 10.15446/ing.investig.v36n3.56610
  • Ambati, S.S., & Ambatipudi, R. (2022). Effect of infill density and infill pattern on the mechanical properties of 3D printed PLA parts, Materials Today: Proceedings, 64, 804-807, DOI: 10.1016/j.matpr.2022.05.312
  • ASTM D 6117-18 (2016). Standard test methods for mechanical fasteners in plastic lumber and shapes, ASTM International, West Conshohocken, PA.
  • Aydın, M., Yıldırım, F. & Çantı, E. (2019). Farkli yazdırma parametrelerinde PLA filamentin işlem performansının incelenmesi, International Journal of 3D Printing technologies and Digital Industry, 3(2), 102-115.
  • Bardiya, S., Jerald, J., & Satheeshkumar, V. (2021). The impact of process parameters on the tensile strength, flexural strength and the manufacturing time of fused filament fabricated (FFF) parts, Materials Today: Proceedings, 39, 1362-1366, DOI: 10.1016/j.matpr.2020.04.691
  • Birosz, M.T., Ledenyak, D., & Ando, M. (2022). Effect of FDM infill patterns on mechanical properties, Polymer Testing, 13: 107654, DOI: 10.1016/j.polymertesting.2022.107654
  • Demirel, S., Kuvel, N.T., Çava, K. & Aslan, M. (2024). The performance of 3D printed dowel with three different surface designs in furniture joints, Turkish Journal of Forestry, 25 (1): 100-106, DOI: 10.18182/tjf.1387389
  • Drumright, R.E., Gruber, P.R., & Henton, D.E. (2000). Polylactic acid technology, Advanced Materials, 12(23), 1841-1846.
  • Evlen, H., Erel, G. & Yılmaz, E. (2018). 3D printer design and investigation of effects on the mechanical properties of the printing fill rates, International Journal of 3D Printing technologies and Digital Industry, 2(1), 23-31.
  • Feng. S., Du, M. Wang, W., Lu, H., Park, D. & Ji, G. (2020). 3D printed monolithic joints: A mechanically bistable joint, 25th International Conference of the Association for Computer-Aided Architectural Design Research in Asia, Bangkok, Thailand, 5-6 August 2020, pp. 173-182, DOI: 10.52842/conf.caadria.2020.1.173
  • Ghanbari, A., Madhoushi, M., & Ashori, A. (2014). Wood plastic composite panels: influence of the species, formulation variables and blending process on the density and withdrawal strength of fasteners, Journal of Polymers and the Environment, 22, 260-266, DOI: 10.1007/s10924-013-0634-7
  • Haftkhani, A.R. (2011). Investigation on withdrawal resistance of various screws in face and edge of wood-plastic composite panels, Materials and Design, 32, 4100-4106, DOI: 10.1016/j.matdes.2011.02.065
  • Hajdarevic, S., Kuzman, M.K., Obucina, M., Vratusa, S., Kusar, T., & Kariz, M. (2023). Strength and stiffness of 3D-printed connectors compared with the wooden mortise and tenon joints for chairs, Wood Material Science & Engineering, 18(3), 870-883, DOI: 10.1080/17480272.2022.2086065
  • Kam, M., Saruhan, H., & İpekçi, A. (2019). Effect of filling structures on strength of printed products by 3D printers, Duzce University Journal of Science and Technology, 7, 951-960, DOI: 10.29130/dubited.452907
  • Kamer, M.S., Doğan, O., Temiz, Ş., & Yaykaşlı, H. (2021). Investigation of the mechanical properties of flexural test samples produced using different printing parameters with a 3D printer, Çukurova University Journal of the Faculty of Engineering, 36(3), 835-846, DOI: 10.21605/cukurovaumfd.1005909
  • Kasal, A., Kuşkun, T. & Smardzewski, J. (2020). Experimental and numerical study on withdrawal strength of different types of auxetic dowels for furniture joints, Materials, 13(19), 4252, DOI: 10.3390/ma13194252
  • Kasal, A., Smardzewski, J., Kuşkun, T. & Güray, E. (2023). Analyses of L-type corner joints connected with auxetic dowels for case furniture. Materials, 16(13), 4547, DOI: 10.3390/ma16134547
  • Khalid, J., Gurrapu, D.R., & Elfakhri, F. (2023). Effects of infill line multiplier and patterns on mechanical properties of lightweight and resilient hollow section products manufactured using fused filament fabrication, Polymers, 15, 2585, DOI: 10.3390/polym15122585
  • Krzyzaniak, L., & Smardzewski, J. (2019). Strength and stiffness of new designed externally invisible and demountable joints for furniture cases, Engineering Structures, 199, 109674, DOI: 10.1016/j.engstruct.2019.109674
  • Krzyzaniak, L., Kuşkun, T., Kasal, A., & Smardzewski, J. (2021). Analysis of the internal mounting forces and strength of newly designed fastener to joints wood and wood-based panels, Materials, 14(23), 7119, DOI: 10.3390/ma14237119
  • Kuşkun, T., Smardzewski, J. & Kasal, A. (2021). Experimental and numerical analysis of mounting force of auxetic dowels for furniture joints, Engineering Structures, 226, 111351, DOI: 10.1016/j.engstruct.2020.111351
  • Nicolau, A., Pop, M.A., & Coşereanu, C. (2022). 3D Printing Application in Wood Furniture Components Assembling, Materials, 15, 2907, DOI: 10.3390/ma15082907
  • Nicolau, A., & Coşereanu, C. (2024). Mechanical properties of L-type corner joints connected with 3D printed connectors using fused deposition modelling technology, Pro Ligno, 20(2), 69-76.
  • Öz, Ö., Aydın, M., Kara, A.S., & Sancak, M.S. (2018). Determination of the infill ratio effect on the failure loads of the printed parts, International Journal of 3D Printing technologies and Digital Industry, 2(1), 32-39.
  • Podskarbi, M. & Smardzewski, J. (2019). Numerical modelling of new demountable fasteners for frame furniture. Engineering Structures, 185, 221-229, DOI: 10.1016/j.engstruct.2019.01.135
  • Premphet, P., leksakul, K., Boonyawan, D., & Vichiansan, N. (In Press). Process parameters optimization and mechanical properties of 3D PLA/HA printing scaffold, Materials Today: Proceedings, DOI: 10.1016/j.matpr.2023.04.124
  • Re, G.L., Benali, S., Habibi, Y., Raquez, J.M., & Dubois, P. (2014). Stereocomplexed PLA nanocomposites: from in situ polymerization to materials properties, European Polymer Journal, 54, 138-150, DOI: 10.1016/j.eurpolymj.2014.03.004
  • Sharma, V., Roozbahani, H., Alizadeh, M., & Handross, H. (2021). 3D printing of plant-derived compounds and proposed nozzle design design for the more effective 3D FDM printing, IEEE Access, 9(3), 57107-57119, DOI: 10.1109/ACCESS.2021.3071459
  • Sin, L.T., Rahmat, A.R., & Rahman, W.A.W.A. (2013). Thermal Properties of Poly (Lactic Acid) in Polylactic Acid: PLA Biopolymer Technology and Applications, Elsevier, Amsterdam, Netherlands, pp. 109–141.
  • Smardzewski, J., Rzepa, & Kılıç, H. (2016). Mechanical Properties of Externally Invisible Furniture Joints Made of Wood-Based Composites, Bioresources, 11(1), 1224-1239, DOI: 10.15376/biores.11.1.1224-1239 URL - 1 – eSUN: PLA+. Available online: https://platincdn.com/2631/dosyalar/files/eSUN_PLA%2B%20Filament_TDS_V4_0.pdf. Last access on September 24, 2024.
  • Wang, S., Ma, Y., Deng, Z., Zhang, S., & Cai, J. (2020). Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials, Polymer Testing, 86, 106483, DOI: 10.1016/j.polymertesting.2020.106483
  • Zurnacı, E. (2023). Optimization of 3D printing parameters to mechanical strength improvement of sustainable printing material using RSM, International Journal of 3D Printing technologies and Digital Industry, 7(1), 38-46, DOI: 10.46519/ij3dptdi.1231076
There are 33 citations in total.

Details

Primary Language English
Subjects Forest Industry Engineering (Other)
Journal Section Articles
Authors

Mesut Uysal 0000-0003-0114-3030

Early Pub Date December 8, 2024
Publication Date
Submission Date September 25, 2024
Acceptance Date November 23, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Uysal, M. (2024). Some printing parameters affecting the screw withdrawal strength of materials used in joints developed in 3D printers for furniture. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 7(2), 150-162. https://doi.org/10.33725/mamad.1555655

Open Access and International Peer-reviewed Journal

18332  18333 3221732219   18334  18335  18336 18434

32216 32218 32220 32221  32273 32274 

32275 32308 32309 32312

32332