Research Article
BibTex RIS Cite

Performance properties of heat treated and reinforced laminated veneer lumber with glass fiber

Year 2025, Volume: 8 Issue: 1, 156 - 171, 30.06.2025
https://doi.org/10.33725/mamad.1699980

Abstract

Bu çalışmada, ısıl işlem uygulanmış sarıçam (Pinus sylvestris L.) odunundan hazırlanan deney örneklerinin bazı teknolojik özellikleri analiz edilmiştir. Bu amaçla, 140 °C, 160 °C, 180 °C ve 200 °C'de 3 saat süre ısıl işleme tabi tutulan malzemelerden deney örnekleri üretilmiştir. Tomruğun diri odun kısmından üç farklı deney grubu hazırlanmıştır. Birinci grup masif ahşap (ahşap), ikinci grup lamine kaplama kereste (LVL) ve üçüncü grup ise cam elyaf kumaş kullanılarak güçlendirilmiş lamine kaplama kerestedir (RLVL). Bu çalışmada tutkal olarak tek bileşenli poliüretan bazlı yapıştırıcı kullanılmıştır. Takviyenin LVL kompozit üzerindeki etkilerini analiz etmek için hava kuru yoğunluk, denge rutubet miktarı (EMC) ve liflere paralel basınç direnci değerleri belirlenmiştir. Deney sonuçları, ısıl işlem uygulanmış ve cam elyaf ile güçlendirilmiş LVL numunelerinin hava kurusu yoğunluk ve liflere paralel basınç direncini artırdığını göstermektedir. Öte yandan, deney örneklerinin EMC değerleri uygulanan ısıl işlem sıcaklıklarına ve yapılan güçlenndirme işlemine bağlı olarak azalmıştır. Isıl işlem uygulanmış ahşap malzemenin fiziksel ve mekanik özelliklerinin geliştirilmesi binalarda uygun alanlarda kullanımının yaygınlaşmasına katkı sağlayabilir.

References

  • Arriaga, F., Wang, X., Íñiguez-González, G., Llana, D. F., Esteban, M., & Niemz, P., (2023). Mechanical properties of wood: A review, Forests, 14(6), 1202. DOI: 10.3390/f14061202
  • Auriga, R., Gumowska, A., Szymanowski, K., Wronka, A., Robles, E., Ocipka, P., & Kowaluk, G., (2020). Performance properties of plywood composites reinforced with carbon fibers, Composite Structures, 248, 112533. DOI: 10.1016/j.compstruct.2020.112533
  • Aydemir, D., & Gündüz, G., (2009). Ahşabın fiziksel, kimyasal, mekaniksel ve biyolojik özellikleri üzerine ısıyla muamelenin etkisi, Bartın Orman Fakültesi Dergisi, 11(15), 71-81.
  • Bacak, F. N., & Yaldız, E. (2023). Akseki ilçesi Emiraşıklar mahallesi geleneksel konut mimarisi tescilli yapıları üzerine bir çalışma, Konya Sanat Dergisi (6), 1-24, DOI: 10.51118/konsan.2023.21
  • Bal B.C., & Özyurt H., (2015). Some technological properties of laminated veneer lumber reinforced with woven glass fiber, KSU Journal of Engineering Sciences, 18 (1), 9-16.
  • Bal, B. C., & Bektaş, İ. (2012). The effects of some factors on the impact bending strength of laminated veneer lumber, BioResources, 7(4), 5855-5863.
  • Bal, B. C., (2014a). Flexural properties, bonding performance and splitting strength of LVL reinforced with woven glass fiber, Construction and Building Materials, 51, 9-14. DOI:10.1016/j.conbuildmat.2013.10.041.
  • Bal, B. C. (2014b). Some physical and mechanical properties of reinforced laminated veneer lumber, Construction and Building Materials, 68, 120-126. DOI:10.1016/j.conbuildmat.2014.06.042.
  • Basterra, L. A., Acuna, L., Casado, M., López, G., & Bueno, A. (2012). Strength testing of Poplar duo beams, Populus x euramericana (Dode) Guinier cv. I-214, with fibre reinforcement, Construction and Building Materials, 36, 90-96.
  • Bekhta, P., Chernetskyi, O., Kusniak, I., Bekhta, N., & Bryn, O. (2021). Selected properties of plywood bonded with low-density polyethylene film from different wood species, Polymers, 14, 51, 1-13, DOI: 10.3390/polym14010051 Bekhta, P., & Niemz, P., (2003). Effect of high-temperature on the change in color, dimensional stability and mechanical properties of spruce wood, Holzforschung, 57, 539–546.
  • Boonstra, M. J., Van Acker, J., Tjeerdsma, B. F., & Kegel, E. V., (2007). Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents, Annals of Forest Science, 64(7), 679-690.
  • Çavuş, V., Kurt, R., Çil, M., & Aslan, K., (2013). Mobilya ve içmekan tasarımında ağaç esaslı malzemelere yeni bir yaklaşım: Mühendislik ürünü ağaç malzemeler, III. Ulusal İç Mimarlık Sempozyumu, İstanbul.
  • Çiğdem, E., & Perçin, O. (2023). Some physical and mechanical properties of heat-treated, reinforced laminated veneer lumber (LVL) with carbon fiber and glass fiber, Journal of the Faculty of Engineering and Architecture of Gazi University 38:2, 653-664. DOI:10.17341/gazimmfd.984248
  • Dukarska, D., & Mirski, R., (2023). Wood-Based materials in building. Materials, 16(8), 2987. DOI: 10.3390/ma16082987
  • Esteves, B., & Pereira, H.M., (2009). Wood modification by heat treatment: A review, BioResources 4(1), 370‐ 404.
  • Fiorelli, J., Dias, A. A., (2006). Fiberglass-reinforced glulam beams: Mechanical properties and theoretical model. Materials Research. 9(3): 263-269.
  • Gunduz, G., Korkut, S., Aydemir, D., & Bekar, Í. (2009). The density, compression strength and surface hardness of heat treated hornbeam (Carpinus betulus L.) wood. Maderas. Ciencia y tecnología, 11(1), 61-70.
  • Hill, C., Altgen, M., & Rautkari, L. (2021). Thermal modification of wood—A review: Chemical changes and hygroscopicity, Journal of materials science, 56, 6581-6614. DOI: 10.1007/s10853-020-05722-z
  • Jamsa, S., & Viitaniemi, P., (2001). Heat treatment of wood better durability without chemicals. In: Rapp, A.O. (Ed.), Review on heat treatments of wood, Cost Action E22. Proceedings of the Special Seminar, Antibes, France, 17–22.
  • Johansson, D., (2008). Heat treatment of solid wood. effects on absorption, strength and colour, Doctoral Thesis. Luleå University of Technology, LTU Skellefteå, Division of Wood Physics 2008;53, ISSN: 1402–544.
  • Karaman, A., (2025). Investigation of the tensile strength of perpendicular to the fibers of wooden materials reinforced with FRP and joined with wooden dowels, Quest Journals Journal of Architecture and Civil Engineering. 10(2), 39-45, DOI: 10.35629/8193-10023945
  • Karaman, A., (2025). Determination of the effects of fiber-reinforced polymer types and wooden dowel species on the tensile strength perpendicular to the fibers of wooden materials, Asian Journal of Basic Science & Research, 7(1),10-21, DOI: 10.38177/AJBSR.2025.7102
  • Karaman, A., Yildirim, M. N., & Tor, O., (2021). Bending characteristics of laminated wood composites constructed with black pine wood and aramid fiber reinforced fabric, Wood Research, 66(2), 309-320. DOI: 10.37763/wr.1336-4561/66.2.309320
  • Keskin, H., Atar, M., & Kurt, R. (2003). Physical and mechanical properties of the laminated scots pine (Pinus sylvestris L.) wood, KSU Journal of Science and Engineering 6(1),75-84.
  • Korkut, D. S., Korkut, S., Bekar, I., Budakçi, M., Dilik, T., & Çakicier, N. (2008a). The effects of heat treatment on the physical properties and surface roughness of Turkish hazel (Corylus colurna L.) wood, International Journal of Molecular Sciences, 9(9), 1772-1783.
  • Korkut, S., & Budakci, M., (2010). The effects of high-temperature heat-treatment on physical properties and surface roughness of rowan (Sorbus aucuparia L.) wood, Wood Research, 55(1), 67-78.
  • Korkut, S., & Kocaefe, D., (2009). Isıl işlemin odun özellikleri üzerine etkisi, Düzce Üniversitesi Ormancılık Dergisi, 5(2), 11‐34.
  • Korkut, S., Akgül, M., & Dündar, T. (2008b). The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood, Bioresource Technology, 99(6), 1861-1868.
  • Li, T., Cheng, D. L., Avramidis, S., Wålinder, M. E.P., & Zhou, D. G. (2017). Response of hygroscopicity to heat treatment and its relation to durability of thermally modified wood, Construction and Building Materials, 144, 671-676.
  • Mayes, D., & Oksanen, O., (2002). ThermoWood Handbook, Finnforest Press, Finland.
  • Mengeloğlu, F., & Kurt, R., (2004). Mühendislik ürünü ağaç malzemeler tabakalanmış kap lama kereste (TAK) ve tabakalanmış ağaç malzeme (TAM), KSÜ Fen ve Mühendislik Dergisi, 7(1), 39-44.
  • Oral, İ., (2023). Prediction of hardness values of some wooden materials using computer-aided tap testing, Necmettin Erbakan University Journal of Science and Engineering 5(2), 216-225. DOI: 10.47112/neufmbd.2023.23
  • Perçin, O., (2023). Isıl işlem uygulanmış karbon fiber ile güçlendirilmiş lamine kaplama kerestenin (LVL) hava kurusu yoğunluk ve liflere paralel basınç direncinin belirlenmesi, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 6 (1), 104-114. DOI: 10.33725/mamad.1268729
  • Shi, J.L., Kocaefe, D., & Zhang, J., (2007). Mechanical behaviour of quebec wood species heat-treated using thermowood process, Holz als Roh-und Werkstoff, 65(4), 255-259.
  • Shi, S., & Walker, J. (2006). Wood-based composites: Plywood and veneer-based products. Chapter 11. In Primary Wood Processing: Principles and Practice, 2nd ed.; John, C.F., Walker, Eds.; Springer: Dordrecht, The Netherlands, pp. 391–426.
  • Shukla, S., & Kamdem, D. P. (2008). Properties of laminated veneer lumber (LVL) made with low density hardwood species: Effect of the pressure duration, Holz als Roh-und Werkstoff, 66(2), 119-127. DOI: 10.1007/s00107-007-0209-1
  • Sivrikaya, H., Hosseinpourpia, R., Ahmed, S. A., & Adamopoulos, S., (2022). Vacuum heat treatment of Scots pine (Pinus sylvestris L.) wood pretreated with propanetriol, Wood Material Science & Engineering 17(5), 328-336. DOI: 10.1080/17480272.2020.1861085
  • Tan, H., & Pillai, K. M., (2010). Processing polymer matrix composites for blast protection. In Blast protection of civil infrastructures and vehicles using composites, 54-87, Woodhead Publishing.
  • Tjeerdsma B, & Militz H., (2005). Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood, Holz als Roh- und Werkst, 63. 102-111. DOI: 10.1007/s00107-004-0532-8
  • TS 2470 (1976). Wood-sampling methods and general requirements for physical and mechanical tests, Turkish Standards Institute, Ankara, Türkiye.
  • TS 2471 (1976). Determination of moisture for physical and mechanical tests in wood. Turkish Standards Institute, Ankara, Türkiye.
  • TS 2472 (1976). Wood-determination of density for physical and mechanical tests. Turkish Standards Institute, Ankara, Türkiye.
  • TS 2595 (1977). Wood-determination of ultimate stress in compression parallel to grain. Turkish Standards Institute, Ankara, Türkiye.
  • TS 642 ISO 554 (1997). Standard atmospheres for conditioning and/or testing; specifications. Turkish Standards Institute, Ankara, Türkiye.
  • TS EN 386 (1999). Glued laminated timber-Performance requirements and minimum production requirements. Turkish Standards Institute, Ankara, Türkiye.
  • Uzun, O., & Sarıkahya, M., (2021). Mutfak mobilyası üretiminde kullanıcı tercihlerinin belirlenmesi, Konya Sanat Dergisi 2021(4), 29-35. DOI: 10.51118/konsan.2021.10
  • Wang, J., Guo, X., Zhong, W., Wang, H., Cao, P., (2015). Evaluation of mechanical properties of reinforced poplar laminated veneer lumber, BioResources. 10(4), 7455-7465. DOI: 10.15376/biores.10.4.7455-7465
  • Wimmers, G., (2017). Wood: A construction material for tall buildings. Nature Reviews Materials, 2, 17051. DOI: 10.1038/natrevmats.2017.51
  • Yapıcı, F., Özçifçi, A. & Özbay, G., (2010). Compression and bonding strength of heat treated Scotch pine (Pinus Slyvestrist L.) wood bonded with D-VTKA adhesive, Technological Applied Sciences, 5(2), 196-200.
  • Yeşil, H., Ordu, M., & Sofuoğlu, S.D., (2021). Mobilyada kullanılan tasarım öğelerinin psikolojik etkileri, Konya Sanat Dergisi (4), 36-51. DOI: 10.51118/konsan.2021.11
  • Yildiz, S., Gezer, E.D., & Yildiz U.C., (2006). Mechanical and chemical behavior of spruce wood modified by heat, Building and Environment, 41(12), 1762-1766.
  • Zhang, J. W., Liu, H. H., Yang, L., Han, T. Q., & Yin, Q., (2020). Effect of moderate temperature thermal modification combined with wax impregnation on wood properties, Applied Sciences, 10(22), 8231, 1-12. DOI: 10.3390/app10228231

Performance properties of heat treated and reinforced laminated veneer lumber with glass fiber

Year 2025, Volume: 8 Issue: 1, 156 - 171, 30.06.2025
https://doi.org/10.33725/mamad.1699980

Abstract

In this study, some technological properties of test samples manufactured from heat-treated scotch pine (Pinus sylvestris L.) wood were analyzed. For this aim, experimental specimens were manufactured from heat-treated material at temperatures of 140 °C, 160 °C, 180 °C and 200 °C for 3 hours. Three different experimental groups were prepared from the sapwood of the log. The first group was massive wood (wood), the second group was laminated veneer lumber (LVL), and the third group was reinforced laminated veneer lumber (RLVL) using glass fiber fabric. One-component polyurethane based adhesive was used as a binder in this study. Air-dry density, equilibrium moisture content (EMC), and compressive strength parallel to the grain were determined to analyze the effects of the reinforcement on the LVL composite. Test results showed that reinforced heat-treated LVL samples with glass fibers increased both air dry density and compressive strength parallel to the grain. On the other hand, the EMC values of the test samples decreased with increasing heat treatment temperature and reinforcement process. Improving the some physical and mechanical properties of heat-treated wood material can contribute to the widespread use in buildings.

References

  • Arriaga, F., Wang, X., Íñiguez-González, G., Llana, D. F., Esteban, M., & Niemz, P., (2023). Mechanical properties of wood: A review, Forests, 14(6), 1202. DOI: 10.3390/f14061202
  • Auriga, R., Gumowska, A., Szymanowski, K., Wronka, A., Robles, E., Ocipka, P., & Kowaluk, G., (2020). Performance properties of plywood composites reinforced with carbon fibers, Composite Structures, 248, 112533. DOI: 10.1016/j.compstruct.2020.112533
  • Aydemir, D., & Gündüz, G., (2009). Ahşabın fiziksel, kimyasal, mekaniksel ve biyolojik özellikleri üzerine ısıyla muamelenin etkisi, Bartın Orman Fakültesi Dergisi, 11(15), 71-81.
  • Bacak, F. N., & Yaldız, E. (2023). Akseki ilçesi Emiraşıklar mahallesi geleneksel konut mimarisi tescilli yapıları üzerine bir çalışma, Konya Sanat Dergisi (6), 1-24, DOI: 10.51118/konsan.2023.21
  • Bal B.C., & Özyurt H., (2015). Some technological properties of laminated veneer lumber reinforced with woven glass fiber, KSU Journal of Engineering Sciences, 18 (1), 9-16.
  • Bal, B. C., & Bektaş, İ. (2012). The effects of some factors on the impact bending strength of laminated veneer lumber, BioResources, 7(4), 5855-5863.
  • Bal, B. C., (2014a). Flexural properties, bonding performance and splitting strength of LVL reinforced with woven glass fiber, Construction and Building Materials, 51, 9-14. DOI:10.1016/j.conbuildmat.2013.10.041.
  • Bal, B. C. (2014b). Some physical and mechanical properties of reinforced laminated veneer lumber, Construction and Building Materials, 68, 120-126. DOI:10.1016/j.conbuildmat.2014.06.042.
  • Basterra, L. A., Acuna, L., Casado, M., López, G., & Bueno, A. (2012). Strength testing of Poplar duo beams, Populus x euramericana (Dode) Guinier cv. I-214, with fibre reinforcement, Construction and Building Materials, 36, 90-96.
  • Bekhta, P., Chernetskyi, O., Kusniak, I., Bekhta, N., & Bryn, O. (2021). Selected properties of plywood bonded with low-density polyethylene film from different wood species, Polymers, 14, 51, 1-13, DOI: 10.3390/polym14010051 Bekhta, P., & Niemz, P., (2003). Effect of high-temperature on the change in color, dimensional stability and mechanical properties of spruce wood, Holzforschung, 57, 539–546.
  • Boonstra, M. J., Van Acker, J., Tjeerdsma, B. F., & Kegel, E. V., (2007). Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents, Annals of Forest Science, 64(7), 679-690.
  • Çavuş, V., Kurt, R., Çil, M., & Aslan, K., (2013). Mobilya ve içmekan tasarımında ağaç esaslı malzemelere yeni bir yaklaşım: Mühendislik ürünü ağaç malzemeler, III. Ulusal İç Mimarlık Sempozyumu, İstanbul.
  • Çiğdem, E., & Perçin, O. (2023). Some physical and mechanical properties of heat-treated, reinforced laminated veneer lumber (LVL) with carbon fiber and glass fiber, Journal of the Faculty of Engineering and Architecture of Gazi University 38:2, 653-664. DOI:10.17341/gazimmfd.984248
  • Dukarska, D., & Mirski, R., (2023). Wood-Based materials in building. Materials, 16(8), 2987. DOI: 10.3390/ma16082987
  • Esteves, B., & Pereira, H.M., (2009). Wood modification by heat treatment: A review, BioResources 4(1), 370‐ 404.
  • Fiorelli, J., Dias, A. A., (2006). Fiberglass-reinforced glulam beams: Mechanical properties and theoretical model. Materials Research. 9(3): 263-269.
  • Gunduz, G., Korkut, S., Aydemir, D., & Bekar, Í. (2009). The density, compression strength and surface hardness of heat treated hornbeam (Carpinus betulus L.) wood. Maderas. Ciencia y tecnología, 11(1), 61-70.
  • Hill, C., Altgen, M., & Rautkari, L. (2021). Thermal modification of wood—A review: Chemical changes and hygroscopicity, Journal of materials science, 56, 6581-6614. DOI: 10.1007/s10853-020-05722-z
  • Jamsa, S., & Viitaniemi, P., (2001). Heat treatment of wood better durability without chemicals. In: Rapp, A.O. (Ed.), Review on heat treatments of wood, Cost Action E22. Proceedings of the Special Seminar, Antibes, France, 17–22.
  • Johansson, D., (2008). Heat treatment of solid wood. effects on absorption, strength and colour, Doctoral Thesis. Luleå University of Technology, LTU Skellefteå, Division of Wood Physics 2008;53, ISSN: 1402–544.
  • Karaman, A., (2025). Investigation of the tensile strength of perpendicular to the fibers of wooden materials reinforced with FRP and joined with wooden dowels, Quest Journals Journal of Architecture and Civil Engineering. 10(2), 39-45, DOI: 10.35629/8193-10023945
  • Karaman, A., (2025). Determination of the effects of fiber-reinforced polymer types and wooden dowel species on the tensile strength perpendicular to the fibers of wooden materials, Asian Journal of Basic Science & Research, 7(1),10-21, DOI: 10.38177/AJBSR.2025.7102
  • Karaman, A., Yildirim, M. N., & Tor, O., (2021). Bending characteristics of laminated wood composites constructed with black pine wood and aramid fiber reinforced fabric, Wood Research, 66(2), 309-320. DOI: 10.37763/wr.1336-4561/66.2.309320
  • Keskin, H., Atar, M., & Kurt, R. (2003). Physical and mechanical properties of the laminated scots pine (Pinus sylvestris L.) wood, KSU Journal of Science and Engineering 6(1),75-84.
  • Korkut, D. S., Korkut, S., Bekar, I., Budakçi, M., Dilik, T., & Çakicier, N. (2008a). The effects of heat treatment on the physical properties and surface roughness of Turkish hazel (Corylus colurna L.) wood, International Journal of Molecular Sciences, 9(9), 1772-1783.
  • Korkut, S., & Budakci, M., (2010). The effects of high-temperature heat-treatment on physical properties and surface roughness of rowan (Sorbus aucuparia L.) wood, Wood Research, 55(1), 67-78.
  • Korkut, S., & Kocaefe, D., (2009). Isıl işlemin odun özellikleri üzerine etkisi, Düzce Üniversitesi Ormancılık Dergisi, 5(2), 11‐34.
  • Korkut, S., Akgül, M., & Dündar, T. (2008b). The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood, Bioresource Technology, 99(6), 1861-1868.
  • Li, T., Cheng, D. L., Avramidis, S., Wålinder, M. E.P., & Zhou, D. G. (2017). Response of hygroscopicity to heat treatment and its relation to durability of thermally modified wood, Construction and Building Materials, 144, 671-676.
  • Mayes, D., & Oksanen, O., (2002). ThermoWood Handbook, Finnforest Press, Finland.
  • Mengeloğlu, F., & Kurt, R., (2004). Mühendislik ürünü ağaç malzemeler tabakalanmış kap lama kereste (TAK) ve tabakalanmış ağaç malzeme (TAM), KSÜ Fen ve Mühendislik Dergisi, 7(1), 39-44.
  • Oral, İ., (2023). Prediction of hardness values of some wooden materials using computer-aided tap testing, Necmettin Erbakan University Journal of Science and Engineering 5(2), 216-225. DOI: 10.47112/neufmbd.2023.23
  • Perçin, O., (2023). Isıl işlem uygulanmış karbon fiber ile güçlendirilmiş lamine kaplama kerestenin (LVL) hava kurusu yoğunluk ve liflere paralel basınç direncinin belirlenmesi, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 6 (1), 104-114. DOI: 10.33725/mamad.1268729
  • Shi, J.L., Kocaefe, D., & Zhang, J., (2007). Mechanical behaviour of quebec wood species heat-treated using thermowood process, Holz als Roh-und Werkstoff, 65(4), 255-259.
  • Shi, S., & Walker, J. (2006). Wood-based composites: Plywood and veneer-based products. Chapter 11. In Primary Wood Processing: Principles and Practice, 2nd ed.; John, C.F., Walker, Eds.; Springer: Dordrecht, The Netherlands, pp. 391–426.
  • Shukla, S., & Kamdem, D. P. (2008). Properties of laminated veneer lumber (LVL) made with low density hardwood species: Effect of the pressure duration, Holz als Roh-und Werkstoff, 66(2), 119-127. DOI: 10.1007/s00107-007-0209-1
  • Sivrikaya, H., Hosseinpourpia, R., Ahmed, S. A., & Adamopoulos, S., (2022). Vacuum heat treatment of Scots pine (Pinus sylvestris L.) wood pretreated with propanetriol, Wood Material Science & Engineering 17(5), 328-336. DOI: 10.1080/17480272.2020.1861085
  • Tan, H., & Pillai, K. M., (2010). Processing polymer matrix composites for blast protection. In Blast protection of civil infrastructures and vehicles using composites, 54-87, Woodhead Publishing.
  • Tjeerdsma B, & Militz H., (2005). Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood, Holz als Roh- und Werkst, 63. 102-111. DOI: 10.1007/s00107-004-0532-8
  • TS 2470 (1976). Wood-sampling methods and general requirements for physical and mechanical tests, Turkish Standards Institute, Ankara, Türkiye.
  • TS 2471 (1976). Determination of moisture for physical and mechanical tests in wood. Turkish Standards Institute, Ankara, Türkiye.
  • TS 2472 (1976). Wood-determination of density for physical and mechanical tests. Turkish Standards Institute, Ankara, Türkiye.
  • TS 2595 (1977). Wood-determination of ultimate stress in compression parallel to grain. Turkish Standards Institute, Ankara, Türkiye.
  • TS 642 ISO 554 (1997). Standard atmospheres for conditioning and/or testing; specifications. Turkish Standards Institute, Ankara, Türkiye.
  • TS EN 386 (1999). Glued laminated timber-Performance requirements and minimum production requirements. Turkish Standards Institute, Ankara, Türkiye.
  • Uzun, O., & Sarıkahya, M., (2021). Mutfak mobilyası üretiminde kullanıcı tercihlerinin belirlenmesi, Konya Sanat Dergisi 2021(4), 29-35. DOI: 10.51118/konsan.2021.10
  • Wang, J., Guo, X., Zhong, W., Wang, H., Cao, P., (2015). Evaluation of mechanical properties of reinforced poplar laminated veneer lumber, BioResources. 10(4), 7455-7465. DOI: 10.15376/biores.10.4.7455-7465
  • Wimmers, G., (2017). Wood: A construction material for tall buildings. Nature Reviews Materials, 2, 17051. DOI: 10.1038/natrevmats.2017.51
  • Yapıcı, F., Özçifçi, A. & Özbay, G., (2010). Compression and bonding strength of heat treated Scotch pine (Pinus Slyvestrist L.) wood bonded with D-VTKA adhesive, Technological Applied Sciences, 5(2), 196-200.
  • Yeşil, H., Ordu, M., & Sofuoğlu, S.D., (2021). Mobilyada kullanılan tasarım öğelerinin psikolojik etkileri, Konya Sanat Dergisi (4), 36-51. DOI: 10.51118/konsan.2021.11
  • Yildiz, S., Gezer, E.D., & Yildiz U.C., (2006). Mechanical and chemical behavior of spruce wood modified by heat, Building and Environment, 41(12), 1762-1766.
  • Zhang, J. W., Liu, H. H., Yang, L., Han, T. Q., & Yin, Q., (2020). Effect of moderate temperature thermal modification combined with wax impregnation on wood properties, Applied Sciences, 10(22), 8231, 1-12. DOI: 10.3390/app10228231
There are 52 citations in total.

Details

Primary Language English
Subjects Wood Based Composites
Journal Section Articles
Authors

Osman Perçin 0000-0003-0033-0918

Early Pub Date June 28, 2025
Publication Date June 30, 2025
Submission Date May 15, 2025
Acceptance Date June 20, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Perçin, O. (2025). Performance properties of heat treated and reinforced laminated veneer lumber with glass fiber. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 8(1), 156-171. https://doi.org/10.33725/mamad.1699980

Open Access and International Peer-reviewed Journal

     18332 18333 3221732219   18334  18335  18336 

32216 32218 32220 32221  32273 32274 

32275 32308 32309 32312

 32332  32384    32385 32400

 

32385