3B yazıcıda farklı baskı yönlerinde üretilen PLA ve PLA Wood cıvataların mekanik özelliklerinin incelenmesi
Year 2025,
Volume: 8 Issue: 2, 220 - 235
Abdulsamed Arik
,
Nergizhan Anaç
,
Vahap Neccaroğlu
,
Oğuz Koçar
,
Ali Ulaş Gümüşlüoğlu
,
Hikmet Sefa Dönmez
Abstract
Bu çalışmada, ticari Poliamid 6.6 (PA 6.6) cıvata ile eriyik yığma modelleme (EYM) yöntemiyle üretilen saf (katkısız) PLA (polilaktik asit) ve PLA-Wood (odun unu katkılı PLA) cıvataların tork dayanımları ve kırılma yüzeyleri incelenmiştir. 3B yazıcıda farklı baskı yönlerinde (0°, 45°, 90°) M8x1.25x70 boyutlarında cıvatalar üretilmiştir. Malzemelerin çekme, eğme, sertlik ve yüzey pürüzlülüğü özellikleri karşılaştırılmıştır. Çekme testinde, saf PLA malzemesi PLA-Wood’a göre yaklaşık %45; eğilme testinde ise %52 daha yüksek dayanım göstermiştir. Yüzey pürüzlülüğü açısından PLA-Wood, saf PLA’ya göre %29 daha pürüzlü yüzey sunmuştur. Tork testlerinde saf PLA, PLA-Wood’a kıyasla %79 daha yüksek tork dayanımı sergilemiştir. Ticari PA 6.6 cıvata ise yalnızca saf PLA’nın 0° yönelimli numunesinden daha düşük performans göstermiştir. Bu bulgular, baskı yöneliminin ve malzeme seçiminin 3B yazdırılmış bağlantı elemanlarının performansı üzerinde belirleyici olduğunu ve 0° yönelimin genel olarak en avantajlı sonuçları sağladığını ortaya koymaktadır. Elde edilen veriler, hafif yapısal uygulamalarda ve montaj-tamirat işlerinde referans niteliğindedir.
References
-
ASTM D638., (2022). Standard test method for tensile properties of plastics. In ASTM International. Retrieved from https://store.astm.org/d0638-22.html
-
ASTM D790., (2017). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical ınsulating materials. ASTM International. Retrieved from https://store.astm.org/d0790-17.html
-
ASTM D2240., (2021). Standard test method for rubber property/durometer hardness. ASTM International. Retrieved from https://store.astm.org/d2240-15r21.html
-
Anaç, N. Koçar. O., (2024). Malik, V., Tiwary, V., and Padmakumar, A. (2024). Investigation of the effect of bonding parameters on the adhesive bonding strength of parts produced by FDM-3D Method, Malik, V., Tiwary, V., and Padmakumar, A. (Ed.), Post-Processing of Parts and Components Fabricated by Fused Deposition Modeling: Techniques and Advancements (1st edition, ss. 123-142). Routledge Taylor & Framcis Group, DOI: 10.1201/9781032665351
-
Avcı, B., Çavdar, A.D., and Mengeloğlu, F., (2022). Odun polimer kompozitlerin doğal ve yapay (suni) yaşlandırma sonrası özelliklerinde meydana gelen değişiklikler, Ormancılık Araştırma Dergisi, 9(Özel Sayı), 264–270, DOI: 10.17568/ogmoad.1091198
-
Ayrilmis, N., Kariz, M., Kwon, J. H., and Kitek Kuzman, M. (2019). Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials, The International Journal of Advanced Manufacturing Technology, 102(5), 2195–2200, DOI: 10.1007/s00170-019-03299-9
-
Bharat, N., Jain, R., and Bose, P. S. C. (2024). A comprehensive overview on additive manufacturing processes: materials, applications, and challenges, In V. S. Sharma, U. S. Dixit, A. Gupta, R. Verma, and V. Sharma (Eds.), Machining and Additive Manufacturing (pp. 95–105).
-
Bintara, R., Pradana, Y., Aminnudin, A., and Suryanto, H. (2023). The orientation and high-quality effect of deposit layer to surface roughness on FDM 3D Printed Part. Key Engineering Materials, 940, 95–99, DOI: 10.4028/p-29nh6i
-
Buj-Corral, I., Domínguez-Fernández, A., and Durán-Llucià, R. (2019). Influence of print orientation on surface roughness in fused deposition modeling (FDM) Processes. Materials, 12(23), DOI: 10.3390/ma12233834
-
Chen, S., Khan, S. B., Li, N., and Xiao, C. (2025). In-depth analysis of sintering, exposure time, and layer height (um) in LRS 3D printed devices with DLP, Journal of Manufacturing Processes, 133, 576–591, DOI: 10.1016/J.JMAPRO.2024.11.060
-
De Castro Magalhães, F., and Campos Rubio, Juan Carlos. (2025). Enhancing mechanical properties and structural behaviour of PLA/wood composites through annealing at 50°C and 100°C, Journal of Composite Materials, 00219983251329111, DOI: 10.1177/00219983251329111
-
Dembri, I., Belaadi, A., Lekrine, A., Jawaid, M., Ismail, A. S., and Ghernaout, D., (2024). Effect of alkaline treatment on the thermo-physicochemical and mechanical properties of biochar powder/Washingtonia robusta fibers/PLA hybrid biocomposites, Journal of Materials Research and Technology, 33, 9735–9751, DOI: 10.1016/J.JMRT.2024.12.018
-
Doğru, A., Kaçak, M., and Seydibeyoǧlu, M., (2024). Examination of mechanical properties of fasteners produced with PET and PLA Materials in extrusion-based additive manufacturing method. International Journal of 3D Printing Technologies and Digital Industry, 8, 407–415, DOI: 10.46519/ij3dptdi.1549143
-
Domingo-Espin, M., Puigoriol-Forcada, J. M., Garcia-Granada, A. A., Llumà, J., Borros, S., and Reyes, G. (2015). Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts, Materials & Design, 83, 670–677, DOI: 10.1016/J.MATDES.2015.06.074
-
Drazan, T., Chadima, V., Jasik, K., Sarzyński, B., Krchova, M., and Dobrocky, D., (2025). Analysıs of 3D printed metric nuts manufactured by the MEX method from ASA material. MM Science Journal, 2025, DOI: 10.17973/MMSJ.2025_06_2025063
-
Durmaz, S. (2022). Mermer atıklarının düz presleme yöntemiyle üretilen odun plastik kompozitlerinde değerlendirilmesi, Bartın Orman Fakültesi Dergisi, 24(2), 220–227, DOI: 10.24011/barofd.1084516
-
Efe, H., and İmirzi, H. Ö. (2007). Mobilya üretiminde kullanılan çeşitli bağlantı elemanlarının mekanik davranış özellikleri, Politeknik Dergisi, 10(1), 93–103.
-
Er, A. O., and Aydınlı, O. M. (2023). Ergiyik filament ile imalat yönteminde kullanılan PLA ve çelik katkılı PLA filament malzemelerin mekanik ve fiziksel özelliklerinin incelenmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 1285–1302, DOI: 10.17341/gazimmfd.1276420
-
Fountas, N. A., Zaoutsos, S., Chaidas, D., Kechagias, J. D., and Vaxevanidis, N. M. (2023). Statistical modelling and optimization of mechanical properties for PLA and PLA/Wood FDM materials, Materials Today: Proceedings, 93, 824–830, DOI: 10.1016/J.MATPR.2023.08.276
-
Garg, A., Bhattacharya, A., and Batish, A. (2017). Chemical vapor treatment of ABS parts built by FDM: Analysis of surface finish and mechanical strength, The International Journal of Advanced Manufacturing Technology, 89(5), 2175–2191, DOI: 10.1007/s00170-016-9257-1
-
Górski, F., Kuczko, W., and Wichniarek, R. (2013). Influence of process parameters on dimensional accuracy of parts manufactured using fused deposition modelling technology. Advances in Science and Technology Research Journal, 7, 27–35, DOI: 10.5604/20804075.1062340
-
Gurrala, P. K., and and Regalla, S. P. (2014). Part strength evolution with bonding between filaments in fused deposition modelling, Virtual and Physical Prototyping, 9(3), 141–149, DOI: 10.1080/17452759.2014.913400
-
Harshitha, V., and Rao, S. S. (2019). Design and analysis of ISO standard bolt and nut in FDM 3D printer using PLA and ABS materials, Materials Today: Proceedings, 19, 583–588, DOI: 10.1016/J.MATPR.2019.07.737
-
Jadhav, A., and Jadhav, V. S. (2022). A review on 3D printing: An additive manufacturing technology. Materials Today: Proceedings, 62, 2094–2099, DOI: 10.1016/J.MATPR.2022.02.558
-
Jasiński, W., Szymanowski, K., Nasiłowska, B., Barlak, M., Betlej, I., Prokopiuk, A., and Borysiuk, P. (2025). 3D Printing Wood–PLA composites: The impact of wood particle size. Polymers, 17(9), 1165, 1-16, DOI: 10.3390/polym17091165
-
Jiang, J., Gu, H., Li, B., and Zhang, J. (2021). Preparation and Properties of Straw/PLA Wood Plastic Composites for 3D Printing. IOP Conference Series: Earth and Environmental Science, 692(3), 32004, DOI: 10.1088/1755-1315/692/3/032004
-
Kechagias, J. D., Zaoutsos, S. P., Chaidas, D., and Vidakis, N. (2022). Multi-parameter optimization of PLA/Coconut wood compound for fused filament fabrication using robust design. The International Journal of Advanced Manufacturing Technology, 119(7), 4317–4328, DOI: 10.1007/s00170-022-08679-2
-
Lekrine, A., Belaadi, A., Dembri, I., Jawaid, M., Ismail, A. S., Abdullah, M. M. S., Ghernaout, D. (2024). Thermomechanical and structural analysis of green hybrid composites based on polylactic acid/biochar/treated W. filifera palm fibers. Journal of Materials Research and Technology, 30, 9656–9667, DOI: 10.1016/J.JMRT.2024.06.033
-
Narlıoğlu, N., (2021). 3B yazıcı kullanılarak odun-PLA kompozit filamentinden mobilya bağlantı elemanlarının yazdırılması ve katman kalınlıklarının mekanik özelliklere etkisinin incelenmesi, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 4(2), 183–192, DOI: 10.33725/mamad.1026248
-
Narlıoğlu, N., Salan, T., and Alma, M. H. (2021). Properties of 3D-printed wood sawdust-reinforced PLA composites, BioResources, 16(3), 5467–5480, DOI: 10.15376/biores.16.3.5467-5480
-
Peltola, H., Pääkkönen, E., Jetsu, P., and Heinemann, S., (2014). Wood based PLA and PP composites: Effect of fibre type and matrix polymer on fibre morphology, dispersion and composite properties, Composites Part A: Applied Science and Manufacturing, 61, 13–22, DOI: 10.1016/J.COMPOSITESA.2014.02.002
-
Pozo Morales, A., Güemes, A., Fernandez-Lopez, A., Carcelen Valero, V., and De La Rosa Llano, S. (2017). Bamboo–Polylactic Acid (PLA) Composite Material for Structural Applications, Materials, 10(11), DOI: 10.3390/ma10111286
-
Singh, R. (2013). Some investigations for small‐sized product fabrication with FDM for plastic components. Rapid Prototyping Journal, 19(1), 58–63. DOI: 10.1108/13552541311292745
-
Sood, A. K., Ohdar, R. K., and Mahapatra, S. S. (2012). Experimental investigation and empirical modelling of FDM process for compressive strength improvement. Journal of Advanced Research, 3(1), 81–90. 10.1016/J.JARE.2011.05.001
-
Stoof, D., Pickering, K., and Zhang, Y. (2017). Fused Deposition Modelling of Natural Fibre/Polylactic Acid Composites, Journal of Composites Science, 1(1), DOI: 10.3390/jcs1010008
-
Ulkir, O., and Akgun, G. (2024). Prediction of flexural strength with fuzzy logic approach for fused deposition modeling of polyethylene terephthalate glycol components, Journal of Materials Engineering and Performance, 33(9), 4367–4376, DOI: 10.1007/s11665-024-09291-z
-
URL-1 (2025) PLA Wood Filament, from https://www.filameon.com/urun/pla-wood Last access 30.06. 2025
URL-2 (2025) PLA Filament, from https://www.filameon.com/urun/pla Last access 03.07. 2025
-
Vinayagamoorthy, R., Konda, V., Tonge, P., Koteshwar, T. N., and Premkumar, M., (2019). Surface roughness analysis and optimization during drilling on chemically treated natural fiber composite, Materials Today: Proceedings, 16, 567–573, DOI: 10.1016/J.MATPR.2019.05.129
-
Wang, X., Jiang, M., Zhou, Z., Gou, J., and Hui, D., (2017). 3D printing of polymer matrix composites: A review and prospective, Composites Part B: Engineering, 110, 442–458, DOI: 10.1016/J.COMPOSITESB.2016.11.034
-
Yang, M., Xu, Y., Xin, X., Zeng, C., Li, Y., Lin, C., Leng, J. (2025). 4D Printed Cardiac Occlusion Device with Efficient Anticoagulation, Proendothelialization, and Precise Localization, Advanced Functional Materials, 2412533, DOI: 10.1002/adfm.202412533
-
Zandi, M. D., Jerez-Mesa, R., Lluma-Fuentes, J., Roa, J. J., and Travieso-Rodriguez, J. A. (2020). Experimental analysis of manufacturing parameters’ effect on the flexural properties of wood-PLA composite parts built through FFF, The International Journal of Advanced Manufacturing Technology, 106(9), 3985–3998, DOI: 10.1007/s00170-019-04907-4
-
Zolfaghari, A., Behravesh, A. H., and Shahi, P., (2013). Comparison of mechanical properties of wood–plastic composites reinforced with continuous and noncontinuous glass fibers, Journal of Thermoplastic Composite Materials, 28(6), 791–805, DOI: 10.1177/0892705713503676
-
Zuo, X., Zhou, Y., Hao, K., Liu, C., Yu, R., Huang, A., Yang, Y. (2024). 3D printed all-natural hydrogels: flame-retardant materials toward attaining green sustainability. Advanced Science, 11(3), DOI: 10.1002/advs.202306360
Investigation of the Mechanical Properties of PLA and PLA Wood Bolts Fabricated via 3D Printing with Different Print Orientations
Year 2025,
Volume: 8 Issue: 2, 220 - 235
Abdulsamed Arik
,
Nergizhan Anaç
,
Vahap Neccaroğlu
,
Oğuz Koçar
,
Ali Ulaş Gümüşlüoğlu
,
Hikmet Sefa Dönmez
Abstract
This study investigates the torque resistance and fracture surfaces of pure PLA (polylactic acid) and PLA-Wood (wood flour added polylactic acid) bolts manufactured via Fused Deposition Modeling (FDM), compared to commercial Polyamide 6.6 (PA 6.6) bolts. M8×1.25×70 bolts were 3D-printed at varying orientations (0°, 45°, 90°) to evaluate the effects of printing direction on mechanical properties. The hardness, surface roughness, tensile strength, and flexural strength of pure PLA and PLA-Wood were analyzed. Results indicate that 0° print orientation yielded the highest mechanical strength, while significant degradation occurred at 45° and 90°. Surface roughness was minimized at 0° and peaked at 45°. PLA-Wood demonstrated inferior performance to pure PLA, and the torque resistance of PA 6.6 bolts was substantially lower than that of 0°-oriented pure PLA bolts. These findings provide critical insights for material selection and design in lightweight structural applications, assembly, and repair processes.
References
-
ASTM D638., (2022). Standard test method for tensile properties of plastics. In ASTM International. Retrieved from https://store.astm.org/d0638-22.html
-
ASTM D790., (2017). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical ınsulating materials. ASTM International. Retrieved from https://store.astm.org/d0790-17.html
-
ASTM D2240., (2021). Standard test method for rubber property/durometer hardness. ASTM International. Retrieved from https://store.astm.org/d2240-15r21.html
-
Anaç, N. Koçar. O., (2024). Malik, V., Tiwary, V., and Padmakumar, A. (2024). Investigation of the effect of bonding parameters on the adhesive bonding strength of parts produced by FDM-3D Method, Malik, V., Tiwary, V., and Padmakumar, A. (Ed.), Post-Processing of Parts and Components Fabricated by Fused Deposition Modeling: Techniques and Advancements (1st edition, ss. 123-142). Routledge Taylor & Framcis Group, DOI: 10.1201/9781032665351
-
Avcı, B., Çavdar, A.D., and Mengeloğlu, F., (2022). Odun polimer kompozitlerin doğal ve yapay (suni) yaşlandırma sonrası özelliklerinde meydana gelen değişiklikler, Ormancılık Araştırma Dergisi, 9(Özel Sayı), 264–270, DOI: 10.17568/ogmoad.1091198
-
Ayrilmis, N., Kariz, M., Kwon, J. H., and Kitek Kuzman, M. (2019). Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials, The International Journal of Advanced Manufacturing Technology, 102(5), 2195–2200, DOI: 10.1007/s00170-019-03299-9
-
Bharat, N., Jain, R., and Bose, P. S. C. (2024). A comprehensive overview on additive manufacturing processes: materials, applications, and challenges, In V. S. Sharma, U. S. Dixit, A. Gupta, R. Verma, and V. Sharma (Eds.), Machining and Additive Manufacturing (pp. 95–105).
-
Bintara, R., Pradana, Y., Aminnudin, A., and Suryanto, H. (2023). The orientation and high-quality effect of deposit layer to surface roughness on FDM 3D Printed Part. Key Engineering Materials, 940, 95–99, DOI: 10.4028/p-29nh6i
-
Buj-Corral, I., Domínguez-Fernández, A., and Durán-Llucià, R. (2019). Influence of print orientation on surface roughness in fused deposition modeling (FDM) Processes. Materials, 12(23), DOI: 10.3390/ma12233834
-
Chen, S., Khan, S. B., Li, N., and Xiao, C. (2025). In-depth analysis of sintering, exposure time, and layer height (um) in LRS 3D printed devices with DLP, Journal of Manufacturing Processes, 133, 576–591, DOI: 10.1016/J.JMAPRO.2024.11.060
-
De Castro Magalhães, F., and Campos Rubio, Juan Carlos. (2025). Enhancing mechanical properties and structural behaviour of PLA/wood composites through annealing at 50°C and 100°C, Journal of Composite Materials, 00219983251329111, DOI: 10.1177/00219983251329111
-
Dembri, I., Belaadi, A., Lekrine, A., Jawaid, M., Ismail, A. S., and Ghernaout, D., (2024). Effect of alkaline treatment on the thermo-physicochemical and mechanical properties of biochar powder/Washingtonia robusta fibers/PLA hybrid biocomposites, Journal of Materials Research and Technology, 33, 9735–9751, DOI: 10.1016/J.JMRT.2024.12.018
-
Doğru, A., Kaçak, M., and Seydibeyoǧlu, M., (2024). Examination of mechanical properties of fasteners produced with PET and PLA Materials in extrusion-based additive manufacturing method. International Journal of 3D Printing Technologies and Digital Industry, 8, 407–415, DOI: 10.46519/ij3dptdi.1549143
-
Domingo-Espin, M., Puigoriol-Forcada, J. M., Garcia-Granada, A. A., Llumà, J., Borros, S., and Reyes, G. (2015). Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts, Materials & Design, 83, 670–677, DOI: 10.1016/J.MATDES.2015.06.074
-
Drazan, T., Chadima, V., Jasik, K., Sarzyński, B., Krchova, M., and Dobrocky, D., (2025). Analysıs of 3D printed metric nuts manufactured by the MEX method from ASA material. MM Science Journal, 2025, DOI: 10.17973/MMSJ.2025_06_2025063
-
Durmaz, S. (2022). Mermer atıklarının düz presleme yöntemiyle üretilen odun plastik kompozitlerinde değerlendirilmesi, Bartın Orman Fakültesi Dergisi, 24(2), 220–227, DOI: 10.24011/barofd.1084516
-
Efe, H., and İmirzi, H. Ö. (2007). Mobilya üretiminde kullanılan çeşitli bağlantı elemanlarının mekanik davranış özellikleri, Politeknik Dergisi, 10(1), 93–103.
-
Er, A. O., and Aydınlı, O. M. (2023). Ergiyik filament ile imalat yönteminde kullanılan PLA ve çelik katkılı PLA filament malzemelerin mekanik ve fiziksel özelliklerinin incelenmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 1285–1302, DOI: 10.17341/gazimmfd.1276420
-
Fountas, N. A., Zaoutsos, S., Chaidas, D., Kechagias, J. D., and Vaxevanidis, N. M. (2023). Statistical modelling and optimization of mechanical properties for PLA and PLA/Wood FDM materials, Materials Today: Proceedings, 93, 824–830, DOI: 10.1016/J.MATPR.2023.08.276
-
Garg, A., Bhattacharya, A., and Batish, A. (2017). Chemical vapor treatment of ABS parts built by FDM: Analysis of surface finish and mechanical strength, The International Journal of Advanced Manufacturing Technology, 89(5), 2175–2191, DOI: 10.1007/s00170-016-9257-1
-
Górski, F., Kuczko, W., and Wichniarek, R. (2013). Influence of process parameters on dimensional accuracy of parts manufactured using fused deposition modelling technology. Advances in Science and Technology Research Journal, 7, 27–35, DOI: 10.5604/20804075.1062340
-
Gurrala, P. K., and and Regalla, S. P. (2014). Part strength evolution with bonding between filaments in fused deposition modelling, Virtual and Physical Prototyping, 9(3), 141–149, DOI: 10.1080/17452759.2014.913400
-
Harshitha, V., and Rao, S. S. (2019). Design and analysis of ISO standard bolt and nut in FDM 3D printer using PLA and ABS materials, Materials Today: Proceedings, 19, 583–588, DOI: 10.1016/J.MATPR.2019.07.737
-
Jadhav, A., and Jadhav, V. S. (2022). A review on 3D printing: An additive manufacturing technology. Materials Today: Proceedings, 62, 2094–2099, DOI: 10.1016/J.MATPR.2022.02.558
-
Jasiński, W., Szymanowski, K., Nasiłowska, B., Barlak, M., Betlej, I., Prokopiuk, A., and Borysiuk, P. (2025). 3D Printing Wood–PLA composites: The impact of wood particle size. Polymers, 17(9), 1165, 1-16, DOI: 10.3390/polym17091165
-
Jiang, J., Gu, H., Li, B., and Zhang, J. (2021). Preparation and Properties of Straw/PLA Wood Plastic Composites for 3D Printing. IOP Conference Series: Earth and Environmental Science, 692(3), 32004, DOI: 10.1088/1755-1315/692/3/032004
-
Kechagias, J. D., Zaoutsos, S. P., Chaidas, D., and Vidakis, N. (2022). Multi-parameter optimization of PLA/Coconut wood compound for fused filament fabrication using robust design. The International Journal of Advanced Manufacturing Technology, 119(7), 4317–4328, DOI: 10.1007/s00170-022-08679-2
-
Lekrine, A., Belaadi, A., Dembri, I., Jawaid, M., Ismail, A. S., Abdullah, M. M. S., Ghernaout, D. (2024). Thermomechanical and structural analysis of green hybrid composites based on polylactic acid/biochar/treated W. filifera palm fibers. Journal of Materials Research and Technology, 30, 9656–9667, DOI: 10.1016/J.JMRT.2024.06.033
-
Narlıoğlu, N., (2021). 3B yazıcı kullanılarak odun-PLA kompozit filamentinden mobilya bağlantı elemanlarının yazdırılması ve katman kalınlıklarının mekanik özelliklere etkisinin incelenmesi, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 4(2), 183–192, DOI: 10.33725/mamad.1026248
-
Narlıoğlu, N., Salan, T., and Alma, M. H. (2021). Properties of 3D-printed wood sawdust-reinforced PLA composites, BioResources, 16(3), 5467–5480, DOI: 10.15376/biores.16.3.5467-5480
-
Peltola, H., Pääkkönen, E., Jetsu, P., and Heinemann, S., (2014). Wood based PLA and PP composites: Effect of fibre type and matrix polymer on fibre morphology, dispersion and composite properties, Composites Part A: Applied Science and Manufacturing, 61, 13–22, DOI: 10.1016/J.COMPOSITESA.2014.02.002
-
Pozo Morales, A., Güemes, A., Fernandez-Lopez, A., Carcelen Valero, V., and De La Rosa Llano, S. (2017). Bamboo–Polylactic Acid (PLA) Composite Material for Structural Applications, Materials, 10(11), DOI: 10.3390/ma10111286
-
Singh, R. (2013). Some investigations for small‐sized product fabrication with FDM for plastic components. Rapid Prototyping Journal, 19(1), 58–63. DOI: 10.1108/13552541311292745
-
Sood, A. K., Ohdar, R. K., and Mahapatra, S. S. (2012). Experimental investigation and empirical modelling of FDM process for compressive strength improvement. Journal of Advanced Research, 3(1), 81–90. 10.1016/J.JARE.2011.05.001
-
Stoof, D., Pickering, K., and Zhang, Y. (2017). Fused Deposition Modelling of Natural Fibre/Polylactic Acid Composites, Journal of Composites Science, 1(1), DOI: 10.3390/jcs1010008
-
Ulkir, O., and Akgun, G. (2024). Prediction of flexural strength with fuzzy logic approach for fused deposition modeling of polyethylene terephthalate glycol components, Journal of Materials Engineering and Performance, 33(9), 4367–4376, DOI: 10.1007/s11665-024-09291-z
-
URL-1 (2025) PLA Wood Filament, from https://www.filameon.com/urun/pla-wood Last access 30.06. 2025
URL-2 (2025) PLA Filament, from https://www.filameon.com/urun/pla Last access 03.07. 2025
-
Vinayagamoorthy, R., Konda, V., Tonge, P., Koteshwar, T. N., and Premkumar, M., (2019). Surface roughness analysis and optimization during drilling on chemically treated natural fiber composite, Materials Today: Proceedings, 16, 567–573, DOI: 10.1016/J.MATPR.2019.05.129
-
Wang, X., Jiang, M., Zhou, Z., Gou, J., and Hui, D., (2017). 3D printing of polymer matrix composites: A review and prospective, Composites Part B: Engineering, 110, 442–458, DOI: 10.1016/J.COMPOSITESB.2016.11.034
-
Yang, M., Xu, Y., Xin, X., Zeng, C., Li, Y., Lin, C., Leng, J. (2025). 4D Printed Cardiac Occlusion Device with Efficient Anticoagulation, Proendothelialization, and Precise Localization, Advanced Functional Materials, 2412533, DOI: 10.1002/adfm.202412533
-
Zandi, M. D., Jerez-Mesa, R., Lluma-Fuentes, J., Roa, J. J., and Travieso-Rodriguez, J. A. (2020). Experimental analysis of manufacturing parameters’ effect on the flexural properties of wood-PLA composite parts built through FFF, The International Journal of Advanced Manufacturing Technology, 106(9), 3985–3998, DOI: 10.1007/s00170-019-04907-4
-
Zolfaghari, A., Behravesh, A. H., and Shahi, P., (2013). Comparison of mechanical properties of wood–plastic composites reinforced with continuous and noncontinuous glass fibers, Journal of Thermoplastic Composite Materials, 28(6), 791–805, DOI: 10.1177/0892705713503676
-
Zuo, X., Zhou, Y., Hao, K., Liu, C., Yu, R., Huang, A., Yang, Y. (2024). 3D printed all-natural hydrogels: flame-retardant materials toward attaining green sustainability. Advanced Science, 11(3), DOI: 10.1002/advs.202306360