Polipropilen/kamış unu hibrit nano WPC'nin fiziksel ve mekanik özellikleri üzerine karbon nanotüplerin etkisi
Year 2025,
Volume: 8 Issue: 2, 236 - 248
Seyyed Khalil Hosseinihashemi
,
Maryam Jamshidi
Behzad Kord
,
Eshmaiel Ganjian
Ahmad Ehsani
Nadir Ayrilmis
Abstract
Bu çalışmada, çok katmanlı karbon nanotüplerin (MWCNT) polipropilen/kamış unu (PP/RF) kompozitlerine katılmasının mekanik ve fiziksel performans üzerine etkisi araştırılmıştır. Kompozitler, farklı MWCNT oranlarıyla (0, 1, 2, 3, ve 5 phr) hazırlanmış ve mekanik testler, su emme analizi ve taramalı elektron mikroskobu (SEM) ile karakterize edilmiştir. MWCNT ilavesi, özellikle eğilme ve çekme özelliklerinde belirgin iyileşmeler sağlamıştır; çekme mukavemeti 2 phr'de (yaklaşık 15% artış), eğilme mukavemeti ise 3 phr'de (yaklaşık 15% artış) en yüksek düzeye ulaşmıştır. Darbe dayanımı da 2 phr'da en yüksekti (kontrol ile karşılaştırıldığında yaklaşık %10 artış). MWCNT aglomerasyonu nedeniyle mekanik performans 5 phr'de düşmesine rağmen, bu formülasyon en düşük su emilimini (yaklaşık %12 azalma) ve kalınlık şişmesini göstererek hidrofobisitede iyileşme gösterdi. SEM mikrografları, daha düşük konsantrasyonlarda daha iyi dolgu dağılımı ve daha yüksek yüklemelerde aglomera oluşumunu doğruladı. Sonuçlar, MWCNT'lerin özellikle 2-3 phr'de hem yapısal dayanıklılığı hem de nem direncini iyileştirmede güçlendirme potansiyelini vurgulamaktadır.
Thanks
The authors wish to thank for the support of the Department of Wood Science and Paper Technology, Ka.C., Islamic Azad University, Karaj, Iran.
References
-
Abdelmouleh, M., Boufis, S., Belgacem, M.N., and Dufresne, A., (2007). Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibre loading, Composites Science and Technology, 67(7-8), 1627-1639. DOI: 10.1016/j.compscitech.2006.07.003
-
Bal, B.C., (2023). Comparative study of some properties of wood plastic composite materials produced with polyethylene, wood flour, and glass flour, Furniture and Wooden Material Research Journal, 6(1), 70 79, DOI: 10.33725/mamad.1301384
-
Cataldo, F., Ursini, O., and Angelini, G., (2009). MWCNTs elastomer nanocomposite, Part 1: The addition of MWCNTs to a natural rubber-based carbon black-filled rubber compound, Fullerenes, Nanotubes and Carbon Nanostructures, 17, 38-54, DOI: 10.1080/15363830802515907
-
Coleman, J.N., Khan, U., and Gun’Ko, Y.K., (2006). Mechanical reinforcement of polymers using carbon nanotubes, Advanced Materials, 18(6), 689-706, DOI: 10.1002/adma.200501851
-
Dhakal, H.N., Zhang, Z.Y., and Richardson, M.W., (2007). Effect of water absorption on the mechanical properties of hemp fiber reinforced unsaturated polyester composites, Composites Science and Technology, 67(7-8), 1674-1683. DOI: 10.1016/j.compscitech.2006.06.019
-
Eitan, A., Jiang, K., Dukes, D., Andrews, R., and Schadler, L.S., (2003). Surface modification of multi-walled carbon nanotubes: towards the tailoring of the interface in polymer composites, Chemistry of Materials, 15(16), 3198-3201, DOI: 10.1021/cm020975d
-
Espert, A., Vilaplana, F., and Karlsson, S., (2004). Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties, Composites Part A: Applied Science and Manufacturing, 35(11), 1267-1276, DOI: 10.1016/j.compositesa.2004.04.004
-
Farsi, M., and Sani, F., (2014). Effects of multi-walled carbon nanotubes on the physical and mechanical properties of high-density polyethylene/wood lour nanocomposites, Journal of Thermoplastic Composite Materials, 27(8), 1139-1154, DOI: 10.1177/0892705713515899
-
Giraldo, L.F., Brostow, W., Davaux, E., López, B.L., and Pérez, L.D., (2008). Scratch and wear resistance of polyamide 6 reinforced with multiwall carbon nanotubes, Journal of Nanoscience and Nanotechnology, 8(6), 3176-3183, DOI: 10.1166/jnn.2008.092
-
Hazarika, A., and Maji, T.K., (2014). Strain sensing behavior and dynamic mechanical properties of carbon nanotubes/nanoclay reinforced wood polymer nanocomposites, Chemical Engineering Journal, 247, 33-41, DOI: 10.1016/j.cej.2014.02.069
-
Hollertz, R., Catterjee, S., Gutmann, H., Geiger, T.,Nüesch,F.A., and Chu, B.T.T., (2011). Improvement of toughness and electrical properties of epoxy composites with carbon nanotubes prepared by industrially relevant processes, Nanotechnology, 22(12), 125702-125711, DOI:10.1088/0957-4484/22/12/125702
-
HosseiniHashemi, S.K., Badritala, A., and Akhtari, M., (2025). Improving durability and mechanical resistance of wood/plastic composites through boric acid treatment, Furniture and Wooden Material Research Journal, 8(1), 172 187, DOI: 10.33725/mamad.1710675
-
Hosseinihashemi, S.K., and Arwinfar, F., (2023). Effect of fungal infection on physico mechanical resistance of WPC made from thermally treated wood/PP, Furniture and Wooden Material Research Journal, 6(1), 90 103, DOI: 10.33725/mamad.1300208
-
Huang, H., Liu, C.H., Wu, Y., and Fan, S., (2005). Aligned carbon nanotube composite films for thermal management, Advanced Materials, 17(13), 1652-1656, DOI: 10.1002/adma.200500467
-
Hull, D., and Clyne, T.W., (1996). An Introduction to Composite Materials, Cambridge University Press, Cambridge, DOI: 10.1017/CBO9781139170130
-
Jian, B., Mohrmann, S., Li, H., Li, Y., Ashraf, M., Zhou, J., and Zheng, X., (2022). A review on flexural properties of wood-plastic composites, Polymers, 14(19), 3942, DOI: 10.3390/polym14193942
-
Jin, S., and Matuana, L.M., (2010). Wood/plastic composites co-extruded with multi-walled carbon nanotube-filled rigid poly(vinyl chloride) cap layer, Polymer International, 59(5), 648-657, DOI: 10.1002/pi.2745
-
Kim, B.J., (2012). The effect of inorganic fillers on the properties of wood plastic composites, PhD Dissertation, Louisiana State University, DOI: 10.31390/gradschool_ dissertations.2399
-
Kim, J.K., and Mai, Y.W., (1998). Engineering Interfaces in Fiber-Reinforced Composite, Elsevier, Oxford.
Kingston, C., Zepp, R., Andrady, A., Boverhof, D., Fehir, R., Hawkins, D., Roberts, J., Sayre, P., Shelton, B., Sultan, Y., and Vejins, V., (2014). Release characteristics of selected carbon nanotube polymer composites, Carbon, 68, 33-57, DOI: 10.1016/j.carbon.2013.11.042
-
Klyosov, A.A., (2004). Wood-plastic Composites, Wiley, Hoboken. DOI: 10.1002/9780470165935
Kord, B., Jamshidi, M., and Hosseinihashemi, S.K., (2017). Effect of multi-walled carbon nanotubes on viscoelastic properties of PP/reed flour composites, Journal of Polymers and the Environment, 25, 1313-1320, DOI: 10.1007/s10924-016-0909-x
-
Kordkheili, H.Y., Hiziroglu, S., and Farsi, M., (2012). Some of the physical and mechanical properties of cement composites manufactured from carbon nanotubes and bagasse fiber, Materials & Design, 33, 395-398, DOI: 10.1016/j.matdes.2011.04.027
-
Li, G.Y., Wang, P.M., and Zhao, X., (2007). Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites, Cement and Concrete Composites, 29(5), 377-382, DOI: 10.1016/j.cemconcomp.2006.12.011
-
Lu, J.Z.,Wu, Q., and McNabb, H.S., (2000). Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments, Wood and Fiber Science, 32, 88-104.
-
Łukawski, D., Hochmańska-Kaniewska, P., Janiszewska-Latterini, D., and Lekawa-Raus A., (2023). Functional materials based on wood, carbon nanotubes, and graphene: manufacturing, applications, and green perspectives, Wood Science and Technology, 57, 989-1037, DOI: 10.1007/s00226-023-01484-4
-
Ma, P.C., Mo, S.Y., Tang, B.Z., and Kim, J.K., (2010). Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites, Carbon, 48(6), 1824-1834, DOI: 10.1016/j.carbon.2010.01.028
-
Makar, J., Margeson, J., and Luh, J., (2005). Carbon nanotube/cement composites-early results and potential applications, Paper presented at the proceeding of the 3rd international conference on construction materials: performance, innovations and structural implications, Vancouver, Canada.
-
Mohanty, A.K., Misra, M., and Drzal, L.T., (2001). Surface modification of natural fibers and performance of the resulting biocomposites: An overview, Composite Interfaces, 8(5), 313-343, DOI: 10.1163/156855401753255422
-
Musso, S., Tulliani, J.M., Ferro, G., and Tagliaferro, A., (2009). Influence of carbon nanotubes structure on the mechanical behavior of cement composites, Composites Science and Technology, 69(11-12), 1985-1990, DOI: 10.1016/j.compscitech.2009.05.002
-
Park, M., Jang, J.U., Park, J.H., Yu, J., and Kim, S.Y., (2020). Enhanced tensile properties of multi-walled carbon nanotubes filled polyamide 6 composites based on interface modification and reactive extrusion, Polymers, 12(5), 997, DOI: 10.3390/polym12050997
-
Saarela, O., Airasmaa, I., Kokko, J., Skrifvars, M., and Komppa, V., (2007). Komposiittirakenteet, Muoviyhdistys ry, Hakapaino Oy, Helsinki.
-
Salvetat, J.P., Kulik, A.J., Bonard, J.M., Briggs, G.A.D., Stockli, T., Metenier, K., Bonnamy, S., Beguin, F., Burnham, N.A., and Forro, L., (1999). Elastic modulus of ordered and disordered multiwalled carbon nanotubes, Advanced Materials, 11(2), 161-165, DOI: 10.1002/(SICI)1521-4095(199902)11:2%3C161::AID-ADMA161%3E3.0.CO;2-J
-
Selke, S.E., and Wichman, I., (2004). Wood fiber/polyolefin composites, Composites Part A: Applied Science and Manufacturing, 35(3), 321-326. DOI: 10.1016/j.compositesa.2003.09.010
-
Seshadri, M., and Saigal, S., (2007). Crack bridging in polymer nanocomposites, Journal of Engineering Mechanics, 133(8), 911-918, DOI: 10.1061/(ASCE)0733-9399(2007)133:8(911)
-
Shinoj, S., Panigrahi, S., and Visvanathan, R., (2010). Water absorption pattern and dimensional stability of oil palm fiber-linear low density polyethylene composites, Journal of Applied Polymer Science, 117(2), 1064-1075, DOI: 10.1002/app.31765
-
Siró, I., and Plackett, D., (2010). Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, 17(3), 459-494, DOI: 10.1007/s10570-010-9405-y
-
Sun, L.Y., Gibson, R.F., Gordaninejad, F., and Suhr, J., (2009). Energy absorption capability of nanocomposites: A review, Composites Science and Technology, 69(14), 2392-2409, DOI: 10.1016/j.compscitech.2009.06.020
-
Tavasoli Farsheh, A., Talaeipour, M., Hemmasi, A.H., Khademieslam, H., and Ghasemi, I. (2011). Investigation on the mechanical and morphological properties of foamed nanocomposites based on wood flour/PVC/multi-walled carbon nanotubes, BioResources, 6(1), 841-852, DOI: 10.15376/biores.6.1.841-852
-
Vuorinen, J., (2007). Komposiitit [Composites], Muovialan perustietoutta, Muovi- ja elastomeeritekniikan kesäseminaari, Vammala.
-
Zhao, Z., Zhang, Z., Wang, H., Li, C., Le, L., and Liu, M., (2025). Functional wood-plastic composites: A review of research progress on flame retardancy, weather resistance and antimicrobial properties, Industrial Crops and Products, 223, 120196, DOI: 10.1016/j.indcrop.2024.120196
Influence of carbon nanotubes on physical and mechanical properties of polypropylene/reed flour hybrid nano WPC
Year 2025,
Volume: 8 Issue: 2, 236 - 248
Seyyed Khalil Hosseinihashemi
,
Maryam Jamshidi
Behzad Kord
,
Eshmaiel Ganjian
Ahmad Ehsani
Nadir Ayrilmis
Abstract
This study investigated the effect of incorporating multi-walled carbon nanotubes (MWCNTs) into polypropylene/reed flour (PP/RF) composites, aiming to enhance their mechanical and physical performance. Composites were prepared using various MWCNT concentrations (0, 1, 2, 3, and 5 phr) and characterized through mechanical testing, water absorption analysis, and scanning electron microscopy (SEM). The addition of MWCNTs significantly improved flexural and tensile properties, with peak tensile strength observed at 2 phr (approximately 15% higher than the control) and maximum flexural strength at 3 phr (approximately 15% higher). Impact resistance was also highest at 2 phr (around 10% increase compared to control). Although mechanical performance declined at 5 phr due to MWCNT agglomeration, this formulation exhibited the lowest water absorption (approximately 12% reduction) and thickness swelling, indicating improved hydrophobicity. SEM micrographs confirmed better filler dispersion at lower concentrations and agglomerate formation at higher loadings. The results highlight the reinforcing potential of MWCNTs, particularly at 2-3 phr, in improving both structural strength and moisture resistance.
Thanks
The authors wish to thank for the support of the Department of Wood Science and Paper Technology, Ka.C., Islamic Azad University, Karaj, Iran.
References
-
Abdelmouleh, M., Boufis, S., Belgacem, M.N., and Dufresne, A., (2007). Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibre loading, Composites Science and Technology, 67(7-8), 1627-1639. DOI: 10.1016/j.compscitech.2006.07.003
-
Bal, B.C., (2023). Comparative study of some properties of wood plastic composite materials produced with polyethylene, wood flour, and glass flour, Furniture and Wooden Material Research Journal, 6(1), 70 79, DOI: 10.33725/mamad.1301384
-
Cataldo, F., Ursini, O., and Angelini, G., (2009). MWCNTs elastomer nanocomposite, Part 1: The addition of MWCNTs to a natural rubber-based carbon black-filled rubber compound, Fullerenes, Nanotubes and Carbon Nanostructures, 17, 38-54, DOI: 10.1080/15363830802515907
-
Coleman, J.N., Khan, U., and Gun’Ko, Y.K., (2006). Mechanical reinforcement of polymers using carbon nanotubes, Advanced Materials, 18(6), 689-706, DOI: 10.1002/adma.200501851
-
Dhakal, H.N., Zhang, Z.Y., and Richardson, M.W., (2007). Effect of water absorption on the mechanical properties of hemp fiber reinforced unsaturated polyester composites, Composites Science and Technology, 67(7-8), 1674-1683. DOI: 10.1016/j.compscitech.2006.06.019
-
Eitan, A., Jiang, K., Dukes, D., Andrews, R., and Schadler, L.S., (2003). Surface modification of multi-walled carbon nanotubes: towards the tailoring of the interface in polymer composites, Chemistry of Materials, 15(16), 3198-3201, DOI: 10.1021/cm020975d
-
Espert, A., Vilaplana, F., and Karlsson, S., (2004). Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties, Composites Part A: Applied Science and Manufacturing, 35(11), 1267-1276, DOI: 10.1016/j.compositesa.2004.04.004
-
Farsi, M., and Sani, F., (2014). Effects of multi-walled carbon nanotubes on the physical and mechanical properties of high-density polyethylene/wood lour nanocomposites, Journal of Thermoplastic Composite Materials, 27(8), 1139-1154, DOI: 10.1177/0892705713515899
-
Giraldo, L.F., Brostow, W., Davaux, E., López, B.L., and Pérez, L.D., (2008). Scratch and wear resistance of polyamide 6 reinforced with multiwall carbon nanotubes, Journal of Nanoscience and Nanotechnology, 8(6), 3176-3183, DOI: 10.1166/jnn.2008.092
-
Hazarika, A., and Maji, T.K., (2014). Strain sensing behavior and dynamic mechanical properties of carbon nanotubes/nanoclay reinforced wood polymer nanocomposites, Chemical Engineering Journal, 247, 33-41, DOI: 10.1016/j.cej.2014.02.069
-
Hollertz, R., Catterjee, S., Gutmann, H., Geiger, T.,Nüesch,F.A., and Chu, B.T.T., (2011). Improvement of toughness and electrical properties of epoxy composites with carbon nanotubes prepared by industrially relevant processes, Nanotechnology, 22(12), 125702-125711, DOI:10.1088/0957-4484/22/12/125702
-
HosseiniHashemi, S.K., Badritala, A., and Akhtari, M., (2025). Improving durability and mechanical resistance of wood/plastic composites through boric acid treatment, Furniture and Wooden Material Research Journal, 8(1), 172 187, DOI: 10.33725/mamad.1710675
-
Hosseinihashemi, S.K., and Arwinfar, F., (2023). Effect of fungal infection on physico mechanical resistance of WPC made from thermally treated wood/PP, Furniture and Wooden Material Research Journal, 6(1), 90 103, DOI: 10.33725/mamad.1300208
-
Huang, H., Liu, C.H., Wu, Y., and Fan, S., (2005). Aligned carbon nanotube composite films for thermal management, Advanced Materials, 17(13), 1652-1656, DOI: 10.1002/adma.200500467
-
Hull, D., and Clyne, T.W., (1996). An Introduction to Composite Materials, Cambridge University Press, Cambridge, DOI: 10.1017/CBO9781139170130
-
Jian, B., Mohrmann, S., Li, H., Li, Y., Ashraf, M., Zhou, J., and Zheng, X., (2022). A review on flexural properties of wood-plastic composites, Polymers, 14(19), 3942, DOI: 10.3390/polym14193942
-
Jin, S., and Matuana, L.M., (2010). Wood/plastic composites co-extruded with multi-walled carbon nanotube-filled rigid poly(vinyl chloride) cap layer, Polymer International, 59(5), 648-657, DOI: 10.1002/pi.2745
-
Kim, B.J., (2012). The effect of inorganic fillers on the properties of wood plastic composites, PhD Dissertation, Louisiana State University, DOI: 10.31390/gradschool_ dissertations.2399
-
Kim, J.K., and Mai, Y.W., (1998). Engineering Interfaces in Fiber-Reinforced Composite, Elsevier, Oxford.
Kingston, C., Zepp, R., Andrady, A., Boverhof, D., Fehir, R., Hawkins, D., Roberts, J., Sayre, P., Shelton, B., Sultan, Y., and Vejins, V., (2014). Release characteristics of selected carbon nanotube polymer composites, Carbon, 68, 33-57, DOI: 10.1016/j.carbon.2013.11.042
-
Klyosov, A.A., (2004). Wood-plastic Composites, Wiley, Hoboken. DOI: 10.1002/9780470165935
Kord, B., Jamshidi, M., and Hosseinihashemi, S.K., (2017). Effect of multi-walled carbon nanotubes on viscoelastic properties of PP/reed flour composites, Journal of Polymers and the Environment, 25, 1313-1320, DOI: 10.1007/s10924-016-0909-x
-
Kordkheili, H.Y., Hiziroglu, S., and Farsi, M., (2012). Some of the physical and mechanical properties of cement composites manufactured from carbon nanotubes and bagasse fiber, Materials & Design, 33, 395-398, DOI: 10.1016/j.matdes.2011.04.027
-
Li, G.Y., Wang, P.M., and Zhao, X., (2007). Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites, Cement and Concrete Composites, 29(5), 377-382, DOI: 10.1016/j.cemconcomp.2006.12.011
-
Lu, J.Z.,Wu, Q., and McNabb, H.S., (2000). Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments, Wood and Fiber Science, 32, 88-104.
-
Łukawski, D., Hochmańska-Kaniewska, P., Janiszewska-Latterini, D., and Lekawa-Raus A., (2023). Functional materials based on wood, carbon nanotubes, and graphene: manufacturing, applications, and green perspectives, Wood Science and Technology, 57, 989-1037, DOI: 10.1007/s00226-023-01484-4
-
Ma, P.C., Mo, S.Y., Tang, B.Z., and Kim, J.K., (2010). Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites, Carbon, 48(6), 1824-1834, DOI: 10.1016/j.carbon.2010.01.028
-
Makar, J., Margeson, J., and Luh, J., (2005). Carbon nanotube/cement composites-early results and potential applications, Paper presented at the proceeding of the 3rd international conference on construction materials: performance, innovations and structural implications, Vancouver, Canada.
-
Mohanty, A.K., Misra, M., and Drzal, L.T., (2001). Surface modification of natural fibers and performance of the resulting biocomposites: An overview, Composite Interfaces, 8(5), 313-343, DOI: 10.1163/156855401753255422
-
Musso, S., Tulliani, J.M., Ferro, G., and Tagliaferro, A., (2009). Influence of carbon nanotubes structure on the mechanical behavior of cement composites, Composites Science and Technology, 69(11-12), 1985-1990, DOI: 10.1016/j.compscitech.2009.05.002
-
Park, M., Jang, J.U., Park, J.H., Yu, J., and Kim, S.Y., (2020). Enhanced tensile properties of multi-walled carbon nanotubes filled polyamide 6 composites based on interface modification and reactive extrusion, Polymers, 12(5), 997, DOI: 10.3390/polym12050997
-
Saarela, O., Airasmaa, I., Kokko, J., Skrifvars, M., and Komppa, V., (2007). Komposiittirakenteet, Muoviyhdistys ry, Hakapaino Oy, Helsinki.
-
Salvetat, J.P., Kulik, A.J., Bonard, J.M., Briggs, G.A.D., Stockli, T., Metenier, K., Bonnamy, S., Beguin, F., Burnham, N.A., and Forro, L., (1999). Elastic modulus of ordered and disordered multiwalled carbon nanotubes, Advanced Materials, 11(2), 161-165, DOI: 10.1002/(SICI)1521-4095(199902)11:2%3C161::AID-ADMA161%3E3.0.CO;2-J
-
Selke, S.E., and Wichman, I., (2004). Wood fiber/polyolefin composites, Composites Part A: Applied Science and Manufacturing, 35(3), 321-326. DOI: 10.1016/j.compositesa.2003.09.010
-
Seshadri, M., and Saigal, S., (2007). Crack bridging in polymer nanocomposites, Journal of Engineering Mechanics, 133(8), 911-918, DOI: 10.1061/(ASCE)0733-9399(2007)133:8(911)
-
Shinoj, S., Panigrahi, S., and Visvanathan, R., (2010). Water absorption pattern and dimensional stability of oil palm fiber-linear low density polyethylene composites, Journal of Applied Polymer Science, 117(2), 1064-1075, DOI: 10.1002/app.31765
-
Siró, I., and Plackett, D., (2010). Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, 17(3), 459-494, DOI: 10.1007/s10570-010-9405-y
-
Sun, L.Y., Gibson, R.F., Gordaninejad, F., and Suhr, J., (2009). Energy absorption capability of nanocomposites: A review, Composites Science and Technology, 69(14), 2392-2409, DOI: 10.1016/j.compscitech.2009.06.020
-
Tavasoli Farsheh, A., Talaeipour, M., Hemmasi, A.H., Khademieslam, H., and Ghasemi, I. (2011). Investigation on the mechanical and morphological properties of foamed nanocomposites based on wood flour/PVC/multi-walled carbon nanotubes, BioResources, 6(1), 841-852, DOI: 10.15376/biores.6.1.841-852
-
Vuorinen, J., (2007). Komposiitit [Composites], Muovialan perustietoutta, Muovi- ja elastomeeritekniikan kesäseminaari, Vammala.
-
Zhao, Z., Zhang, Z., Wang, H., Li, C., Le, L., and Liu, M., (2025). Functional wood-plastic composites: A review of research progress on flame retardancy, weather resistance and antimicrobial properties, Industrial Crops and Products, 223, 120196, DOI: 10.1016/j.indcrop.2024.120196