Research Article
BibTex RIS Cite

Effect of waste MDF powder on some physical and mechanical properties of blend of low density polyethylene and high density polyethylene

Year 2025, Volume: 8 Issue: 2, 321 - 333
https://doi.org/10.33725/mamad.1804675

Abstract

Scientific studies on the use of industrial waste in the production of wood-plastic composites (WPCs) have increased in recent years. The increased emphasis placed on recycling in some countries has increased this interest. Studies on the reuse and economic recovery of industrial waste, particularly within the scope of the zero waste project launched in Turkey, are attracting significant interest. Based on this perspective, this study investigated the utilization of waste Medium Density Fiber board (MDF) dust generated in furniture factories as a filler in the production of wood-plastic composite materials. In the study, wood-plastic composite panels were successfully produced by adding 10%, 25%, and 40% MDF dust to a blend of recycled low-density polyethylene (R-LDPE) and virgin high-density polyethylene (V-HDPE). The blend of R-LDPE and V-HDPE polymers was made homogeneously in the extruder machine. Some physical and mechanical properties of the resulting composites were investigated. According to the obtained data, as the amount of filler in the composite increased, the flexural strength, deformation at bending, tensile strength, elongation at break, molding shrinkage, and coefficient of linear thermal expansion decreased. However, on the contrary, density, flexural modulus and tensile modulus increased.

References

  • Akdoğan, E., (2020). The effects of high density polyethylene addition to low density polyethylene polymer on mechanical, impact and physical properties, European Journal of Technique (EJT), 10(1), 25-37, DOI: 10.36222/ejt.646693
  • Altuntaş, E., Salan, T., ve Alma, M. H., (2016). Farklı bor bileşik kullanılarak MDF-AYPE odun plastik kompozitlerin yangına dayanıklılığının araştırılması, Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 19(3), 19-23.
  • Altuntas, E., Narlioglu, N., and Alma, M., (2017a). Investigation of the fire, thermal, and mechanical properties of zinc borate and synergic fire retardants on composites produced with PP-MDF wastes, BioResources, 12(4), 6971-6983. DOI: 10.15376/biores.12.4.6971-6983
  • Altuntaş, E., Yılmaz, E., ve Salan, T., (2017b), Yüksek oranda lif dolgu maddesi kullanımının odun plastik kompozit malzemenin mekanik özellikleri üzerine etkisinin araştırılması, Turkish Journal of Forestry, 18(3), 258-263, DOI: 10.18182/tjf.308969
  • ASTM D 638., (2004). Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA. 1–24s.
  • ASTM D 790., (2004). Flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, Philadelphia, PA. 1–9s.
  • ASTM D 792 (2004) Standard test method for density and specific gravity (relative density) of plastics by displacement, Annual Book of American Society for Testing and Materials (ASTM) Standards, Philadelphia, West Conshohocken, PA 19428-2959. United States.
  • ASTM D4703-16 (2016) Compression molding thermoplastic materials into test specimens, plaques, or sheets, Annual Book of American Society for Testing and Materials (ASTM) Standards, Philadelphia, West Conshohocken, PA 19428-2959. United States.
  • Ayrilmis, N., Kuzmin, A. M., Masri, T., Yagoub, M., Sedira, L., Pantyukhov, P., and Al-Farraj, S. A. (2025). Effects of reinforcement by both waste glass and barley straw on water resistance, mechanical, and thermal properties of polyethylene composite, BioResources, 20(3), 5967–5987, DOI: 10.15376/biores.20.3.5967-5987
  • Avella M., Avolio, R., Bonadies, I., Carfagna C., Errico M.E., and Gentile G., (2009) Recycled multilayer cartons as cellulose source in HDPE‐based composites: Compatibilization and structure‐properties relationships. Journal of Applied Polymer Science, 114(5): 2978-2985, DOI: 10.1002/app.30913
  • Bal, B. C. (2023a). Some mechanical properties of WPCs with wood flour and walnut shell flour, Polímeros, 33(2), e20230020, 1-8, DOI: 10.1590/0104-1428.20230005
  • Bal, B. C. (2023b). Comparative study of some properties of wood plastic composite materials produced with polyethylene, wood flour, and glass flour. Furniture and Wooden Material Research Journal, 6(1), 70-79. DOI: 10.33725/mamad.1301384
  • Bal, B. C., Altuntaş, E., and Narlıoğlu, N. (2023). Some selected properties of composite material produced from plastic furniture waste and wood flour, Furniture and Wooden Material Research Journal, 6(2), 233-244. DOI: 10.33725/mamad.1384214
  • Bal, B. C., and Narlioğlu, N., (2024). Physical and mechanical properties of composites produced from recycled polypropylene and cardboard-polyethylene-aluminium mixture. Tribology and Materials, 3(4), 163-171, DOI: 10.46793/tribomat.2024.018
  • Bhaskar, K. B., Devaraju, A., and Paramasivam, A., (2021). Experimental investigation of glass powder reinforced polymer composite. Materials Today: Proceedings, 39, 484-487, DOI: 10.1016/j.matpr.2020.08.211
  • Birinci, E., and Kaymakci, A., (2023). Effect of processing technology, nanomaterial and coupling agent ratio on some physical, mechanical, and thermal properties of wood polymer nanocomposites, Forests, 14(5), 1036, DOI: 10.3390/f14051036
  • Bouafif, H., Koubaa, A., Perré, P., and Cloutier, A., (2009). Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites, Composites Part A: Applied Science and Manufacturing, 40(12), 1975-1981, DOI: 10.1016/j.compositesa.2009.06.003
  • Chavooshi, A., and Madhoushi, M., (2013). Mechanical and physical properties of aluminum powder/MDF dust/polypropylene composites, Construction and Building Materials, 44, 214-220, DOI: 10.1016/j.conbuildmat.2013.02.079
  • Chavooshi, A., Madhoushi, M., Shakeri, A., and Khazaeian, A., (2014). A comparative study on the effects of material blending method on the physico‐mechanical properties of WPCs made from MDF dust, Journal of Applied Polymer Science, 131(15), DOI: 10.1002/app.40513
  • Çavus, V., (2020), Selected properties of mahogany wood flour filled polypropylene composites: The effect of maleic anhydride-grafted polypropylene (MAPP), BioResources 15(2), 2227-2236, DOI: 10.15376/biores.15.2.2227-2236
  • Ebadi M, Farsi M, Narchin P, and Madhoushi, M., (2016). The effect of beverage storage packets (Tetra Pak™) waste on mechanical properties of wood–plastic composites, Journal of Thermoplastic Composite Materials 29(12): 1601-1610. DOI: 10.1177/0892705715618745
  • Ebadi M, Farsi M, and Narchin P., (2017). Some of the physical and mechanical properties of composites made from Tetra Pak™/LDPE, Journal of Thermoplastic Composite Materials 31(8), 1054-1065.DOI: 10.1177/0892705717734597
  • Fiore, V., Botta, L., Scaffaro, R., Valenza, A., and Pirrotta, A. (2014), PLA based biocomposites reinforced with Arundo donax fillers, Composites Science and Technology, 105, 110-117, DOI: 10.1016/j.compscitech.2014.10.005
  • Güler, C., ve Doğan, V., (2022). MDF üretiminde zımpara tozu kullanım olanaklarının araştırılması, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 5(1), 1-7, DOI: 10.33725/mamad.1114080
  • Hamouda T, Hassanin AH, Saba N, Demirelli M, Kilic A, Candan Z, and Jawaid, M., (2019). Evaluation of mechanical and physical properties of hybrid composites from food packaging and textiles wastes, Journal of Polymers and the Environment, 27, 489-497.DOI: 10.1007/s10924-019-01369-3
  • Huang, R., Xiong, W., Xu, X., and Wu, Q., (2012). Thermal expansion behavior of co-extruded wood-plastic composites with glass-fiber reinforced shells, BioResources, 7(4), 5514-5526.
  • Kuzmin, A., Ashori, A., Pantyukhov, P., Zhou, Y., Guan, L., and Hu, C. (2024). Mechanical, thermal, and water absorption properties of HDPE/barley straw composites incorporating waste rubber, Scientific Reports, 14(1), 25232. DOI: 10.1038/s41598-024-76337-6
  • Matuana, L. M., Stark, N. M., (2015). The use of wood fibers as reinforcements in composites, in: Biofiber Reinforcements in Composite Materials, Woodhead Publishing, Swaston, UK, pp. 648-688, DOI: 10.1533/9781782421276.5.648
  • Mengeloglu, F., Basboga, İ. H., and Aslan, T. (2015). Selected properties of furniture plant waste filled thermoplastic composites, Pro Ligno, 11(4), 199-206.
  • Mohareb AS, Hassanin AH, Candelier K, Thévenon MF, and Candan Z., (2017) Developing biocomposites panels from food packaging and textiles wastes: physical and biological performance. Journal of Polymers and the Environment, 25, 126-135, DOI: 10.1007/s10924-016-0791-6
  • Mussa, H. M., and Salih, T. W. M., (2021). Experimental investigation on thermal properties of wood-plastic composites as flat panels, Journal of Engineering Research, 9 (ICRIE- Special Issue), 1-16
  • Özmen, N., Çetin, N. S., Narlıoğlu, N., Çavuş, V., veAltuntaş, E. (2014). MDF atıklarının odun plastik kompozitlerin üretiminde değerlendirilmesi. SDÜ Orman Fakültesi Dergisi, 15, 65-71. DOI: 10.18182/tjf.64025
  • Rosa, S. M. L., Santos, E. F., Ferreira, C. A., and Nachtigall, S. M. B., (2009). Studies on the properties of rice-husk-filled-PP composites: effect of maleated PP, Materials Research, 12, 333-338. DOI: 10.1590/S1516-14392009000300014
  • Revilla‐Díaz, R., Sánchez‐Valdés, S., López‐Campos, F., Medellín‐Rodríguez, F. J., and López‐Quintanilla, M. L. (2007). Comparative characterization of PP nano‐and microcomposites by in‐mold shrinkage measurements and structural characteristics, Macromolecular Materials and Engineering, 292(6), 762-768
  • Sadik, W. A., El-Demerdash, A. G. M., Abokhateeb, A. E., and Elessawy, N. A., (2021), Innovative high-density polyethylene/waste glass powder composite with remarkable mechanical, thermal and recyclable properties for technical applications, Heliyon, 7(4). e06627, DOI: 10.1016/j.heliyon.2021.e06627
  • Stark, N., and Berger, M. J., (1997). Effect of species and particle size on properties of wood-flour-filled polypropylene composites, Proceeding of functional fillers for thermoplastic and thermosets. December, 8-10.
  • Taşdemir, M. (2020). Yüksek yoğunluklu polietilen (HDPE)/atık üre formaldehit polimer karışımlarının mekanik özellikleri, International Periodical of Recent Technologies in Applied Engineering, 2(2), 51-55.
  • Tufan, M., Güleç, T., Çukur, U., Akbaş, S., ve İmamoğlu, S., (2015). Atık bardaklardan üretilen odun plastik kompozitlerin bazı özellikleri, Kastamonu University Journal of Forestry Faculty, 15(2), 176-182.DOI: 10.17475/kuofd.76245
  • Yazıcıoğlu O., Borat, O. (2018). İmalat Yöntemleri, Seçkin Yayınevi, Ankara.

Alçak yoğunluklu polietilen ve yüksek yoğunluklu polietilen karışımının bazı fiziksel ve mekanik özellikleri üzerine atık MDF tozunun etkisi

Year 2025, Volume: 8 Issue: 2, 321 - 333
https://doi.org/10.33725/mamad.1804675

Abstract

Odun plastik kompozitlerin (OPK) üretilmesinde, endüstriyel atıkların kullanımı üzerine yapılan bilimsel çalışmalar son yıllarda artmıştır. Geri dönüşüm konusuna bazı ülkelerin daha fazla önem vermesi bu ilgiyi artırmıştır. Özellikle Türkiye’de başlatılan sıfır atık projesi kapsamında, endüstriyel atıkların yeniden değerlendirilmesi ve ekonomiye kazandırılması konusundaki çalışmalar ilgi çekmektedir. Bu noktadan hareketle, bu çalışmada, mobilya fabrikalarında oluşan atık orta yoğunluklu lif levha (MDF) tozunun dolgu maddesi olarak odun-plastik kompozit malzemelerin üretiminde kullanılabilirliği araştırılmıştır. Çalışmada, geri dönüştürülmüş alçak yoğunluklu polietilen (G-AYPE) ile yeni yüksek yoğunluklu polietilen (Y-YYPE) karışımına %10, %25 ve %40 oranlarında MDF tozu eklenerek odun plastik kompozit plakalar başarılı şekilde üretilmiştir. G-AYPE ile Y-YYPE polimerlerin karışımı extruder makinesinde homojen bir şekilde yapılmıştır. Elde edilen kompozitlerin bazı fiziksel ve mekanik özellikleri araştırılmıştır. Elde edilen verilere göre; kompozit içerisindeki dolgu maddesi oranı arttıkça, eğilme direnci, eğilmede deformasyon, çekme direnci, kopmada uzama, kalıplama daralması ve doğrusal termal genleşme katsayısı azalmıştır. Ancak, bunun aksine yoğunluk, eğilmede elastikiyet ve çekmede elastikiyet artmıştır.

Ethical Statement

Etik bir sorun yoktur

Supporting Institution

Bu çalışma için hiç bir kurumdan destek alınmamıştır

References

  • Akdoğan, E., (2020). The effects of high density polyethylene addition to low density polyethylene polymer on mechanical, impact and physical properties, European Journal of Technique (EJT), 10(1), 25-37, DOI: 10.36222/ejt.646693
  • Altuntaş, E., Salan, T., ve Alma, M. H., (2016). Farklı bor bileşik kullanılarak MDF-AYPE odun plastik kompozitlerin yangına dayanıklılığının araştırılması, Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 19(3), 19-23.
  • Altuntas, E., Narlioglu, N., and Alma, M., (2017a). Investigation of the fire, thermal, and mechanical properties of zinc borate and synergic fire retardants on composites produced with PP-MDF wastes, BioResources, 12(4), 6971-6983. DOI: 10.15376/biores.12.4.6971-6983
  • Altuntaş, E., Yılmaz, E., ve Salan, T., (2017b), Yüksek oranda lif dolgu maddesi kullanımının odun plastik kompozit malzemenin mekanik özellikleri üzerine etkisinin araştırılması, Turkish Journal of Forestry, 18(3), 258-263, DOI: 10.18182/tjf.308969
  • ASTM D 638., (2004). Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA. 1–24s.
  • ASTM D 790., (2004). Flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, Philadelphia, PA. 1–9s.
  • ASTM D 792 (2004) Standard test method for density and specific gravity (relative density) of plastics by displacement, Annual Book of American Society for Testing and Materials (ASTM) Standards, Philadelphia, West Conshohocken, PA 19428-2959. United States.
  • ASTM D4703-16 (2016) Compression molding thermoplastic materials into test specimens, plaques, or sheets, Annual Book of American Society for Testing and Materials (ASTM) Standards, Philadelphia, West Conshohocken, PA 19428-2959. United States.
  • Ayrilmis, N., Kuzmin, A. M., Masri, T., Yagoub, M., Sedira, L., Pantyukhov, P., and Al-Farraj, S. A. (2025). Effects of reinforcement by both waste glass and barley straw on water resistance, mechanical, and thermal properties of polyethylene composite, BioResources, 20(3), 5967–5987, DOI: 10.15376/biores.20.3.5967-5987
  • Avella M., Avolio, R., Bonadies, I., Carfagna C., Errico M.E., and Gentile G., (2009) Recycled multilayer cartons as cellulose source in HDPE‐based composites: Compatibilization and structure‐properties relationships. Journal of Applied Polymer Science, 114(5): 2978-2985, DOI: 10.1002/app.30913
  • Bal, B. C. (2023a). Some mechanical properties of WPCs with wood flour and walnut shell flour, Polímeros, 33(2), e20230020, 1-8, DOI: 10.1590/0104-1428.20230005
  • Bal, B. C. (2023b). Comparative study of some properties of wood plastic composite materials produced with polyethylene, wood flour, and glass flour. Furniture and Wooden Material Research Journal, 6(1), 70-79. DOI: 10.33725/mamad.1301384
  • Bal, B. C., Altuntaş, E., and Narlıoğlu, N. (2023). Some selected properties of composite material produced from plastic furniture waste and wood flour, Furniture and Wooden Material Research Journal, 6(2), 233-244. DOI: 10.33725/mamad.1384214
  • Bal, B. C., and Narlioğlu, N., (2024). Physical and mechanical properties of composites produced from recycled polypropylene and cardboard-polyethylene-aluminium mixture. Tribology and Materials, 3(4), 163-171, DOI: 10.46793/tribomat.2024.018
  • Bhaskar, K. B., Devaraju, A., and Paramasivam, A., (2021). Experimental investigation of glass powder reinforced polymer composite. Materials Today: Proceedings, 39, 484-487, DOI: 10.1016/j.matpr.2020.08.211
  • Birinci, E., and Kaymakci, A., (2023). Effect of processing technology, nanomaterial and coupling agent ratio on some physical, mechanical, and thermal properties of wood polymer nanocomposites, Forests, 14(5), 1036, DOI: 10.3390/f14051036
  • Bouafif, H., Koubaa, A., Perré, P., and Cloutier, A., (2009). Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites, Composites Part A: Applied Science and Manufacturing, 40(12), 1975-1981, DOI: 10.1016/j.compositesa.2009.06.003
  • Chavooshi, A., and Madhoushi, M., (2013). Mechanical and physical properties of aluminum powder/MDF dust/polypropylene composites, Construction and Building Materials, 44, 214-220, DOI: 10.1016/j.conbuildmat.2013.02.079
  • Chavooshi, A., Madhoushi, M., Shakeri, A., and Khazaeian, A., (2014). A comparative study on the effects of material blending method on the physico‐mechanical properties of WPCs made from MDF dust, Journal of Applied Polymer Science, 131(15), DOI: 10.1002/app.40513
  • Çavus, V., (2020), Selected properties of mahogany wood flour filled polypropylene composites: The effect of maleic anhydride-grafted polypropylene (MAPP), BioResources 15(2), 2227-2236, DOI: 10.15376/biores.15.2.2227-2236
  • Ebadi M, Farsi M, Narchin P, and Madhoushi, M., (2016). The effect of beverage storage packets (Tetra Pak™) waste on mechanical properties of wood–plastic composites, Journal of Thermoplastic Composite Materials 29(12): 1601-1610. DOI: 10.1177/0892705715618745
  • Ebadi M, Farsi M, and Narchin P., (2017). Some of the physical and mechanical properties of composites made from Tetra Pak™/LDPE, Journal of Thermoplastic Composite Materials 31(8), 1054-1065.DOI: 10.1177/0892705717734597
  • Fiore, V., Botta, L., Scaffaro, R., Valenza, A., and Pirrotta, A. (2014), PLA based biocomposites reinforced with Arundo donax fillers, Composites Science and Technology, 105, 110-117, DOI: 10.1016/j.compscitech.2014.10.005
  • Güler, C., ve Doğan, V., (2022). MDF üretiminde zımpara tozu kullanım olanaklarının araştırılması, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 5(1), 1-7, DOI: 10.33725/mamad.1114080
  • Hamouda T, Hassanin AH, Saba N, Demirelli M, Kilic A, Candan Z, and Jawaid, M., (2019). Evaluation of mechanical and physical properties of hybrid composites from food packaging and textiles wastes, Journal of Polymers and the Environment, 27, 489-497.DOI: 10.1007/s10924-019-01369-3
  • Huang, R., Xiong, W., Xu, X., and Wu, Q., (2012). Thermal expansion behavior of co-extruded wood-plastic composites with glass-fiber reinforced shells, BioResources, 7(4), 5514-5526.
  • Kuzmin, A., Ashori, A., Pantyukhov, P., Zhou, Y., Guan, L., and Hu, C. (2024). Mechanical, thermal, and water absorption properties of HDPE/barley straw composites incorporating waste rubber, Scientific Reports, 14(1), 25232. DOI: 10.1038/s41598-024-76337-6
  • Matuana, L. M., Stark, N. M., (2015). The use of wood fibers as reinforcements in composites, in: Biofiber Reinforcements in Composite Materials, Woodhead Publishing, Swaston, UK, pp. 648-688, DOI: 10.1533/9781782421276.5.648
  • Mengeloglu, F., Basboga, İ. H., and Aslan, T. (2015). Selected properties of furniture plant waste filled thermoplastic composites, Pro Ligno, 11(4), 199-206.
  • Mohareb AS, Hassanin AH, Candelier K, Thévenon MF, and Candan Z., (2017) Developing biocomposites panels from food packaging and textiles wastes: physical and biological performance. Journal of Polymers and the Environment, 25, 126-135, DOI: 10.1007/s10924-016-0791-6
  • Mussa, H. M., and Salih, T. W. M., (2021). Experimental investigation on thermal properties of wood-plastic composites as flat panels, Journal of Engineering Research, 9 (ICRIE- Special Issue), 1-16
  • Özmen, N., Çetin, N. S., Narlıoğlu, N., Çavuş, V., veAltuntaş, E. (2014). MDF atıklarının odun plastik kompozitlerin üretiminde değerlendirilmesi. SDÜ Orman Fakültesi Dergisi, 15, 65-71. DOI: 10.18182/tjf.64025
  • Rosa, S. M. L., Santos, E. F., Ferreira, C. A., and Nachtigall, S. M. B., (2009). Studies on the properties of rice-husk-filled-PP composites: effect of maleated PP, Materials Research, 12, 333-338. DOI: 10.1590/S1516-14392009000300014
  • Revilla‐Díaz, R., Sánchez‐Valdés, S., López‐Campos, F., Medellín‐Rodríguez, F. J., and López‐Quintanilla, M. L. (2007). Comparative characterization of PP nano‐and microcomposites by in‐mold shrinkage measurements and structural characteristics, Macromolecular Materials and Engineering, 292(6), 762-768
  • Sadik, W. A., El-Demerdash, A. G. M., Abokhateeb, A. E., and Elessawy, N. A., (2021), Innovative high-density polyethylene/waste glass powder composite with remarkable mechanical, thermal and recyclable properties for technical applications, Heliyon, 7(4). e06627, DOI: 10.1016/j.heliyon.2021.e06627
  • Stark, N., and Berger, M. J., (1997). Effect of species and particle size on properties of wood-flour-filled polypropylene composites, Proceeding of functional fillers for thermoplastic and thermosets. December, 8-10.
  • Taşdemir, M. (2020). Yüksek yoğunluklu polietilen (HDPE)/atık üre formaldehit polimer karışımlarının mekanik özellikleri, International Periodical of Recent Technologies in Applied Engineering, 2(2), 51-55.
  • Tufan, M., Güleç, T., Çukur, U., Akbaş, S., ve İmamoğlu, S., (2015). Atık bardaklardan üretilen odun plastik kompozitlerin bazı özellikleri, Kastamonu University Journal of Forestry Faculty, 15(2), 176-182.DOI: 10.17475/kuofd.76245
  • Yazıcıoğlu O., Borat, O. (2018). İmalat Yöntemleri, Seçkin Yayınevi, Ankara.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Wood Based Composites
Journal Section Research Article
Authors

Bekir Cihad Bal 0000-0001-7097-4132

Early Pub Date December 3, 2025
Publication Date December 14, 2025
Submission Date October 16, 2025
Acceptance Date December 1, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Bal, B. C. (2025). Alçak yoğunluklu polietilen ve yüksek yoğunluklu polietilen karışımının bazı fiziksel ve mekanik özellikleri üzerine atık MDF tozunun etkisi. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 8(2), 321-333. https://doi.org/10.33725/mamad.1804675

Open Access and International Peer-reviewed Journal

     18332 18333 3221732219   18334  18335  18336 

32216 32218 32220 32221  32273 32274 

32275 32308 32309 32312

 32332  32384    32385 32400 

32385