Conference Paper
BibTex RIS Cite

Possibilities of Using Myconanotechnology in Combating Verticillium dahliae Kleb. Fungal Pathogen

Year 2022, , 9 - 14, 30.12.2022
https://doi.org/10.30708/mantar.1187449

Abstract

Verticillium dahliae is a soil-borne plant pathogen and its control is limited with chemical fungicides. The disease causing fungus, which causes significant economic agricultural losses all over the world, has a very wide host range. The scarcity of successful methods in the control of the disease further increases the importance of the disease. In addition, the effort to develop alternative control methods is based on the inadequacy of environmentally friendly fungicides, the emergence of fungicide resistance in pathogens and the breaking of host resistance of pathogen populations. Today, the popularity of nanoparticle applications, which provide better efficiency in the control of diseases, is increasing day by day. The current research aims to synthesize a bionanomaterial (RDEK) with the wild mushroom Russula delica Fr. methanol extract (RDE) without using any hazardous substances, with a new, simple, cost-effective and environmentally friendly method, and to point out the use of this synthesized material in agricultural applications as an antifungal agent for the first time. aims.
In the study, it was determined that RDE and RDEK applied in different concentrations showed antifungal activity against Verticillium dahlia. RDEK bionanomaterial, which shows the best activity at 0.02 mg/ml concentration, can be evaluated as a fungicide in agricultural applications.

References

  • Abdullahi, S. L., & Audu, A. A. (2017). Comparative analysis on chemical composition of bentonite clays obtained from Ashaka and tango deposits in Gombe State, Nigeria. ChemSearch Journal, 8(2), 35-40.
  • Acay, H. (2021). Utilization of Morchella esculenta-mediated green synthesis golden nanoparticles in biomedicine applications. Preparative Biochemistry & Biotechnology, 51(2), 127–136.
  • Babahoum, N., & Ould Hamou, M. (2021). Characterization and purification of Algerian natural bentonite for pharmaceutical and cosmetic applications. BMC chemistry, 15(1), 1-11.
  • Baek, M., Lee, J.A., & Choi, S.J. (2012). Toxicological effects of acationic clay, montmorillonite in vitro and in vivo. Molecular & Cellular Toxicology, 8, 95–101. Balaure, P. C., Gudovan, D., & Gudovan, I. (2017). Nanopesticides: a new paradigm in crop protection. In New pesticides and soil sensors (pp. 129-192). Academic Press.
  • Boisseau, P., Loubaton, B., (2011). Nanomedicine, nanotechnology in medicine. CR Phys. 12, 620–636
  • Choi, G., Eom, S., Vinu, A., & Choy, J.H. (2018). 2D nanostructured metal hydroxides with gene delivery and theranostic functions; acomprehensive review. The Chemical Record, 18, 1–22.
  • Choy, J.H., Kwak, S.Y., Jeong, Y.J., & Park, J.S. (2000). Inorganic layered double hydroxide as a non-viral vector. Angewante Chemie International Edition, 39, 4042–4045.
  • Choy, J.H., Kwak, S.Y., Park, J.S., Jeong, Y.J., & Portier, J. (1999). Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. Journal of the American Chemical Society, 121, 1399–1400.
  • Christensen, C. M. (1981). Edible mushrooms. 2nd Edn., Printed in the United States of America, pp: 118.
  • Costa, C. O. N. T. E., Conte, A., Buonocore, G. G., & Del Nobile, M. A. (2011). Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. International Journal of Food Microbiology, 148(3), 164-167.
  • Fang, Y., Xiong, D., Tian, L., Tang, C., Wang, Y., & Tian, C. (2017). Functional characterization of two bZIP transcription factors in Verticillium dahliae. Gene, 626, 386-394.
  • Gaharwar, A.K., Mihaila, S.M., Swami, A.S., Patel, A., Sant, S., Reis, R.L., Marques, A.P., Gomes, M.E., & Khademhosseini, A. (2013). Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Advanced Materials, 25, 3329– 3336.
  • Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2016). Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food chemistry, 194, 1266-1274.
  • Huo, C., Khoshnamvand, M., Liu, P., Yuan, C. G., & Cao, W. (2018). Eco-friendly approach for biosynthesis of silver nanoparticles using Citrus maxima peel extract and their characterization, catalytic, antioxidant and antimicrobial characteristics. Materials Research Express, 6(1), 015010.
  • Kah, M. (2015). Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation?. Frontiers in chemistry, 3, 64.
  • Kah, M., & Hofmann, T. (2014). Nanopesticide research: current trends and future priorities. Environment international, 63, 224-235.
  • Kutawa, A. B., Ahmad, K., Ali, A., Hussein, M. Z., Abdul Wahab, M. A., Adamu, A., ... & Hossain, M. I. (2021). Trends in nanotechnology and its potentialities to control plant pathogenic fungi: A review. Biology, 10(9), 881.
  • Laksanawati, T. A., & Trisanti, P. N. (2019, April). Synthesis and characterization of composite gels starch-graftacrylic acid/bentonite (St-g-AA/B) using N’Nmethylenebisacrylamide (MBA). In IOP Conference Series: Materials Science and Engineering (Vol. 509, No. 1, p. 012150). IOP Publishing.
  • Mansilla, A. Y., Albertengo, L., Rodríguez, M. S., Debbaudt, A., Zúñiga, A., & Casalongué, C. A. (2013). Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000. Applied Microbiology and Biotechnology, 97(15), 6957-6966.
  • Morigi, V., Tocchio, A., Bellavite Pellegrini, C., Sakamoto, J. H., Arnone, M., & Tasciotti, E. (2012). Nanotechnology in medicine: from inception to market domination. Journal of drug delivery, 2012.
  • Saadat, Y., Hosseinzadeh, S., Eslami, H., & Afshar-Taromi, F. (2012). Preparation of micron-sized, monodisperse polymeric nonspherical particles with tunable shapes by micromolding–polymerization. Colloid and Polymer Science, 290(13), 1333-1339.
  • Saharan, V., Sharma, G., Yadav, M., Choudhary, M. K., Sharma, S. S., Pal, A., ... & Biswas, P. (2015). Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. International journal of biological macromolecules, 75, 346-353.
  • Ssekatawa, K., Byarugaba, D. K., Wampande, E. M., Moja, T. N., Nxumalo, E., Maaza, M., ... & Kirabira, J. B. (2021). Isolation and characterization of chitosan from Ugandan edible mushrooms, Nile perch scales and banana weevils for biomedical applications. Scientific Reports, 11(1), 1-14.
  • Sun, B., Zhang, L., Yang, L., Zhang, F., Norse, D., & Zhu, Z. (2012). Agricultural non-point source pollution in China: causes and mitigation measures. Ambio, 41(4), 370-379.
  • Tang, C., Xiong, D., Fang, Y., Tian, C., & Wang, Y. (2017). The two-component response regulator VdSkn7 plays key roles in microsclerotial development, stress resistance and virulence of Verticillium dahliae. Fungal Genetics and Biology, 108, 26-35.
  • Walker, G. W., Kookana, R. S., Smith, N. E., Kah, M., Doolette, C. L., Reeves, P. T., ... & Navarro, D. A. (2017). Ecological risk assessment of nano-enabled pesticides: a perspective on problem formulation. Journal of Agricultural and Food Chemistry, 66(26), 6480-6486.
  • Xavier, J.R., Thakur, T., Desai, P., Jaiswal, M.K., Sears, N., Cosgriff- Hernandez, E., Kaunas, R., & Gaharwar, A.K. (2015). Bioactive nanoengineered hydrogels for bone tissue engineering: a growth- factor-free approach. ACS Nano, 9, 3109–3118.

Verticillium dahliae Fungal Patojeni İle Mücadelede Mikonanoteknolojinin Kullanım Olanakları

Year 2022, , 9 - 14, 30.12.2022
https://doi.org/10.30708/mantar.1187449

Abstract

Verticillium dahliae toprak kökenli bir bitki patojenidir ve mücadelesi kimyasal fungusitler ile sınırlıdır. Tüm dünyada önemli ekonomik tarımsal kayıplara neden olan hastalık etmeni fungusun çok geniş bir konukçu dizisine sahiptir. Hastalığın kontrolünde başarılı yöntemlerin azlığı, hastalığın önemini daha da arttırmaktadır. Ayrıca alternatif mücadele yöntemleri geliştirilme çabası çevre dostu fungusitlerin yetersizliği, patojenlerde fungisit dayanıklılığının ortaya çıkışı ve patojen popülasyonlarının konukçu dayanıklılığını kırması nedenlerine dayanmaktadır. Günümüzde ise hastalıklarının kontrolünde daha iyi etkinlik sağlayan nanoparçacık uygulamalarının popülerliği her geçen gün artmaktadır. Mevcut araştırma, yabani mantar olan Russula delica metanol ekstresi (RDE) ile herhangi bir tehlikeli madde kullanmadan yeni, basit, uygun maliyetli ve çevre dostu bir yöntem ile biyonanomateryal (RDEK) sentezlemek ve ilk defa sentezlenen bu materyalinantifungal madde olarak tarımsal uygulamlarda kullanımına işaret etmeyi amaçlamaktadır.
Çalışmada, farklı konsnatrasyonlarda uygulanan RDE ve RDEK’nın Verticillium dahlia’ye karşı antifungal aktivite gösterdiği tespit edilmiştir. 0.02 mg/ml konsanrtasyonda en iyi aktivite gösteren RDEK biyonanomateryali tarımsal uygulamlarda fungusit olarak değerlendirilebilir.

References

  • Abdullahi, S. L., & Audu, A. A. (2017). Comparative analysis on chemical composition of bentonite clays obtained from Ashaka and tango deposits in Gombe State, Nigeria. ChemSearch Journal, 8(2), 35-40.
  • Acay, H. (2021). Utilization of Morchella esculenta-mediated green synthesis golden nanoparticles in biomedicine applications. Preparative Biochemistry & Biotechnology, 51(2), 127–136.
  • Babahoum, N., & Ould Hamou, M. (2021). Characterization and purification of Algerian natural bentonite for pharmaceutical and cosmetic applications. BMC chemistry, 15(1), 1-11.
  • Baek, M., Lee, J.A., & Choi, S.J. (2012). Toxicological effects of acationic clay, montmorillonite in vitro and in vivo. Molecular & Cellular Toxicology, 8, 95–101. Balaure, P. C., Gudovan, D., & Gudovan, I. (2017). Nanopesticides: a new paradigm in crop protection. In New pesticides and soil sensors (pp. 129-192). Academic Press.
  • Boisseau, P., Loubaton, B., (2011). Nanomedicine, nanotechnology in medicine. CR Phys. 12, 620–636
  • Choi, G., Eom, S., Vinu, A., & Choy, J.H. (2018). 2D nanostructured metal hydroxides with gene delivery and theranostic functions; acomprehensive review. The Chemical Record, 18, 1–22.
  • Choy, J.H., Kwak, S.Y., Jeong, Y.J., & Park, J.S. (2000). Inorganic layered double hydroxide as a non-viral vector. Angewante Chemie International Edition, 39, 4042–4045.
  • Choy, J.H., Kwak, S.Y., Park, J.S., Jeong, Y.J., & Portier, J. (1999). Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. Journal of the American Chemical Society, 121, 1399–1400.
  • Christensen, C. M. (1981). Edible mushrooms. 2nd Edn., Printed in the United States of America, pp: 118.
  • Costa, C. O. N. T. E., Conte, A., Buonocore, G. G., & Del Nobile, M. A. (2011). Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. International Journal of Food Microbiology, 148(3), 164-167.
  • Fang, Y., Xiong, D., Tian, L., Tang, C., Wang, Y., & Tian, C. (2017). Functional characterization of two bZIP transcription factors in Verticillium dahliae. Gene, 626, 386-394.
  • Gaharwar, A.K., Mihaila, S.M., Swami, A.S., Patel, A., Sant, S., Reis, R.L., Marques, A.P., Gomes, M.E., & Khademhosseini, A. (2013). Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Advanced Materials, 25, 3329– 3336.
  • Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2016). Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food chemistry, 194, 1266-1274.
  • Huo, C., Khoshnamvand, M., Liu, P., Yuan, C. G., & Cao, W. (2018). Eco-friendly approach for biosynthesis of silver nanoparticles using Citrus maxima peel extract and their characterization, catalytic, antioxidant and antimicrobial characteristics. Materials Research Express, 6(1), 015010.
  • Kah, M. (2015). Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation?. Frontiers in chemistry, 3, 64.
  • Kah, M., & Hofmann, T. (2014). Nanopesticide research: current trends and future priorities. Environment international, 63, 224-235.
  • Kutawa, A. B., Ahmad, K., Ali, A., Hussein, M. Z., Abdul Wahab, M. A., Adamu, A., ... & Hossain, M. I. (2021). Trends in nanotechnology and its potentialities to control plant pathogenic fungi: A review. Biology, 10(9), 881.
  • Laksanawati, T. A., & Trisanti, P. N. (2019, April). Synthesis and characterization of composite gels starch-graftacrylic acid/bentonite (St-g-AA/B) using N’Nmethylenebisacrylamide (MBA). In IOP Conference Series: Materials Science and Engineering (Vol. 509, No. 1, p. 012150). IOP Publishing.
  • Mansilla, A. Y., Albertengo, L., Rodríguez, M. S., Debbaudt, A., Zúñiga, A., & Casalongué, C. A. (2013). Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000. Applied Microbiology and Biotechnology, 97(15), 6957-6966.
  • Morigi, V., Tocchio, A., Bellavite Pellegrini, C., Sakamoto, J. H., Arnone, M., & Tasciotti, E. (2012). Nanotechnology in medicine: from inception to market domination. Journal of drug delivery, 2012.
  • Saadat, Y., Hosseinzadeh, S., Eslami, H., & Afshar-Taromi, F. (2012). Preparation of micron-sized, monodisperse polymeric nonspherical particles with tunable shapes by micromolding–polymerization. Colloid and Polymer Science, 290(13), 1333-1339.
  • Saharan, V., Sharma, G., Yadav, M., Choudhary, M. K., Sharma, S. S., Pal, A., ... & Biswas, P. (2015). Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. International journal of biological macromolecules, 75, 346-353.
  • Ssekatawa, K., Byarugaba, D. K., Wampande, E. M., Moja, T. N., Nxumalo, E., Maaza, M., ... & Kirabira, J. B. (2021). Isolation and characterization of chitosan from Ugandan edible mushrooms, Nile perch scales and banana weevils for biomedical applications. Scientific Reports, 11(1), 1-14.
  • Sun, B., Zhang, L., Yang, L., Zhang, F., Norse, D., & Zhu, Z. (2012). Agricultural non-point source pollution in China: causes and mitigation measures. Ambio, 41(4), 370-379.
  • Tang, C., Xiong, D., Fang, Y., Tian, C., & Wang, Y. (2017). The two-component response regulator VdSkn7 plays key roles in microsclerotial development, stress resistance and virulence of Verticillium dahliae. Fungal Genetics and Biology, 108, 26-35.
  • Walker, G. W., Kookana, R. S., Smith, N. E., Kah, M., Doolette, C. L., Reeves, P. T., ... & Navarro, D. A. (2017). Ecological risk assessment of nano-enabled pesticides: a perspective on problem formulation. Journal of Agricultural and Food Chemistry, 66(26), 6480-6486.
  • Xavier, J.R., Thakur, T., Desai, P., Jaiswal, M.K., Sears, N., Cosgriff- Hernandez, E., Kaunas, R., & Gaharwar, A.K. (2015). Bioactive nanoengineered hydrogels for bone tissue engineering: a growth- factor-free approach. ACS Nano, 9, 3109–3118.
There are 27 citations in total.

Details

Primary Language English
Journal Section RESEARCH ARTICLE
Authors

Hilal Acay 0000-0002-7732-106X

Ayfer Yıldırım 0000-0002-2079-4587

Publication Date December 30, 2022
Published in Issue Year 2022

Cite

APA Acay, H., & Yıldırım, A. (2022). Possibilities of Using Myconanotechnology in Combating Verticillium dahliae Kleb. Fungal Pathogen. Mantar Dergisi, 13(3), 9-14. https://doi.org/10.30708/mantar.1187449

Uluslararası Hakemli Dergi

Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır 

Creative Commons Lisansı

Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.