Research Article
BibTex RIS Cite

Üç Lactarius Türünün Antioksidan Ve Enzim İnhibitör Aktiviteleri Üzerine Karşılaştırmalı Bir Çalışma

Year 2021, Volume: 12 Issue: 1, 19 - 28, 30.04.2021

Abstract

Mantarlar tarih öncesi çağlardan beri mucize gıda ve tıp malzemeleri olarak kabul edilir. Günümüzde, insanoğlu sentetik bileşiklere karşı alternatif doğal hammadde arayışı içindedir ve bu yüzden mantarlar bu yolda büyük bir hazinedir. Bu bağlamda, sunulan çalışmada üç Lactarius (L. salmonicolor Heim et Leclair, L. deliciosus (L. ex Fr.) S.F. Gray ve L. aurantiacus (Pers.) Gray) türünün antioksidan ve enzim inhibisyon özelliklerini belirlemeyi amaçladık. Ek olarak, her bir ekstraktın toplam fenolik içeriklerini belirledik. Antioksidan özellikler serbest radikal süpürme (2,2-diphenil-1-pikrilhidrazil (DPPH) ve 2,2'-azino-bis(3-etilbenzothiazolin-6-sulfonik asit (ABTS)), indirgeme gücü (bakır (II) iyonu indirgeme antioksidan kapasite (CUPRAC) ve demir (III) iyonu indirgeme gücü (FRAP)), fosfomolibdat ve metal şelatlama testlerin içeren farklı kimyasal testler ile değerlendirildi. Enzim inhibitör özellikler ise kolinesterazlar (asetilkolinesteraz (AChE) ve butirilkolinesteraz (BChE)), α-amilaz ve α-glukozidaza karşı araştrıldı. Genel olarak, L. delicious ve L salmonicolor en güçlü serbest radikal süpürme ve indirgeme gücü yeteneklerini sergilediler. Bununla birlikte, L. aurantiacus fosfomolibdat testinde en etkili olandı. En güçlü AChE inhibisyonu L. salmonicolor’da elde edilirken en yüksek α-glukozidaz inhibisyon etkileri L. delicious ve L. aurantiacus ile sağlandı. Tüm eksraklar benzer α-amilaz inhibisyonu sergilediler. Mevcut çalışma test edilen Lactarius türlerinin, farmasötikler veya nutrasötikler gibi fonksiyonel ürünleri tasarlamak için doğal hammaddeler olarak kabul edilebileceğini öne sürdü.

References

  • Adanacioglu, N., Ayfer, T., Karabak, S., Güzelsoy, N., Firat, A., Aykas, L., & Taylan, T. (2017). Economically Important Wild Mushroom Saffron Milk Cap [Lactarius deliciosus (L.) Gray] of Aegean Region, Turkey. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 27(2), 91-96.
  • Alkan, S., Uysal, A., Kasik, G., Vlaisavljevic, S., Berezni, S., & Zengin, G. (2020). Chemical Characterization, Antioxidant, Enzyme Inhibition and Antimutagenic Properties of Eight Mushroom Species: A Comparative Study. Journal of Fungi, 6(3), 19. doi:10.3390/jof6030166 Augustyniak, A., Bartosz, G., Čipak, A., Duburs, G., Horáková, L. U., Łuczaj, W., . . . Skrzydlewska, E. (2010). Natural and synthetic antioxidants: an updated overview. Free radical research, 44(10), 1216-1262.
  • Ayvaz, M. Ç., Aksu, F., & Kır, F. (2019). Phenolic profile of three wild edible mushroom extracts from Ordu, Turkey and their antioxidant properties, enzyme inhibitory activities. British Food Journal.
  • Bozdogan, A., Ulukanli, Z., Bozok, F., Eker, T., Dogan, H. H., & Buyukalaca, S. (2018). Antioxidant Potential of Lactarius deliciosus and Pleurotus ostreatus from Amanos Mountains. Advancements in Life Sciences, 5(3), 113-120. Retrieved from <Go to ISI>://WOS:000439447900005
  • Chatterjee, S. (2016). Chapter Two - Oxidative Stress, Inflammation, and Disease. In T. Dziubla & D. A. Butterfield (Eds.), Oxidative Stress and Biomaterials (pp. 35-58): Academic Press.
  • Chinsembu, K. C. (2019). Diabetes mellitus and nature’s pharmacy of putative antidiabetic plants. Journal of Herbal Medicine, 15, 100230. doi:https://doi.org/10.1016/j.hermed.2018.09.001
  • Cory, H., Passarelli, S., Szeto, J., Tamez, M., & Mattei, J. (2018). The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Frontiers in Nutrition, 5(87). doi:10.3389/fnut.2018.00087
  • Gao, Q., Zhong, C., Zhou, X., Chen, R., Xiong, T., Hong, M., . . . Han, W. (2020). Inverse association of total polyphenols and flavonoids intake and the intake from fruits with the risk of gestational diabetes mellitus: A prospective cohort study. Clinical Nutrition.
  • Hasar, S., Dogan, A., & Demirel, K. (2020). Determination of Tissue Protective and Antioxidant Activities of Two Medicinal Mushrooms from Turkey against CCl4-lnduced Experimental Oxidative Stress in Rats. International Journal of Medicinal Mushrooms, 22(7), 671-681. doi:10.1615/IntJMedMushrooms.2020035054
  • Koparde, A. A., Doijad, R. C., & Magdum, C. S. (2019). Natural products in drug discovery. In Pharmacognosy-Medicinal Plants: IntechOpen.
  • Kosanic, M., Rankovic, B., Rancic, A., & Stanojkovic, T. (2016). Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. Journal of Food and Drug Analysis, 24(3), 477-484. doi:10.1016/j.jfda.2016.01.008
  • Li, F. H., Zheng, S. J., Zhao, J. C., Liao, X., Wu, S. R., & Ming, J. (2020). Phenolic extract of Morchella angusticeps peck inhibited the proliferation of HepG2 cells in vitro by inducing the signal transduction pathway of p38/MAPK. Journal of Integrative Agriculture, 19(11), 2829-2838. doi:10.1016/s2095-3119(20)63322-6
  • Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., . . . Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical interventions in aging, 13, 757-772. doi:10.2147/CIA.S158513
  • Lim, Y. P., Pang, S. F., Yusoff, M. M., Abdul Mudalip, S. K., & Gimbun, J. (2019). Correlation between the extraction yield of mangiferin to the antioxidant activity, total phenolic and total flavonoid content of Phaleria macrocarpa fruits. Journal of Applied Research on Medicinal and Aromatic Plants, 14, 100224. doi:https://doi.org/10.1016/j.jarmap.2019.100224
  • Ma, Y., Li, X., Hou, L.-X., & Wei, A.-Z. (2019). Extraction solvent affects the antioxidant, antimicrobial, cholinesterase and HepG2 human hepatocellular carcinoma cell inhibitory activities of Zanthoxylum bungeanum pericarps and the major chemical components. Industrial Crops and Products, 142, 111872.
  • Mathur, S., & Hoskins, C. (2017). Drug development: Lessons from nature. Biomedical Reports, 6(6), 612-614.
  • Milovanovic, I., Zengin, G., Maksimovic, S., & Tadic, V. (2020). Supercritical and ultrasound-assisted extracts fromPleurotus pulmonariusmushroom: chemical profiles, antioxidative, and enzyme-inhibitory properties. Journal of the Science of Food and Agriculture, 10. doi:10.1002/jsfa.10849
  • Mishra, P., Kumar, A., & Panda, G. (2019). Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018). Bioorganic & Medicinal Chemistry, 27(6), 895-930. doi:https://doi.org/10.1016/j.bmc.2019.01.025
  • Mwamatope, B., Tembo, D., Chikowe, I., Kampira, E., & Nyirenda, C. (2020). Total phenolic contents and antioxidant activity of Senna singueana, Melia azedarach, Moringa oleifera and Lannea discolor herbal plants. Scientific African, 9, e00481. doi:https://doi.org/10.1016/j.sciaf.2020.e00481
  • Newman, D. J., & Cragg, G. M. (2016). Natural Products as Sources of New Drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629-661. doi:10.1021/acs.jnatprod.5b01055
  • Ozen, T., Kizil, D., Yenigun, S., Cesur, H., & Turkekul, I. (2019). Evaluation of Bioactivities, Phenolic and Metal Content of Ten Wild Edible Mushrooms from Western Black Sea Region of Turkey. International Journal of Medicinal Mushrooms, 21(10), 979-994. doi:10.1615/IntJMedMushrooms.2019031927
  • Ozturk, M., Tel, G., Ozturk, F. A., & Duru, M. E. (2014). The Cooking Effect on Two Edible Mushrooms in Anatolia: Fatty Acid Composition, Total Bioactive Compounds, Antioxidant and Anticholinesterase Activities. Records of Natural Products, 8(2), 189-194. Retrieved from <Go to ISI>://WOS:000335969400012
  • Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity, 2(5), 270-278. doi:10.4161/oxim.2.5.9498
  • Papoutsis, K., Zhang, J., Bowyer, M. C., Brunton, N., Gibney, E. R., & Lyng, J. (2021). Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chemistry, 338, 128119. doi:https://doi.org/10.1016/j.foodchem.2020.128119
  • Pope, C. N., & Brimijoin, S. (2018). Cholinesterases and the fine line between poison and remedy. Biochemical Pharmacology, 153, 205-216. doi:https://doi.org/10.1016/j.bcp.2018.01.044
  • Radzki, W., Slawinska, A., Jablonska-Rys, E., & Gustaw, W. (2014). Antioxidant Capacity and Polyphenolic Content of Dried Wild Edible Mushrooms from Poland. International Journal of Medicinal Mushrooms, 16(1), 65-75. doi:10.1615/IntJMedMushr.v16.i1.60
  • Rasalanavho, M., Moodley, R., & Jonnalagadda, S. B. (2020). Elemental bioaccumulation and nutritional value of five species of wild growing mushrooms from South Africa. Food Chemistry, 319, 11. doi:10.1016/j.foodchem.2020.126596
  • Rathore, H., Prasad, S., & Sharma, S. (2017). Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition, 5(2), 35-46. doi:https://doi.org/10.1016/j.phanu.2017.02.001
  • Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in plant science, 2(4), 152-159.
  • Rauf, A., & Jehan, N. (2017). Natural products as a potential enzyme inhibitors from medicinal plants. In Enzyme Inhibitors and Activators (pp. 165-177): InTech, Rijeka.
  • Rosa, G. B., Sganzerla, W. G., Ferreira, A. L. A., Xavier, L. O., Veloso, N. C., da Silva, J., . . . Ferrareze, J. P. (2020). Investigation of Nutritional Composition, Antioxidant Compounds, and Antimicrobial Activity of Wild Culinary-Medicinal Mushrooms Boletus edulis and Lactarius deliciosus (Agaricomycetes) from Brazil. International Journal of Medicinal Mushrooms, 22(10), 931-942. doi:10.1615/IntJMedMushrooms.2020036347
  • Sánchez-Rangel, J. C., Benavides, J., Heredia, J. B., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2013). The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical Methods, 5(21), 5990-5999. doi:10.1039/C3AY41125G
  • Sarikurkcu, C., Andrade, J. C., Ozer, M. S., de Lima Silva, J. M. F., Ceylan, O., de Sousa, E. O., & Coutinho, H. D. M. (2020). LC-MS/MS profiles and interrelationships between the enzyme inhibition activity, total phenolic content and antioxidant potential of Micromeria nervosa extracts. Food Chemistry, 328, 126930. doi:https://doi.org/10.1016/j.foodchem.2020.126930
  • Silva, M. M., & Lidon, F. C. (2016). An overview on applications and side effects of antioxidant food additives. Emirates Journal of Food and Agriculture, 823-832.
  • Spínola, V., Llorent-Martínez, E. J., & Castilho, P. C. (2020). Inhibition of α-amylase, α-glucosidase and pancreatic lipase by phenolic compounds of Rumex maderensis (Madeira sorrel). Influence of simulated gastrointestinal digestion on hyperglycaemia-related damage linked with aldose reductase activity and protein glycation. LWT, 118, 108727.
  • Su, S. Y., Ding, X., Fu, L., & Hou, Y. L. (2019). Structural characterization and immune regulation of a novel polysaccharide from Maerkang Lactarius deliciosus Gray. International Journal of Molecular Medicine, 44(2), 713-724. doi:10.3892/ijmm.2019.4219
  • Tanase, C., Coșarcă, S., & Muntean, D.-L. (2019). A Critical Review of Phenolic Compounds Extracted from the Bark of Woody Vascular Plants and Their Potential Biological Activity. Molecules (Basel, Switzerland), 24(6), 1182. doi:10.3390/molecules24061182
  • Vidal-Gutiérrez, M., Robles-Zepeda, R. E., Vilegas, W., Gonzalez-Aguilar, G. A., Torres-Moreno, H., & López-Romero, J. C. (2020). Phenolic composition and antioxidant activity of Bursera microphylla A. Gray. Industrial Crops and Products, 152, 112412. doi:https://doi.org/10.1016/j.indcrop.2020.112412
  • Volcao, L. M., Halicki, P. B., Bilibio, D., Ramos, D. F., Bernardi, E., & Da Silva, F. M. R. (2020). Biological activity of aqueous extracts of Southern Brazilian mushrooms. International Journal of Environmental Health Research, 12. doi:10.1080/09603123.2019.1634798
  • Wang, T., Jonsdottir, R., & Ólafsdóttir, G. (2009). Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food chemistry, 116(1), 240-248.
  • Wang, L. W., Zhao, H., Brennan, M., Guan, W. Q., Liu, J. F., Wang, M. Y., . . . Brennan, C. (2020). In vitro gastric digestion antioxidant and cellular radical scavenging activities of wheat-shiitake noodles. Food Chemistry, 330, 8. doi:10.1016/j.foodchem.2020.127214
  • Wu, L., Wu, W., Cai, Y., Li, C., & Wang, L. (2020). HPLC fingerprinting-based multivariate analysis of phenolic compounds in mango leaves varieties: Correlation to their antioxidant activity and in silico α-glucoidase inhibitory ability. Journal of Pharmaceutical and Biomedical Analysis, 191, 113616. doi:https://doi.org/10.1016/j.jpba.2020.113616
  • Zengin, G. (2016). A study on in vitro enzyme inhibitory properties of Asphodeline anatolica: New sources of natural inhibitors for public health problems. Industrial Crops and Products, 83, 39-43.
  • Zengin, G., & Aktumsek, A. (2014). Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: An endemic plant to Turkey. African Journal of Traditional, Complementary and Alternative Medicines, 11(2), 481-488.
  • Zengin, G., Sarikurkcu, C., Aktumsek, A., & Ceylan, R. (2014). Sideritis galatica Bornm.: a source of multifunctional agents for the management of oxidative damage, Alzheimer's's and diabetes mellitus. journal of functional foods, 11, 538-547.

A Comparative Study on Antioxidant and Enzyme Inhibitory Activities of Three Lactarius species

Year 2021, Volume: 12 Issue: 1, 19 - 28, 30.04.2021

Abstract

Mushrooms are considered a miracle food and medical items since prehistoric ages. Nowadays, humanity is searching for alternative natural raw materials against synthetic ones and thus mushrooms are a big treasure in this way. In this context, we aimed to determine the antioxidant and enzyme inhibitory properties of three Lactarius species (L. salmonicolor Heim et Leclair, L. deliciosus (L. ex Fr.) S.F. Gray, and L. aurantiacus (Pers.) Gray) in the presented study. In addition, total phenolic content was determined for each extract. Antioxidant properties of the tested extracts were evalauted by different chemical methods including free radical scavenging (2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS)), reducing power (cupric reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP)), phosphomolybdenum and metal chelating. Enzyme inhibitory properties were investigated against cholinesterases (acetylcholinesterase (AChE) and butyrlcholinesterase (BChE)), α-amylase and α-glucosidase. Generally, L. delicious and L salmonicolor exhibited the strongest free radical scavenging and reducing power abilities. However, L. aurantiacus exhibited the most activity in phosphomolybdenum assays. The highest AChE inhibitory effect was obtained by L. salmonicolor while the best α-glucosidase inhibitory effects were provided by L. delicious and L. aurantiacus. All extracts exhibited similar α-amylase inhibition abilities. The presented study suggested that the tested Lactarius species might be considered as natural raw materials for designing functional products such as pharmaceuticals or nutraceuticals.

References

  • Adanacioglu, N., Ayfer, T., Karabak, S., Güzelsoy, N., Firat, A., Aykas, L., & Taylan, T. (2017). Economically Important Wild Mushroom Saffron Milk Cap [Lactarius deliciosus (L.) Gray] of Aegean Region, Turkey. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 27(2), 91-96.
  • Alkan, S., Uysal, A., Kasik, G., Vlaisavljevic, S., Berezni, S., & Zengin, G. (2020). Chemical Characterization, Antioxidant, Enzyme Inhibition and Antimutagenic Properties of Eight Mushroom Species: A Comparative Study. Journal of Fungi, 6(3), 19. doi:10.3390/jof6030166 Augustyniak, A., Bartosz, G., Čipak, A., Duburs, G., Horáková, L. U., Łuczaj, W., . . . Skrzydlewska, E. (2010). Natural and synthetic antioxidants: an updated overview. Free radical research, 44(10), 1216-1262.
  • Ayvaz, M. Ç., Aksu, F., & Kır, F. (2019). Phenolic profile of three wild edible mushroom extracts from Ordu, Turkey and their antioxidant properties, enzyme inhibitory activities. British Food Journal.
  • Bozdogan, A., Ulukanli, Z., Bozok, F., Eker, T., Dogan, H. H., & Buyukalaca, S. (2018). Antioxidant Potential of Lactarius deliciosus and Pleurotus ostreatus from Amanos Mountains. Advancements in Life Sciences, 5(3), 113-120. Retrieved from <Go to ISI>://WOS:000439447900005
  • Chatterjee, S. (2016). Chapter Two - Oxidative Stress, Inflammation, and Disease. In T. Dziubla & D. A. Butterfield (Eds.), Oxidative Stress and Biomaterials (pp. 35-58): Academic Press.
  • Chinsembu, K. C. (2019). Diabetes mellitus and nature’s pharmacy of putative antidiabetic plants. Journal of Herbal Medicine, 15, 100230. doi:https://doi.org/10.1016/j.hermed.2018.09.001
  • Cory, H., Passarelli, S., Szeto, J., Tamez, M., & Mattei, J. (2018). The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Frontiers in Nutrition, 5(87). doi:10.3389/fnut.2018.00087
  • Gao, Q., Zhong, C., Zhou, X., Chen, R., Xiong, T., Hong, M., . . . Han, W. (2020). Inverse association of total polyphenols and flavonoids intake and the intake from fruits with the risk of gestational diabetes mellitus: A prospective cohort study. Clinical Nutrition.
  • Hasar, S., Dogan, A., & Demirel, K. (2020). Determination of Tissue Protective and Antioxidant Activities of Two Medicinal Mushrooms from Turkey against CCl4-lnduced Experimental Oxidative Stress in Rats. International Journal of Medicinal Mushrooms, 22(7), 671-681. doi:10.1615/IntJMedMushrooms.2020035054
  • Koparde, A. A., Doijad, R. C., & Magdum, C. S. (2019). Natural products in drug discovery. In Pharmacognosy-Medicinal Plants: IntechOpen.
  • Kosanic, M., Rankovic, B., Rancic, A., & Stanojkovic, T. (2016). Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. Journal of Food and Drug Analysis, 24(3), 477-484. doi:10.1016/j.jfda.2016.01.008
  • Li, F. H., Zheng, S. J., Zhao, J. C., Liao, X., Wu, S. R., & Ming, J. (2020). Phenolic extract of Morchella angusticeps peck inhibited the proliferation of HepG2 cells in vitro by inducing the signal transduction pathway of p38/MAPK. Journal of Integrative Agriculture, 19(11), 2829-2838. doi:10.1016/s2095-3119(20)63322-6
  • Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., . . . Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical interventions in aging, 13, 757-772. doi:10.2147/CIA.S158513
  • Lim, Y. P., Pang, S. F., Yusoff, M. M., Abdul Mudalip, S. K., & Gimbun, J. (2019). Correlation between the extraction yield of mangiferin to the antioxidant activity, total phenolic and total flavonoid content of Phaleria macrocarpa fruits. Journal of Applied Research on Medicinal and Aromatic Plants, 14, 100224. doi:https://doi.org/10.1016/j.jarmap.2019.100224
  • Ma, Y., Li, X., Hou, L.-X., & Wei, A.-Z. (2019). Extraction solvent affects the antioxidant, antimicrobial, cholinesterase and HepG2 human hepatocellular carcinoma cell inhibitory activities of Zanthoxylum bungeanum pericarps and the major chemical components. Industrial Crops and Products, 142, 111872.
  • Mathur, S., & Hoskins, C. (2017). Drug development: Lessons from nature. Biomedical Reports, 6(6), 612-614.
  • Milovanovic, I., Zengin, G., Maksimovic, S., & Tadic, V. (2020). Supercritical and ultrasound-assisted extracts fromPleurotus pulmonariusmushroom: chemical profiles, antioxidative, and enzyme-inhibitory properties. Journal of the Science of Food and Agriculture, 10. doi:10.1002/jsfa.10849
  • Mishra, P., Kumar, A., & Panda, G. (2019). Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018). Bioorganic & Medicinal Chemistry, 27(6), 895-930. doi:https://doi.org/10.1016/j.bmc.2019.01.025
  • Mwamatope, B., Tembo, D., Chikowe, I., Kampira, E., & Nyirenda, C. (2020). Total phenolic contents and antioxidant activity of Senna singueana, Melia azedarach, Moringa oleifera and Lannea discolor herbal plants. Scientific African, 9, e00481. doi:https://doi.org/10.1016/j.sciaf.2020.e00481
  • Newman, D. J., & Cragg, G. M. (2016). Natural Products as Sources of New Drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629-661. doi:10.1021/acs.jnatprod.5b01055
  • Ozen, T., Kizil, D., Yenigun, S., Cesur, H., & Turkekul, I. (2019). Evaluation of Bioactivities, Phenolic and Metal Content of Ten Wild Edible Mushrooms from Western Black Sea Region of Turkey. International Journal of Medicinal Mushrooms, 21(10), 979-994. doi:10.1615/IntJMedMushrooms.2019031927
  • Ozturk, M., Tel, G., Ozturk, F. A., & Duru, M. E. (2014). The Cooking Effect on Two Edible Mushrooms in Anatolia: Fatty Acid Composition, Total Bioactive Compounds, Antioxidant and Anticholinesterase Activities. Records of Natural Products, 8(2), 189-194. Retrieved from <Go to ISI>://WOS:000335969400012
  • Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity, 2(5), 270-278. doi:10.4161/oxim.2.5.9498
  • Papoutsis, K., Zhang, J., Bowyer, M. C., Brunton, N., Gibney, E. R., & Lyng, J. (2021). Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chemistry, 338, 128119. doi:https://doi.org/10.1016/j.foodchem.2020.128119
  • Pope, C. N., & Brimijoin, S. (2018). Cholinesterases and the fine line between poison and remedy. Biochemical Pharmacology, 153, 205-216. doi:https://doi.org/10.1016/j.bcp.2018.01.044
  • Radzki, W., Slawinska, A., Jablonska-Rys, E., & Gustaw, W. (2014). Antioxidant Capacity and Polyphenolic Content of Dried Wild Edible Mushrooms from Poland. International Journal of Medicinal Mushrooms, 16(1), 65-75. doi:10.1615/IntJMedMushr.v16.i1.60
  • Rasalanavho, M., Moodley, R., & Jonnalagadda, S. B. (2020). Elemental bioaccumulation and nutritional value of five species of wild growing mushrooms from South Africa. Food Chemistry, 319, 11. doi:10.1016/j.foodchem.2020.126596
  • Rathore, H., Prasad, S., & Sharma, S. (2017). Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition, 5(2), 35-46. doi:https://doi.org/10.1016/j.phanu.2017.02.001
  • Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in plant science, 2(4), 152-159.
  • Rauf, A., & Jehan, N. (2017). Natural products as a potential enzyme inhibitors from medicinal plants. In Enzyme Inhibitors and Activators (pp. 165-177): InTech, Rijeka.
  • Rosa, G. B., Sganzerla, W. G., Ferreira, A. L. A., Xavier, L. O., Veloso, N. C., da Silva, J., . . . Ferrareze, J. P. (2020). Investigation of Nutritional Composition, Antioxidant Compounds, and Antimicrobial Activity of Wild Culinary-Medicinal Mushrooms Boletus edulis and Lactarius deliciosus (Agaricomycetes) from Brazil. International Journal of Medicinal Mushrooms, 22(10), 931-942. doi:10.1615/IntJMedMushrooms.2020036347
  • Sánchez-Rangel, J. C., Benavides, J., Heredia, J. B., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2013). The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical Methods, 5(21), 5990-5999. doi:10.1039/C3AY41125G
  • Sarikurkcu, C., Andrade, J. C., Ozer, M. S., de Lima Silva, J. M. F., Ceylan, O., de Sousa, E. O., & Coutinho, H. D. M. (2020). LC-MS/MS profiles and interrelationships between the enzyme inhibition activity, total phenolic content and antioxidant potential of Micromeria nervosa extracts. Food Chemistry, 328, 126930. doi:https://doi.org/10.1016/j.foodchem.2020.126930
  • Silva, M. M., & Lidon, F. C. (2016). An overview on applications and side effects of antioxidant food additives. Emirates Journal of Food and Agriculture, 823-832.
  • Spínola, V., Llorent-Martínez, E. J., & Castilho, P. C. (2020). Inhibition of α-amylase, α-glucosidase and pancreatic lipase by phenolic compounds of Rumex maderensis (Madeira sorrel). Influence of simulated gastrointestinal digestion on hyperglycaemia-related damage linked with aldose reductase activity and protein glycation. LWT, 118, 108727.
  • Su, S. Y., Ding, X., Fu, L., & Hou, Y. L. (2019). Structural characterization and immune regulation of a novel polysaccharide from Maerkang Lactarius deliciosus Gray. International Journal of Molecular Medicine, 44(2), 713-724. doi:10.3892/ijmm.2019.4219
  • Tanase, C., Coșarcă, S., & Muntean, D.-L. (2019). A Critical Review of Phenolic Compounds Extracted from the Bark of Woody Vascular Plants and Their Potential Biological Activity. Molecules (Basel, Switzerland), 24(6), 1182. doi:10.3390/molecules24061182
  • Vidal-Gutiérrez, M., Robles-Zepeda, R. E., Vilegas, W., Gonzalez-Aguilar, G. A., Torres-Moreno, H., & López-Romero, J. C. (2020). Phenolic composition and antioxidant activity of Bursera microphylla A. Gray. Industrial Crops and Products, 152, 112412. doi:https://doi.org/10.1016/j.indcrop.2020.112412
  • Volcao, L. M., Halicki, P. B., Bilibio, D., Ramos, D. F., Bernardi, E., & Da Silva, F. M. R. (2020). Biological activity of aqueous extracts of Southern Brazilian mushrooms. International Journal of Environmental Health Research, 12. doi:10.1080/09603123.2019.1634798
  • Wang, T., Jonsdottir, R., & Ólafsdóttir, G. (2009). Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food chemistry, 116(1), 240-248.
  • Wang, L. W., Zhao, H., Brennan, M., Guan, W. Q., Liu, J. F., Wang, M. Y., . . . Brennan, C. (2020). In vitro gastric digestion antioxidant and cellular radical scavenging activities of wheat-shiitake noodles. Food Chemistry, 330, 8. doi:10.1016/j.foodchem.2020.127214
  • Wu, L., Wu, W., Cai, Y., Li, C., & Wang, L. (2020). HPLC fingerprinting-based multivariate analysis of phenolic compounds in mango leaves varieties: Correlation to their antioxidant activity and in silico α-glucoidase inhibitory ability. Journal of Pharmaceutical and Biomedical Analysis, 191, 113616. doi:https://doi.org/10.1016/j.jpba.2020.113616
  • Zengin, G. (2016). A study on in vitro enzyme inhibitory properties of Asphodeline anatolica: New sources of natural inhibitors for public health problems. Industrial Crops and Products, 83, 39-43.
  • Zengin, G., & Aktumsek, A. (2014). Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: An endemic plant to Turkey. African Journal of Traditional, Complementary and Alternative Medicines, 11(2), 481-488.
  • Zengin, G., Sarikurkcu, C., Aktumsek, A., & Ceylan, R. (2014). Sideritis galatica Bornm.: a source of multifunctional agents for the management of oxidative damage, Alzheimer's's and diabetes mellitus. journal of functional foods, 11, 538-547.
There are 45 citations in total.

Details

Primary Language Turkish
Journal Section RESEARCH ARTICLE
Authors

Ramazan Ceylan 0000-0002-7795-8482

Güneş Ak This is me 0000-0002-9539-0763

İlgaz Akata 0000-0002-1731-1302

Gokhan Zengin 0000-0001-6548-7823

Publication Date April 30, 2021
Published in Issue Year 2021 Volume: 12 Issue: 1

Cite

APA Ceylan, R., Ak, G., Akata, İ., Zengin, G. (2021). Üç Lactarius Türünün Antioksidan Ve Enzim İnhibitör Aktiviteleri Üzerine Karşılaştırmalı Bir Çalışma. Mantar Dergisi, 12(1), 19-28. https://doi.org/10.30708/mantar.826538

The works submitted to our journals are first judged grammatically. After this phase, articles are sent two reviewers. If necessary, the third reviewer is assessed. In the publication of works, a decision is made by evaluating the level of contribution to science and readers within the criteria specified in the writing rules. Reviewers are requested to submit their assessments within 30 days at the latest. The reviewers' evaluations and the answers to these evaluations are reviewed by the editor and it is decided whether the work will be published or not.

International Peer Reviewed Journal

The journal doesn’t have APC or any submission charges

Creative Commons Lisansı
This work is licensed under a Creative Commons Attribution 4.0 License