Research Article
BibTex RIS Cite

Aspergillus Türlerinin Moleküler Tanımlanması için Hızlı, Doğru ve Düşük Maliyetli Yenilikçi Yaklaşım

Year 2021, Volume: 12 Issue: 2, 113 - 121, 31.10.2021

Abstract

Aspergillus türlerinin bazıları ekonomik açıdan önemli tarımsal ürünleri kontamine ederek en yaygın gıda bozulmalarına sebep olan mantarlardır. Bu türler ayrıca insan sağlığını tehdit eden karsinojenik, teratojenik ve mutajenik etkilere sahip mikotoksinleri üretmektedirler. Tüm bu nedenlerden dolayı Aspergillus türlerinin kesin ve doğru tanımlamaları büyük önem taşımaktadır. Bu çalışmada Misel Doku-Polimeraz Zincir Reaksiyon (MD-PZR) temelli moleküler teknik geliştirilerek Polimeraz Zincir Reaksiyonunda kalıp olarak kullanılan genomik DNA basamağı ortadan kaldırılmıştır. Bu misel doku-PZR temelli moleküler tekniğinin pahalı ve özel donanım gerektirmemesi, proteinaz K, RNAaz veya başka enzimler gibi pahalı kimyasallara ihtiyaç duyulmaması, genomik DNA izolasyon işlemleri sırasında fenol/kloroform gibi toksik kimyasalların kullanılmaması gibi avantajları bulunmaktadır. Ayrıca sıvı kültür ile misel üretimine dayalı klasik DNA ekstraksiyon protokolleri zaman alıcıdır. Bu çalışmada Aspergillus izolatlarının moleküler tanımlanması için misel doku örnekleri kullanılarak iki farklı gen bölgesi (β-tubulin: benA, Calmodulin: CaM) çoğaltılmıştır. Daha sonra tüm PZR ürünleri saflaştırılıp ve dizi analizine gönderilmiştir. Sekans analiz sonuçları biyoinformatik araçlar kullanılarak incelenmiş ve izolatlar tür düzeyinde Aspergillus tubingensis (Divane Asper) R. Mosseray olarak tanımlanmışlardır.

Supporting Institution

Ege Üniversitesi, Mühendislik Fakültesi, Biyomühendislik Bölümü ve TÜBİTAK 2209-A Üniversite Öğrencileri Yurt İçi Araştırma Projeleri Destek Programı tarafından desteklenmiştir.

Thanks

Çalışmalarımız esnasında laboratuvar imkânlarını bizden esirgemeyen Prof. Dr. Elif Esin TUNA’ya, Arş. Gör. Dr. Arzu YILDIRIM’a çok teşekkür ederiz. Bu çalışma TÜBİTAK 2209-A Üniversite Öğrencileri Yurt İçi Araştırma Projeleri Destek Programı tarafından desteklenmiştir. Finansal desteğinden ötürü TÜBİTAK’a teşekkür ederiz.

References

  • 1. Aerts, D., Hauer, E. E., Ohm, R. A., Arentshorst, M., Teertstra, W. R., Phippen, C., ... & Wösten, H. A. (2018). The FlbA-regulated predicted transcription factor Fum21 of Aspergillus niger is involved in fumonisin production. Antonie Van Leeuwenhoek, 111(3), 311-322.
  • 2. Aufauvre-Brown, A., Tang, C. M., & Holden, D. W. (1993). Detection of gene-disruption events in Aspergillus transformants by polymerase chain reaction direct from conidiospores. Current genetics, 24(1), 177-178.
  • 3. Azeem, M., Terenius, O., Rajarao, G. K., Nagahama, K., Nordenhem, H., Nordlander, G., & Borg-Karlson, A. K. (2015). Chemodiversity and biodiversity of fungi associated with the pine weevil Hylobius abietis. Fungal biology, 119(8), 738-746.
  • 4. Baquião, A. C., de Oliveira, M. M. M., Reis, T. A., Zorzete, P., Atayde, D. D., & Correa, B. (2013). Polyphasic approach to the identification of Aspergillus section Flavi isolated from Brazil nuts. Food Chemistry, 139(1-4), 1127-1132.
  • 5. Bladt, T. T., Frisvad, J. C., Knudsen, P. B., & Larsen, T. O. (2013). Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules, 18(9), 11338-11376.
  • 6. Cabañes, F. J., & Bragulat, M. R. (2018). Black aspergilli and ochratoxin A-producing species in foods. Current opinion in food science, 23, 1-10.
  • 7. Costa, C. P., Silva, D. G., Rudnitskaya, A., Almeida, A., & Rocha, S. M. (2016). Shedding light on Aspergillus niger volatile exometabolome. Scientific reports, 6(1), 1-13.
  • 8. Decontardi, S., Soares, C., Lima, N., & Battilani, P. (2018). Polyphasic identification of Penicillia and Aspergilli isolated from Italian grana cheese. Food microbiology, 73, 137-149.
  • 9. Freire, L., Guerreiro, T. M., Caramês, E. T., Lopes, L. S., Orlando, E. A., Pereira, G. E., ... & Sant’Ana, A. S. (2018). Influence of maturation stages in different varieties of wine grapes (Vitis vinifera) on the production of ochratoxin A and its modified forms by Aspergillus carbonarius and Aspergillus niger. Journal of agricultural and food chemistry, 66(33), 8824-8831.
  • 10. Frisvad, J. C., Møller, L. L., Larsen, T. O., Kumar, R., & Arnau, J. (2018). Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Applied Microbiology and Biotechnology, 102(22), 9481-9515.
  • 11. Frisvad, J. C., Larsen, T. O., De Vries, R., Meijer, M., Houbraken, J., Cabañes, F. J., ... & Samson, R. A. (2007). Secondary metabolite profiling, growth profiles and other tools for species recognition and important Aspergillus mycotoxins. Studies in mycology, 59, 31-37.
  • 12. Frisvad, J. C., Larsen, T. O., Thrane, U., Meijer, M., Varga, J., Samson, R. A., & Nielsen, K. F. (2011). Fumonisin and ochratoxin production in industrial Aspergillus niger strains. PloS one, 6(8), e23496.
  • 13. Frisvad, J. C. (2015). Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Frontiers in Microbiology, 5, 773.
  • 14. Fungaro, M. H. P., Ferranti, L. S., Massi, F. P., da Silva, J. J., Sartori, D., Taniwaki, M. H., ... & Iamanaka, B. T. (2017). Aspergillus labruscus sp. nov., a new species of Aspergillus section Nigri discovered in Brazil. Scientific reports, 7(1), 1-9.
  • 15. Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and environmental microbiology, 61(4), 1323-1330.
  • 16. Gümüş, T., & Yılmaz, İ. (2006). Mikotoksinlerin sağlık üzerine etkileri. Türkiye, 9, 24-26.
  • 17. von Hertwig, A. M., Sant'Ana, A. S., Sartori, D., da Silva, J. J., Nascimento, M. S., Iamanaka, B. T., ... & Taniwaki, M. H. (2018). Real-time PCR-based method for rapid detection of Aspergillus niger and Aspergillus welwitschiae isolated from coffee. Journal of microbiological methods, 148, 87-92.
  • 18. Hong, S. B., Go, S. J., Shin, H. D., Frisvad, J. C., & Samson, R. A. (2005). Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia, 97(6), 1316-1329.
  • 19. Hubka, V., & Kolarik, M. (2012). β-tubulin paralogue tubC is frequently misidentified as the benA gene in Aspergillus section Nigri taxonomy: primer specificity testing and taxonomic consequences. Persoonia: Molecular Phylogeny and Evolution of Fungi, 29, 1.
  • 20. Lamboni, Y., Nielsen, K. F., Linnemann, A. R., Gezgin, Y., Hell, K., Nout, M. J., ... & Frisvad, J. C. (2016). Diversity in secondary metabolites including mycotoxins from strains of Aspergillus section Nigri isolated from raw cashew nuts from Benin, West Africa. PLoS One, 11(10), e0164310.
  • 21. Lewińska, A. M., Peuhkuri, R. H., Rode, C., Andersen, B., & Hoof, J. B. (2016). Rapid detection and identification of Stachybotrys and Chaetomium species using tissue PCR analysis. Journal of microbiological methods, 130, 115-122.
  • 22. Liu, D., Coloe, S., Baird, R., & Pedersen, J. (2000). Rapid mini-preparation of fungal DNA for PCR. Journal of Clinical Microbiology, 38(1), 471-471.
  • 23. Monod, M., Capoccia, S., Léchenne, B., Zaugg, C., Holdom, M., & Jousson, O. (2002). Secreted proteases from pathogenic fungi. International Journal of Medical Microbiology, 292(5-6), 405-419.
  • 24. Mutlu-İngök, A., & Karbancıoğlu-Güler, H. F. (2015). Sıcaklığın Aspergillus section Nigri Üyelerinin Okratoksin A Oluşturması Üzerine Etkisinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 2(1), 1-8.
  • 25. Nielsen, K. F., Mogensen, J. M., Johansen, M., Larsen, T. O., & Frisvad, J. C. (2009). Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Analytical and bioanalytical chemistry, 395(5), 1225-1242.
  • 26. Norlia, M., Jinap, S., Nor-Khaizura, M. A. R., Son, R., & Chin, C. K. (2018). Polyphasic approach to the identification and characterization of aflatoxigenic strains of Aspergillus section Flavi isolated from peanuts and peanut-based products marketed in Malaysia. International journal of food microbiology, 282, 9-15.
  • 27. Onami, J. I., Watanabe, M., Yoshinari, T., Hashimoto, R., Kitayama, M., Kobayashi, N., ... & Terajima, J. (2018). Fumonisin-production by Aspergillus section Nigri isolates from Japanese foods and environments. Food Safety, 6(2), 74-82.
  • 28. Palumbo, J. D., & O'Keeffe, T. L. (2015). Detection and discrimination of four A spergillus section N igri species by PCR. Letters in applied microbiology, 60(2), 188-195.
  • 29. Perrone, G., Susca, A., Cozzi, G., Ehrlich, K., Varga, J., Frisvad, J. C., ... & Samson, R. A. (2007). Biodiversity of Aspergillus species in some important agricultural products. Studies in mycology, 59, 53-66.
  • 30. Priegnitz, B. E., Brandt, U., Pahirulzaman, K. A., Dickschat, J. S., & Fleißner, A. (2015). The AngFus3 mitogen-activated protein kinase controls hyphal differentiation and secondary metabolism in Aspergillus niger. Eukaryotic cell, 14(6), 602-615.
  • 31. Samson, R. A., Visagie, C. M., Houbraken, J., Hong, S. B., Hubka, V., Klaassen, C. H., ... & Frisvad, J. C. (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in mycology, 78, 141-173.
  • 32. Saroj, D. B., Dengeti, S. N., Aher, S., & Gupta, A. K. (2015). A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei. World Journal of Microbiology and Biotechnology, 31(6), 995-999.
  • 33. Séjalon-Delmas, N., Roux, C., Martins, M., Kulifaj, M., Bécard, G., & Dargent, R. (2000). Molecular tools for the identification of Tuber melanosporum in agroindustry. Journal of Agricultural and Food Chemistry, 48(6), 2608-2613.
  • 34. Taniwaki, M. H., Pitt, J. I., & Magan, N. (2018). Aspergillus species and mycotoxins: occurrence and importance in major food commodities. Current Opinion in Food Science, 23, 38-43.
  • 35. Varga, J., Frisvad, J. C., Kocsubé, S., Brankovics, B., Tóth, B., Szigeti, G., & Samson, R. A. (2011). New and revisited species in Aspergillus section Nigri. Studies in Mycology, 69, 1-17.
  • 36. Wani, M. A., Sanjana, K., Kumar, D. M., & Lal, D. K. (2010). GC–MS analysis reveals production of 2–Phenylethanol from Aspergillus niger endophytic in rose. Journal of basic microbiology, 50(1), 110-114.

Rapid, Accurate and Low-Cost Innovative Approach for Molecular Identification of Aspergillus species

Year 2021, Volume: 12 Issue: 2, 113 - 121, 31.10.2021

Abstract

Some of Aspergillus species are the most common food spoilage fungi contaminating economically important agricultural products. They also produce carcinogenic, teratogenic and mutagenic mycotoxins that threaten human health. For all these reasons, precise and accurate identification of Aspergillus species is of great importance. In this study, the Mycelium Tissue- Polymerase Chain Reaction (MT-PCR) based molecular technique was developed and therefore the genomic DNA isolation step which used as a template in the Polymerase Chain Reaction was eliminated. The mycelium tissue PCR-based molecular technique has some advantages. For example, it does not require expensive and specialized equipment, not require expensive chemicals such as proteinase K, RNAse, other enzymes and not use toxic chemicals such as fenol/kloroform during the process of DNA isolation. The classic genomic DNA extraction procedure based on mycelium from liquid cultivations is also relatively time-consuming. For molecular identification of Aspergillus isolates were amplified two different gene regions (β-tubulin: benA, Calmodulin: CaM) by using tissue samples in this study. Then, all PCR products were purified and were sent to base sequence analysis. Sequence analysis results were examined using bioinformatic tools and the isolates were identified to species level as Aspergillus tubingensis R. Mosseray.

References

  • 1. Aerts, D., Hauer, E. E., Ohm, R. A., Arentshorst, M., Teertstra, W. R., Phippen, C., ... & Wösten, H. A. (2018). The FlbA-regulated predicted transcription factor Fum21 of Aspergillus niger is involved in fumonisin production. Antonie Van Leeuwenhoek, 111(3), 311-322.
  • 2. Aufauvre-Brown, A., Tang, C. M., & Holden, D. W. (1993). Detection of gene-disruption events in Aspergillus transformants by polymerase chain reaction direct from conidiospores. Current genetics, 24(1), 177-178.
  • 3. Azeem, M., Terenius, O., Rajarao, G. K., Nagahama, K., Nordenhem, H., Nordlander, G., & Borg-Karlson, A. K. (2015). Chemodiversity and biodiversity of fungi associated with the pine weevil Hylobius abietis. Fungal biology, 119(8), 738-746.
  • 4. Baquião, A. C., de Oliveira, M. M. M., Reis, T. A., Zorzete, P., Atayde, D. D., & Correa, B. (2013). Polyphasic approach to the identification of Aspergillus section Flavi isolated from Brazil nuts. Food Chemistry, 139(1-4), 1127-1132.
  • 5. Bladt, T. T., Frisvad, J. C., Knudsen, P. B., & Larsen, T. O. (2013). Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules, 18(9), 11338-11376.
  • 6. Cabañes, F. J., & Bragulat, M. R. (2018). Black aspergilli and ochratoxin A-producing species in foods. Current opinion in food science, 23, 1-10.
  • 7. Costa, C. P., Silva, D. G., Rudnitskaya, A., Almeida, A., & Rocha, S. M. (2016). Shedding light on Aspergillus niger volatile exometabolome. Scientific reports, 6(1), 1-13.
  • 8. Decontardi, S., Soares, C., Lima, N., & Battilani, P. (2018). Polyphasic identification of Penicillia and Aspergilli isolated from Italian grana cheese. Food microbiology, 73, 137-149.
  • 9. Freire, L., Guerreiro, T. M., Caramês, E. T., Lopes, L. S., Orlando, E. A., Pereira, G. E., ... & Sant’Ana, A. S. (2018). Influence of maturation stages in different varieties of wine grapes (Vitis vinifera) on the production of ochratoxin A and its modified forms by Aspergillus carbonarius and Aspergillus niger. Journal of agricultural and food chemistry, 66(33), 8824-8831.
  • 10. Frisvad, J. C., Møller, L. L., Larsen, T. O., Kumar, R., & Arnau, J. (2018). Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Applied Microbiology and Biotechnology, 102(22), 9481-9515.
  • 11. Frisvad, J. C., Larsen, T. O., De Vries, R., Meijer, M., Houbraken, J., Cabañes, F. J., ... & Samson, R. A. (2007). Secondary metabolite profiling, growth profiles and other tools for species recognition and important Aspergillus mycotoxins. Studies in mycology, 59, 31-37.
  • 12. Frisvad, J. C., Larsen, T. O., Thrane, U., Meijer, M., Varga, J., Samson, R. A., & Nielsen, K. F. (2011). Fumonisin and ochratoxin production in industrial Aspergillus niger strains. PloS one, 6(8), e23496.
  • 13. Frisvad, J. C. (2015). Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Frontiers in Microbiology, 5, 773.
  • 14. Fungaro, M. H. P., Ferranti, L. S., Massi, F. P., da Silva, J. J., Sartori, D., Taniwaki, M. H., ... & Iamanaka, B. T. (2017). Aspergillus labruscus sp. nov., a new species of Aspergillus section Nigri discovered in Brazil. Scientific reports, 7(1), 1-9.
  • 15. Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and environmental microbiology, 61(4), 1323-1330.
  • 16. Gümüş, T., & Yılmaz, İ. (2006). Mikotoksinlerin sağlık üzerine etkileri. Türkiye, 9, 24-26.
  • 17. von Hertwig, A. M., Sant'Ana, A. S., Sartori, D., da Silva, J. J., Nascimento, M. S., Iamanaka, B. T., ... & Taniwaki, M. H. (2018). Real-time PCR-based method for rapid detection of Aspergillus niger and Aspergillus welwitschiae isolated from coffee. Journal of microbiological methods, 148, 87-92.
  • 18. Hong, S. B., Go, S. J., Shin, H. D., Frisvad, J. C., & Samson, R. A. (2005). Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia, 97(6), 1316-1329.
  • 19. Hubka, V., & Kolarik, M. (2012). β-tubulin paralogue tubC is frequently misidentified as the benA gene in Aspergillus section Nigri taxonomy: primer specificity testing and taxonomic consequences. Persoonia: Molecular Phylogeny and Evolution of Fungi, 29, 1.
  • 20. Lamboni, Y., Nielsen, K. F., Linnemann, A. R., Gezgin, Y., Hell, K., Nout, M. J., ... & Frisvad, J. C. (2016). Diversity in secondary metabolites including mycotoxins from strains of Aspergillus section Nigri isolated from raw cashew nuts from Benin, West Africa. PLoS One, 11(10), e0164310.
  • 21. Lewińska, A. M., Peuhkuri, R. H., Rode, C., Andersen, B., & Hoof, J. B. (2016). Rapid detection and identification of Stachybotrys and Chaetomium species using tissue PCR analysis. Journal of microbiological methods, 130, 115-122.
  • 22. Liu, D., Coloe, S., Baird, R., & Pedersen, J. (2000). Rapid mini-preparation of fungal DNA for PCR. Journal of Clinical Microbiology, 38(1), 471-471.
  • 23. Monod, M., Capoccia, S., Léchenne, B., Zaugg, C., Holdom, M., & Jousson, O. (2002). Secreted proteases from pathogenic fungi. International Journal of Medical Microbiology, 292(5-6), 405-419.
  • 24. Mutlu-İngök, A., & Karbancıoğlu-Güler, H. F. (2015). Sıcaklığın Aspergillus section Nigri Üyelerinin Okratoksin A Oluşturması Üzerine Etkisinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 2(1), 1-8.
  • 25. Nielsen, K. F., Mogensen, J. M., Johansen, M., Larsen, T. O., & Frisvad, J. C. (2009). Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Analytical and bioanalytical chemistry, 395(5), 1225-1242.
  • 26. Norlia, M., Jinap, S., Nor-Khaizura, M. A. R., Son, R., & Chin, C. K. (2018). Polyphasic approach to the identification and characterization of aflatoxigenic strains of Aspergillus section Flavi isolated from peanuts and peanut-based products marketed in Malaysia. International journal of food microbiology, 282, 9-15.
  • 27. Onami, J. I., Watanabe, M., Yoshinari, T., Hashimoto, R., Kitayama, M., Kobayashi, N., ... & Terajima, J. (2018). Fumonisin-production by Aspergillus section Nigri isolates from Japanese foods and environments. Food Safety, 6(2), 74-82.
  • 28. Palumbo, J. D., & O'Keeffe, T. L. (2015). Detection and discrimination of four A spergillus section N igri species by PCR. Letters in applied microbiology, 60(2), 188-195.
  • 29. Perrone, G., Susca, A., Cozzi, G., Ehrlich, K., Varga, J., Frisvad, J. C., ... & Samson, R. A. (2007). Biodiversity of Aspergillus species in some important agricultural products. Studies in mycology, 59, 53-66.
  • 30. Priegnitz, B. E., Brandt, U., Pahirulzaman, K. A., Dickschat, J. S., & Fleißner, A. (2015). The AngFus3 mitogen-activated protein kinase controls hyphal differentiation and secondary metabolism in Aspergillus niger. Eukaryotic cell, 14(6), 602-615.
  • 31. Samson, R. A., Visagie, C. M., Houbraken, J., Hong, S. B., Hubka, V., Klaassen, C. H., ... & Frisvad, J. C. (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in mycology, 78, 141-173.
  • 32. Saroj, D. B., Dengeti, S. N., Aher, S., & Gupta, A. K. (2015). A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei. World Journal of Microbiology and Biotechnology, 31(6), 995-999.
  • 33. Séjalon-Delmas, N., Roux, C., Martins, M., Kulifaj, M., Bécard, G., & Dargent, R. (2000). Molecular tools for the identification of Tuber melanosporum in agroindustry. Journal of Agricultural and Food Chemistry, 48(6), 2608-2613.
  • 34. Taniwaki, M. H., Pitt, J. I., & Magan, N. (2018). Aspergillus species and mycotoxins: occurrence and importance in major food commodities. Current Opinion in Food Science, 23, 38-43.
  • 35. Varga, J., Frisvad, J. C., Kocsubé, S., Brankovics, B., Tóth, B., Szigeti, G., & Samson, R. A. (2011). New and revisited species in Aspergillus section Nigri. Studies in Mycology, 69, 1-17.
  • 36. Wani, M. A., Sanjana, K., Kumar, D. M., & Lal, D. K. (2010). GC–MS analysis reveals production of 2–Phenylethanol from Aspergillus niger endophytic in rose. Journal of basic microbiology, 50(1), 110-114.
There are 36 citations in total.

Details

Primary Language Turkish
Journal Section RESEARCH ARTICLE
Authors

Yüksel Gezgin 0000-0001-5812-1882

Sibel Arslan This is me 0000-0002-0883-0207

Zeycan Nurçe 0000-0002-8785-9250

Publication Date October 31, 2021
Published in Issue Year 2021 Volume: 12 Issue: 2

Cite

APA Gezgin, Y., Arslan, S., & Nurçe, Z. (2021). Aspergillus Türlerinin Moleküler Tanımlanması için Hızlı, Doğru ve Düşük Maliyetli Yenilikçi Yaklaşım. Mantar Dergisi, 12(2), 113-121. https://doi.org/10.30708/mantar.904921

The works submitted to our journals are first judged grammatically. After this phase, articles are sent two reviewers. If necessary, the third reviewer is assessed. In the publication of works, a decision is made by evaluating the level of contribution to science and readers within the criteria specified in the writing rules. Reviewers are requested to submit their assessments within 30 days at the latest. The reviewers' evaluations and the answers to these evaluations are reviewed by the editor and it is decided whether the work will be published or not.

International Peer Reviewed Journal

The journal doesn’t have APC or any submission charges

Creative Commons Lisansı
This work is licensed under a Creative Commons Attribution 4.0 License