Review
BibTex RIS Cite

Deniz Orjinli Fungus Kaynakları ve Lakkaz Üretimi

Year 2021, Volume: 12 Issue: 2, 240 - 246, 31.10.2021

Abstract

Lakkazlar (EC 1.10.3.2) ek bir kofaktöre ihtiyaç duymamaları, kararlı yapıda olmaları, fenolik ve fenolik olmayan bileşiklerde dahil olmak üzere geniş bir subsrat aralığına sahip olmaları gibi önemli özelliklere sahiptir. Endüstriyel süreçlerde kullanılmak üzere lakkaz enziminin elde edildiği birçok tür bulunur. Ancak bu süreçler için hala yüksek redoks potansiyeli, tuz toleransı ve sıcak-soğuk adaptiflik gibi özelliklere sahip yeni lakkaz kaynakları araştırılmaktadır. Fungal lakkazların kalıcı ve zor bozunan bileşiklerin parçalanmasındaki etkinliği de birçok kez rapor edilmiştir. Karasal sistemlerden çok sayıda lakkaz üretici fungus araştırılmış, üretim süreci optimize edilmiş, endüstriyel ve çevresel proseslere uygulanmış olmasına karşın deniz orjinli funguslardan lakkaz araştırmaları ve uygulamaları sınırlıdır. Fakat deniz orjinli fungusların denizel çevrelerdeki stres faktörlerine (değişken pH, sıcaklık, basınç, güneş ışığının farklı derinliğe sahip bölgelere nüfuz etmesindeki değişkenlik, düşük besin elementi koşulları gibi) adaptasyonları onların karasal muadillerinden daha farklı, keşfedilmemiş ve aktif metabolit üreticileri yapmaktadır. Bu derlemede lakkazın üretimi, optimizasyon çalışmaları, deniz orjinli lakkaz kaynaklarının önemi ve gelişen uygulama alanları hakkında bilgi verilmiştir.

References

  • Abd El Aty, A.A, Hamed, E.R., El-Beih A.A. and El-Diwany, A.I. (2016). Induction and enhancement of the novel marine-derived Alternaria tenuissima KM651985 laccase enzyme using response surface methodology: Application to Azo and Triphenylmethane dyes decolorization. Journal of Applied Pharmaceutical Science, 6 (4), 006-014.
  • Abd El Aty, A.A. and Mostafa, F.A. (2013). Effect of various media and supplements on laccase activity and its application in dyes decolorization. Malaysian Journal of Microbiology, 9(2), 166-175.
  • Abeer, A.A.E.A., Aliaa, R.E.S., Sherien, M.M.A., El-Diwany, A.l. and Eman, R.H. (2015). Screening of Fungal Isolates for Laccase Enzyme Production from Marine Sources. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(1), 221.
  • Adekunle, A.E., Zhang, C., Guo, C., and Liu, C.Z. (2017). Laccase Production from Trametes versicolor in Solid-State Fermentation of Steam-Exploded Pretreated Cornstalk. Waste Biomass Valor, 8, 153–159.
  • Agrawal, K., Bhardwaj, N., Kumar, B., Chaturvedi, V., and Verma, P. (2019). Process optimization, purification and characterization of alkaline stable white laccase from Myrothecium verrucaria ITCC-8447 and its application in delignification of agroresidues. International Journal of Biological Macromolecules, 15;125, 1042-1055.
  • Atalla, M.M., Zeinab, H.K., Eman, R.H., Armani, A.Y., and Abeer, A.A.E.A. (2010). Screening of some marine-derived fungal isolates for lignin degrading enzymes (LDEs) production. Agriculture and Biology Journal of North America, 1, 591–599.
  • Bagewadi, Z.K., Mulla, S.I., and Ninnekar, H.Z. (2017). Optimization of laccase production and its application in delignification of biomass. International Journal of Recycling Organic Waste in Agriculture, 6, 351-365.
  • Bankole, P.O., Semple, K.T., Jeon, B.H., and Govindwar, S.P. (2021a). Biodegradation of fluorene by the newly isolated marine-derived fungus, Mucor irregularis strain bpo1 using response surface methodology. Ecotoxicology and Environmental Safety, 208, 111619.
  • Bankole, P.O., Semple, K.T., Jeon, B.H., and Govindwar, S.P. (2021b). Impact of redox-mediators in the degradation of olsalazine by marine-derived fungus, Aspergillus aculeatus strain bpo2: Response surface methodology, laccase stability and kinetics. Ecotoxicology and Environmental Safety, 208, 111742.
  • Barathikannan, K, Ramasamy, K.P., Manohar, C.S., and Meena, R.M. (2017). Diversity and decolorization potential of fungi isolated from the coral reef regions off Kavaratti. India. Indian Journal of Geo Marine Sciences, 46(03), 497-503.
  • Ben Ali, W., Chaduli, D., Navarro, D., Lechat, C., Turbé-Doan, A., Bertrand, E., Faulds, C.B., Sciara, G., Lesage-Meessen, L., Record, E. and Mechichi, T. (2020). Screening of five marine-derived fungal strains for their potential to produce oxidases with laccase activities suitable for biotechnological applications. BMC Biotechnology, 20, 27.
  • Bonugli-Santos, R.C., Vasconcelos, M.R.S., Passarini, M.R.Z., Vieira, G.A.L., Lopes, V.C.P., Mainardi P.H., dos Santos J.A., Duarte, L.A., Otero, I.V.R., Yoshida, A.M.S., Feitosa, V.A., Pessoa, Jr. A., and Sette, L.D. (2015). Marine-derived fungi: diversity of enzymes and biotechnological applications, Frontiers in Microbiology, 6, 269.
  • Bonugli-Santos, R.C., Vieira, G.A.L., Collins, C., Fernandes, T.C.C., Marin-Morales, M.A., Murray, P., and Sette, L.D. (2016). Enhanced textile dye decolorization by marine-derived basidiomycete Peniophora sp. CBMAI 1063 using integrated statistical design. Environmental Science and Pollution Research, 23, 8659-8668.
  • Chenthamarakshan, A., Parambayil, N., Miziriya, N., Soumya, P.S., Kiran Lakshmi, M.S., Ramgopal, A., Dileep, A., and Nambisan, P. (2017). Optimization of laccase production from Marasmiellus palmivorus LA1 by Taguchi method of Design of experiments. BMC Biotechnology, 17(1), 12.
  • D’Souza, D. T., Tiwari, R., Sah, A. K., and Raghukumar, C. (2006). Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme and Microbial Technology, 38, 504– 511.
  • D’Souza-Ticlo, D., Sharma, D., and Raghukumar, C. (2009). A Thermostable Metal-Tolerant Laccase with Bioremediation Potential from a Marine-Derived Fungus. Marine Biotechnology, 11, 725-737.
  • Ghosh, P. and Ghosh, U. (2017). Statistical optimization of laccase production by Aspergillus flavus PUF5 through submerged fermentation using agro-waste as cheap substrate. Acta Biologica Szegediensis, 61(1), 25-33.
  • Goralczyk-Bińkowska, A., Jasińska, A., Długoński, A., Płociński, P., and Długoński, J. (2020). Laccase activity of the ascomycete fungus Nectriella pironii and innovative strategies for its production on leaf litter of an urban park. PLOS ONE, 15(5): e0233553.
  • Janusz, G., Pawlik, A., S ́widerska-Burek, U., Polak, J., Sulej, J., Jarosz-Wilkołazka, A., and Paszczyn ́ski, A. (2020). Laccase Properties, Physiological Functions, and Evolution. International Journal of Molecular Science, 21, 966.
  • Jia, S.L, Chi, Z., Liu, G.L., Hu, Z., and Chi, Z.M. (2020). Fungi in mangrove ecosystems and their potential applications. Critical Reviews in Biotechnology, 40:6, 852-864.
  • Junior, J.A., Vieira, Y.A., Cruz, I.A., da Silva Vilar, D., Aguiar, M.M., Torres, N.H., Bharagava, R.N., Lima, Á.S., de Souza, R.L., and Romanholo Ferreira, L.F. (2020). Sequential degradation of raw vinasse by a laccase enzyme producing fungus Pleurotus sajor-caju and its ATPS purification. Biotechnol Rep (Amst), 13, 25:e00411.
  • Karp, S.G., Faraco, V., Amore, A., Junior Letti, L.A., Soccol, V.T., and Soccol, C.R. (2015). Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation. BioMed Research International, Volume 2015, Article ID 181204, 8.
  • Mainardi, P.H., Feitosa, V.A., Brenelli de Paiva, L.B., Bonugli-Santos, R.C., Squina, F.M., Jr, A.P., and Sette, L.D. (2018). Laccase production in bioreactor scale under saline condition by the marine-derived basidiomycete Peniophora sp. CBMAI 1063. Fungal Biology, 122, 302-309.
  • Mehra, R., Muschiol, J., Meyer, A.S., and Kepp, K.P. (2018). A structural-chemical explanation of fungal laccase activity. Scientific Reports, 8, 17285.
  • Passarini, M. R., Ottoni, C. A., Santos, C., Lima, N., and Sette, L. D. (2015). Induction, expression and characterisation of laccase genes from the marine-derived fungal strains Nigrospora sp. CBMAI 1328 and Arthopyrenia sp. CBMAI 1330. AMB Express, 5, 19.
  • Patel, H. and Gupte, A. (2016). Optimization of different culture conditions for enhanced laccase production and its purification from Tricholoma giganteum AGHP. Bioresources and Bioprocessing, 3, 11.
  • Patel, R.J., and Bhaskaran, L., (2016). Screening of novel Ascomycetes for the productıon of laccase enzyme using different lignıin model compounds. International Journal of Pharma and Bio Sciences, 7(4), 452-458.
  • Raghukumar, C., D’Souza, T. M., Thorn, R. G., and Reddy, C. A. (1999). Lignin- Modifying Enzymes of Flavodon flavus, a basidiomycete Isolated from a Coastal Marine Environment, Applied and Environmental Microbiology, 65(5), 2103-2111.
  • Rodrigues, E.M., Karp, S.G., Malucelli, L.C., Helm, C.V., and Alvarez, T.M. (2019). Evaluation of laccase production by Ganoderma lucidum in submerged and solid-state fermentation using different inducers. Journal of Basic Microbiology, 59, 784-791.
  • Saravanakumar, K., and Kathiresan, K. (2014). Bioremoval of the synthetic dye malachite green by marine Trichoderma sp. SpringerPlus, 3, 631.
  • Sesli, E., Asan,A., Selçuk,F., Abacı Günyar,Ö., Akata,I., Akgül,H., Aktaş,S., Alkan,S., Allı,H., Aydoğdu,H., Berikten,D., Demirel,K., Demirel,R., Doğan,H.H., Erdoğdu,M., Ergül,C.C., Eroğlu,G., Giray,G., Halikî Uztan,A., Kabaktepe,Ş., Kadaifçiler, D., Kalyoncu, F., Karaltı, İ., Kaşık, G., Kaya, A., Keleş, A., Kırbağ, S., Kıvanç, M., Ocak, İ., Ökten, S., Özkale, E., Öztürk, C., Sevindik, M., Şen, B., Şen, İ., Türkekul, İ., Ulukapı, M., Uzun, Ya., Uzun, Yu., ve Yoltaş, A.(2020).Türkiye Mantarları Listesi.Ali Nihat Gökyiğit Vakfı Yayını.İstanbul.
  • Toker, S.K., Evlat, H., and Koçyiğit, A. (2021). Screening of newly isolated marine-derived fungi for their laccase production and decolorization of different dye types. Regional Studies in Marine Science, 45,101837.
  • Theerachat, M., Guieysse, D., Morel, S., Remaud-Siméon, M., and Chulalaksananukul, W. (2019). Laccases from Marine Organisms and Their Applications in the Biodegradation of Toxic and Environmental Pollutants: a Review. Appl Biochem Biotechnol,187, 583-611.
  • Verma, A.K., Raghukumar, C., Verma, P., Shouche, Y.S., and Naik, C.G. (2010). Four marine-derived fungi for bioremediation of raw textile mill effluents. Biodegradation, 21(2), 217-33.
  • Wang, F., Xu, L., Zhao, L., Ding, Z., Ma, H., and Terry, N. (2019). Fungal laccase production from lignocellulosic agricultural wastes by solid-state fermentation: A review. Microorganisms, 9, 7(12), 665.
  • Wikee, S., Hatton, J., Turbé-Doan, A., Mathieu, Y., Daou, M., Lomascolo, A., Kumar, A., Lumyong, S., Sciara, G., Faulds C.B., and Record, E. (2019). Characterization and Dye Decolorization Potential of Two Laccases from the Marine-Derived Fungus Pestalotiopsis sp. International Journal of Molecular Science, 20, 1864.
  • Wu, Y.R., Luo, Z.H., and Vrijmoed, L.L.P. (2010). Biodegradation of anthracene and benz[a]anthracene by two Fusarium solani strains isolated from mangrove sediments. Bioresource Technology, 101(24), 9666-72.
  • Xu, L., Sun, K., Wang, F., Zhao, L., Hu, J., Ma, H., and Ding, Z. (2020). Laccase production by Trametes versicolor in solid-state fermentation using tea residues as substrate and its application in dye decolorization. Journal Environment Management. 15, 270:110904.

Marine-Derived Fungal Sources and Laccase Production

Year 2021, Volume: 12 Issue: 2, 240 - 246, 31.10.2021

Abstract

Laccases (EC 1.10.3.2) have important properties such as not requiring an additional cofactor, significant stability, and a wide range of substrate including phenolic and non-phenolic compounds. There are many fungi from which the laccase enzyme is obtained for using in industrial processes. However, new laccase sources with properties such as high redox potential, salt tolerance and hot-cold adaptivity are still being investigated for these the processes. The efficacy of fungal laccases in degradation of persistent and hardly degradable compounds has also been reported many times. Although many laccase-producing fungi from terrestrial systems have been researched, the production process has been optimized and applied to industrial and environmental processes, laccase research and applications from marine origin fungi are limited. However, the adaptation of marine origin fungi to stress factors in marine environments (such as variable pH, temperature, pressure, variability in the penetration of sunlight to different depths, low nutrient conditions) makes them different, unexplored and active metabolite producers than their terrestrial equivalents. In this review, information was given about laccase production, optimization studies, importance of marine laccase sources and developing application areas.

References

  • Abd El Aty, A.A, Hamed, E.R., El-Beih A.A. and El-Diwany, A.I. (2016). Induction and enhancement of the novel marine-derived Alternaria tenuissima KM651985 laccase enzyme using response surface methodology: Application to Azo and Triphenylmethane dyes decolorization. Journal of Applied Pharmaceutical Science, 6 (4), 006-014.
  • Abd El Aty, A.A. and Mostafa, F.A. (2013). Effect of various media and supplements on laccase activity and its application in dyes decolorization. Malaysian Journal of Microbiology, 9(2), 166-175.
  • Abeer, A.A.E.A., Aliaa, R.E.S., Sherien, M.M.A., El-Diwany, A.l. and Eman, R.H. (2015). Screening of Fungal Isolates for Laccase Enzyme Production from Marine Sources. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(1), 221.
  • Adekunle, A.E., Zhang, C., Guo, C., and Liu, C.Z. (2017). Laccase Production from Trametes versicolor in Solid-State Fermentation of Steam-Exploded Pretreated Cornstalk. Waste Biomass Valor, 8, 153–159.
  • Agrawal, K., Bhardwaj, N., Kumar, B., Chaturvedi, V., and Verma, P. (2019). Process optimization, purification and characterization of alkaline stable white laccase from Myrothecium verrucaria ITCC-8447 and its application in delignification of agroresidues. International Journal of Biological Macromolecules, 15;125, 1042-1055.
  • Atalla, M.M., Zeinab, H.K., Eman, R.H., Armani, A.Y., and Abeer, A.A.E.A. (2010). Screening of some marine-derived fungal isolates for lignin degrading enzymes (LDEs) production. Agriculture and Biology Journal of North America, 1, 591–599.
  • Bagewadi, Z.K., Mulla, S.I., and Ninnekar, H.Z. (2017). Optimization of laccase production and its application in delignification of biomass. International Journal of Recycling Organic Waste in Agriculture, 6, 351-365.
  • Bankole, P.O., Semple, K.T., Jeon, B.H., and Govindwar, S.P. (2021a). Biodegradation of fluorene by the newly isolated marine-derived fungus, Mucor irregularis strain bpo1 using response surface methodology. Ecotoxicology and Environmental Safety, 208, 111619.
  • Bankole, P.O., Semple, K.T., Jeon, B.H., and Govindwar, S.P. (2021b). Impact of redox-mediators in the degradation of olsalazine by marine-derived fungus, Aspergillus aculeatus strain bpo2: Response surface methodology, laccase stability and kinetics. Ecotoxicology and Environmental Safety, 208, 111742.
  • Barathikannan, K, Ramasamy, K.P., Manohar, C.S., and Meena, R.M. (2017). Diversity and decolorization potential of fungi isolated from the coral reef regions off Kavaratti. India. Indian Journal of Geo Marine Sciences, 46(03), 497-503.
  • Ben Ali, W., Chaduli, D., Navarro, D., Lechat, C., Turbé-Doan, A., Bertrand, E., Faulds, C.B., Sciara, G., Lesage-Meessen, L., Record, E. and Mechichi, T. (2020). Screening of five marine-derived fungal strains for their potential to produce oxidases with laccase activities suitable for biotechnological applications. BMC Biotechnology, 20, 27.
  • Bonugli-Santos, R.C., Vasconcelos, M.R.S., Passarini, M.R.Z., Vieira, G.A.L., Lopes, V.C.P., Mainardi P.H., dos Santos J.A., Duarte, L.A., Otero, I.V.R., Yoshida, A.M.S., Feitosa, V.A., Pessoa, Jr. A., and Sette, L.D. (2015). Marine-derived fungi: diversity of enzymes and biotechnological applications, Frontiers in Microbiology, 6, 269.
  • Bonugli-Santos, R.C., Vieira, G.A.L., Collins, C., Fernandes, T.C.C., Marin-Morales, M.A., Murray, P., and Sette, L.D. (2016). Enhanced textile dye decolorization by marine-derived basidiomycete Peniophora sp. CBMAI 1063 using integrated statistical design. Environmental Science and Pollution Research, 23, 8659-8668.
  • Chenthamarakshan, A., Parambayil, N., Miziriya, N., Soumya, P.S., Kiran Lakshmi, M.S., Ramgopal, A., Dileep, A., and Nambisan, P. (2017). Optimization of laccase production from Marasmiellus palmivorus LA1 by Taguchi method of Design of experiments. BMC Biotechnology, 17(1), 12.
  • D’Souza, D. T., Tiwari, R., Sah, A. K., and Raghukumar, C. (2006). Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme and Microbial Technology, 38, 504– 511.
  • D’Souza-Ticlo, D., Sharma, D., and Raghukumar, C. (2009). A Thermostable Metal-Tolerant Laccase with Bioremediation Potential from a Marine-Derived Fungus. Marine Biotechnology, 11, 725-737.
  • Ghosh, P. and Ghosh, U. (2017). Statistical optimization of laccase production by Aspergillus flavus PUF5 through submerged fermentation using agro-waste as cheap substrate. Acta Biologica Szegediensis, 61(1), 25-33.
  • Goralczyk-Bińkowska, A., Jasińska, A., Długoński, A., Płociński, P., and Długoński, J. (2020). Laccase activity of the ascomycete fungus Nectriella pironii and innovative strategies for its production on leaf litter of an urban park. PLOS ONE, 15(5): e0233553.
  • Janusz, G., Pawlik, A., S ́widerska-Burek, U., Polak, J., Sulej, J., Jarosz-Wilkołazka, A., and Paszczyn ́ski, A. (2020). Laccase Properties, Physiological Functions, and Evolution. International Journal of Molecular Science, 21, 966.
  • Jia, S.L, Chi, Z., Liu, G.L., Hu, Z., and Chi, Z.M. (2020). Fungi in mangrove ecosystems and their potential applications. Critical Reviews in Biotechnology, 40:6, 852-864.
  • Junior, J.A., Vieira, Y.A., Cruz, I.A., da Silva Vilar, D., Aguiar, M.M., Torres, N.H., Bharagava, R.N., Lima, Á.S., de Souza, R.L., and Romanholo Ferreira, L.F. (2020). Sequential degradation of raw vinasse by a laccase enzyme producing fungus Pleurotus sajor-caju and its ATPS purification. Biotechnol Rep (Amst), 13, 25:e00411.
  • Karp, S.G., Faraco, V., Amore, A., Junior Letti, L.A., Soccol, V.T., and Soccol, C.R. (2015). Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation. BioMed Research International, Volume 2015, Article ID 181204, 8.
  • Mainardi, P.H., Feitosa, V.A., Brenelli de Paiva, L.B., Bonugli-Santos, R.C., Squina, F.M., Jr, A.P., and Sette, L.D. (2018). Laccase production in bioreactor scale under saline condition by the marine-derived basidiomycete Peniophora sp. CBMAI 1063. Fungal Biology, 122, 302-309.
  • Mehra, R., Muschiol, J., Meyer, A.S., and Kepp, K.P. (2018). A structural-chemical explanation of fungal laccase activity. Scientific Reports, 8, 17285.
  • Passarini, M. R., Ottoni, C. A., Santos, C., Lima, N., and Sette, L. D. (2015). Induction, expression and characterisation of laccase genes from the marine-derived fungal strains Nigrospora sp. CBMAI 1328 and Arthopyrenia sp. CBMAI 1330. AMB Express, 5, 19.
  • Patel, H. and Gupte, A. (2016). Optimization of different culture conditions for enhanced laccase production and its purification from Tricholoma giganteum AGHP. Bioresources and Bioprocessing, 3, 11.
  • Patel, R.J., and Bhaskaran, L., (2016). Screening of novel Ascomycetes for the productıon of laccase enzyme using different lignıin model compounds. International Journal of Pharma and Bio Sciences, 7(4), 452-458.
  • Raghukumar, C., D’Souza, T. M., Thorn, R. G., and Reddy, C. A. (1999). Lignin- Modifying Enzymes of Flavodon flavus, a basidiomycete Isolated from a Coastal Marine Environment, Applied and Environmental Microbiology, 65(5), 2103-2111.
  • Rodrigues, E.M., Karp, S.G., Malucelli, L.C., Helm, C.V., and Alvarez, T.M. (2019). Evaluation of laccase production by Ganoderma lucidum in submerged and solid-state fermentation using different inducers. Journal of Basic Microbiology, 59, 784-791.
  • Saravanakumar, K., and Kathiresan, K. (2014). Bioremoval of the synthetic dye malachite green by marine Trichoderma sp. SpringerPlus, 3, 631.
  • Sesli, E., Asan,A., Selçuk,F., Abacı Günyar,Ö., Akata,I., Akgül,H., Aktaş,S., Alkan,S., Allı,H., Aydoğdu,H., Berikten,D., Demirel,K., Demirel,R., Doğan,H.H., Erdoğdu,M., Ergül,C.C., Eroğlu,G., Giray,G., Halikî Uztan,A., Kabaktepe,Ş., Kadaifçiler, D., Kalyoncu, F., Karaltı, İ., Kaşık, G., Kaya, A., Keleş, A., Kırbağ, S., Kıvanç, M., Ocak, İ., Ökten, S., Özkale, E., Öztürk, C., Sevindik, M., Şen, B., Şen, İ., Türkekul, İ., Ulukapı, M., Uzun, Ya., Uzun, Yu., ve Yoltaş, A.(2020).Türkiye Mantarları Listesi.Ali Nihat Gökyiğit Vakfı Yayını.İstanbul.
  • Toker, S.K., Evlat, H., and Koçyiğit, A. (2021). Screening of newly isolated marine-derived fungi for their laccase production and decolorization of different dye types. Regional Studies in Marine Science, 45,101837.
  • Theerachat, M., Guieysse, D., Morel, S., Remaud-Siméon, M., and Chulalaksananukul, W. (2019). Laccases from Marine Organisms and Their Applications in the Biodegradation of Toxic and Environmental Pollutants: a Review. Appl Biochem Biotechnol,187, 583-611.
  • Verma, A.K., Raghukumar, C., Verma, P., Shouche, Y.S., and Naik, C.G. (2010). Four marine-derived fungi for bioremediation of raw textile mill effluents. Biodegradation, 21(2), 217-33.
  • Wang, F., Xu, L., Zhao, L., Ding, Z., Ma, H., and Terry, N. (2019). Fungal laccase production from lignocellulosic agricultural wastes by solid-state fermentation: A review. Microorganisms, 9, 7(12), 665.
  • Wikee, S., Hatton, J., Turbé-Doan, A., Mathieu, Y., Daou, M., Lomascolo, A., Kumar, A., Lumyong, S., Sciara, G., Faulds C.B., and Record, E. (2019). Characterization and Dye Decolorization Potential of Two Laccases from the Marine-Derived Fungus Pestalotiopsis sp. International Journal of Molecular Science, 20, 1864.
  • Wu, Y.R., Luo, Z.H., and Vrijmoed, L.L.P. (2010). Biodegradation of anthracene and benz[a]anthracene by two Fusarium solani strains isolated from mangrove sediments. Bioresource Technology, 101(24), 9666-72.
  • Xu, L., Sun, K., Wang, F., Zhao, L., Hu, J., Ma, H., and Ding, Z. (2020). Laccase production by Trametes versicolor in solid-state fermentation using tea residues as substrate and its application in dye decolorization. Journal Environment Management. 15, 270:110904.
There are 38 citations in total.

Details

Primary Language Turkish
Journal Section REWIEV ARTICLE
Authors

Ali Koçyiğit 0000-0002-2960-6722

Sultan Kübra Toker 0000-0002-7088-6690

Publication Date October 31, 2021
Published in Issue Year 2021 Volume: 12 Issue: 2

Cite

APA Koçyiğit, A., & Toker, S. K. (2021). Deniz Orjinli Fungus Kaynakları ve Lakkaz Üretimi. Mantar Dergisi, 12(2), 240-246. https://doi.org/10.30708/mantar.970777

The works submitted to our journals are first judged grammatically. After this phase, articles are sent two reviewers. If necessary, the third reviewer is assessed. In the publication of works, a decision is made by evaluating the level of contribution to science and readers within the criteria specified in the writing rules. Reviewers are requested to submit their assessments within 30 days at the latest. The reviewers' evaluations and the answers to these evaluations are reviewed by the editor and it is decided whether the work will be published or not.

International Peer Reviewed Journal

The journal doesn’t have APC or any submission charges

Creative Commons Lisansı
This work is licensed under a Creative Commons Attribution 4.0 License