Research Article
BibTex RIS Cite

Zeytin Değirmeni Atıklarından Yeni İzole Edilen Bir Maya Candida tropicalis; Lipaz Üretimi İçin Besiyeri Kompozisyonun Optimizasyonu

Year 2022, Volume: 13 Issue: 1, 8 - 14, 28.04.2022

Abstract

Bu çalışmada bir zeytin değirmeni atık örneğinden yeni izole edilen bir mikroorganizma lipaz üretimi için taranmıştır. Bu yeni suş 18S rDNA analizi ile tanımlanmış ve suşun %92 oranında Candida tropicalis (yuvarlakmaya) olduğu tespit edilmiştir. Lipaz üretim ortamına azot ve karbonhidrat kaynakları ilave edilerek lipaz üretiminin optimizasyonu gerçekleştirilmiş, ayrıca lipaz üretimini artırmak için pH ve sıcaklık parametrelerinin etkisi incelenmiştir. Suş için maksimum büyüme koşulları 4.0 pH ortamında ve 30°C büyüme sıcaklığında tespit edilmiştir. Çeşitli azot kaynaklarının lipaz üretimi üzerindeki etkisi araştırıldığında, amonyum sülfatın lipaz üretimini arttırdığını, üre, pepton ve kazeinin ise belirgin bir etki göstermediğini saptanmıştır. Birtakım yağların artırmasına rağmen lipaz üretim ortamında çeşitli şekerlerin bulunması lipaz üretimini verimli bir şekilde artırmamıştır. En yüksek lipaz aktivitesi, üretim ortamına %1 amonyum sülfat ve %1 zeytinyağı ilavesiyle 10.67 U/ml olarak belirlenmiştir.

References

  • Aehle, W. (2007). Chapter 5, Industrial Enzymes. In: Aehle W (ed) Enzymes in Industry Production and Applications, 3rd Completely Revised edn. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. pp13.
  • Alonso, FOM., Oliveira, EBL., Dellamora-Ortiz, GM. and Pereira-Meirelles, FV. (2005). Improvement of Lipase Production at Different Stirring Speeds and Oxgen Levels. Braz. J. Chem. Eng. 22 (01):9-18.
  • Babu, IS. and Rao, GH. (2007). Lipase Production by Yarrowia lipolytica NCIM 3589 in Solid State Fermentation Using Mixed Substrate. Res. J. Microbiol. 2 (5):469-474.
  • Cardenas, F., Alvarez, E., Castro-Alvarez, MS., Sanchez-Montero, JM., Valmaseda, M., Elson, SW. and Sinisterra, JV. (2001). Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. J. Mol. Catal. B-Enzym. 14:111-123.
  • Corzo, G. and Revah, S. (1999). Production and characteristics of the lipase from Yarrowia lipolytica 681. Bioresource Technol. 70:173-180.
  • Dalmau, E., Montesinosa, JL., Lottib, M. and Casasa, C. (2000). Effect of different carbon sources on lipase production by Candida rugosa. Enzyme Microb. Tech. 26:657-663.
  • Gupta, R., Gupta, N. and Rathi, P. (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biot. 64:763–81.
  • Gupta, R., Kumari, A., Syal, P. and Singh, Y. (2015). Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Prog. Lipid Res. 57:40-54
  • Fadıloğlu, S. and Erkmen, O. (2002). Effects of Carbon and Nitrogen Sources on Lipase Production by Candida rugosa. Turkish J. Eng. Env. Sci. 26:249 – 254.
  • Haki, GD. and Rakshit, SK. (2003). Developments in industrially important thermostable enzymes: a review. Bioresour. Technol. 89:17-34.
  • Hasan, F., Shah, AA. and Hameed, A. (2006). Industrial applications of microbial lipases, Enzyme Microb. Technol. 39 (2):235-251.
  • Hatzinikolaou, D., Macris, JB., Christakopoulos, P., Kekos, D., Kolisis, FN. and Fountoukidis, G. (1996). Production and Partial Characterization of Extracellular Lipase from Aspergillus niger. Biotechnol. Lett. 18:547-552.
  • Hou, CT. (1997). Characterization of New Yeast Lipases. J. Am. Oil Chem. Soc. 74 (11):1391-1394.
  • Jaeger, KE. and Eggert T. (2002). Lipases for biotechnology. Curr. Opin. Biotech. 13:390-397.
  • Joseph, B., Ramteke, PW. and Thomas, G. (2008). Cold active microbial lipases: some hot issues and recent developments. Biotechnol. Adv. 26:457-470.
  • Kamzolova, SV., Morgunov, IG., Aurich, A., Perevoznikova, OA., Shishkanova, NV., Stottmeister, U., and Finogenova, TV. (2005). Lipase Secretion and Citric Acid Production in Yarrowia lipolytica Yeast Grown on Animal and Vegetable Fat. Food Technol. Biotechnol. 43 (2):113-122.
  • Rahman, RNZRA., Salleh, AB. and Basri, M. (2006). Chapter 1, Lipases: Introduction. In: Salleh A.B. et al. (ed) New Lipases and Proteases, Nova Science Publishers, Inc. pp13.
  • Rajendran, A. and Thangavelu, V. (2007). Optimization of medium composition for lipase production by Candida rugosa NCIM 3462 using response surface methodology. Can. J. Microbiol. 53:643-655.
  • Sharma, R., Chisti, Y. and Banerjee, UC. (2001). Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19:627–662.
  • Sugihara, A, Tani, T. and Tominaga, Y. (1991). Purification and characterization of a novel thermostable lipase from Bacillus sp., J. Biochem. 109:211-216.
  • Treichel, H., Oliveira, D., Mazutti, MA., Luccio, MD. and Oliveira, JV. (2010). A Review on Microbial Lipases Production. Food and Bioprocess Technology. 3:182-196.
  • Vakhlu, J. and Kour, A. (2006). Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron. J. Biotechnol. 9 (1):69-85.
  • Yu, XW., Xua Y. and Xiao, R. (2016). Lipases from the genus Rhizopus: Characteristics, expression, protein engineering and application. Prog. Lipid Res. 64:57-68.

A Novel Yeast Isolated From Olive Mill Waste Candida tropicalis; Optimization of Medium Composition For Lipase Production

Year 2022, Volume: 13 Issue: 1, 8 - 14, 28.04.2022

Abstract

A novel microorganism that was isolated from an olive mill waste sample was screened for lipase production. This novel strain was identified and determined by 18S rDNA analysis and it was detected that the strain was 92% Candida tropicalis in ratio. Optimization of lipase production was carried out by the addition of nitrogen and carbohydrate sources into the lipase production medium as well as the effect of pH and temperature parameters were studied to increase the lipase production. Maximum growth conditions for the strain were detected at 4.0 pH medium and 30°C growth temperature. The effect of various nitrogen sources on lipase production showed that ammonium sulfate increased lipase production whereas urea, peptone and casein did not show a distinct effect. In addition presence of various sugars in the lipase production medium did not increase the lipase production efficiently although some oils did. The highest lipase activity was determined as 10.67 U/ml, with the addition of 1% ammonium sulfate and 1% olive oil into the production medium.

References

  • Aehle, W. (2007). Chapter 5, Industrial Enzymes. In: Aehle W (ed) Enzymes in Industry Production and Applications, 3rd Completely Revised edn. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. pp13.
  • Alonso, FOM., Oliveira, EBL., Dellamora-Ortiz, GM. and Pereira-Meirelles, FV. (2005). Improvement of Lipase Production at Different Stirring Speeds and Oxgen Levels. Braz. J. Chem. Eng. 22 (01):9-18.
  • Babu, IS. and Rao, GH. (2007). Lipase Production by Yarrowia lipolytica NCIM 3589 in Solid State Fermentation Using Mixed Substrate. Res. J. Microbiol. 2 (5):469-474.
  • Cardenas, F., Alvarez, E., Castro-Alvarez, MS., Sanchez-Montero, JM., Valmaseda, M., Elson, SW. and Sinisterra, JV. (2001). Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. J. Mol. Catal. B-Enzym. 14:111-123.
  • Corzo, G. and Revah, S. (1999). Production and characteristics of the lipase from Yarrowia lipolytica 681. Bioresource Technol. 70:173-180.
  • Dalmau, E., Montesinosa, JL., Lottib, M. and Casasa, C. (2000). Effect of different carbon sources on lipase production by Candida rugosa. Enzyme Microb. Tech. 26:657-663.
  • Gupta, R., Gupta, N. and Rathi, P. (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biot. 64:763–81.
  • Gupta, R., Kumari, A., Syal, P. and Singh, Y. (2015). Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Prog. Lipid Res. 57:40-54
  • Fadıloğlu, S. and Erkmen, O. (2002). Effects of Carbon and Nitrogen Sources on Lipase Production by Candida rugosa. Turkish J. Eng. Env. Sci. 26:249 – 254.
  • Haki, GD. and Rakshit, SK. (2003). Developments in industrially important thermostable enzymes: a review. Bioresour. Technol. 89:17-34.
  • Hasan, F., Shah, AA. and Hameed, A. (2006). Industrial applications of microbial lipases, Enzyme Microb. Technol. 39 (2):235-251.
  • Hatzinikolaou, D., Macris, JB., Christakopoulos, P., Kekos, D., Kolisis, FN. and Fountoukidis, G. (1996). Production and Partial Characterization of Extracellular Lipase from Aspergillus niger. Biotechnol. Lett. 18:547-552.
  • Hou, CT. (1997). Characterization of New Yeast Lipases. J. Am. Oil Chem. Soc. 74 (11):1391-1394.
  • Jaeger, KE. and Eggert T. (2002). Lipases for biotechnology. Curr. Opin. Biotech. 13:390-397.
  • Joseph, B., Ramteke, PW. and Thomas, G. (2008). Cold active microbial lipases: some hot issues and recent developments. Biotechnol. Adv. 26:457-470.
  • Kamzolova, SV., Morgunov, IG., Aurich, A., Perevoznikova, OA., Shishkanova, NV., Stottmeister, U., and Finogenova, TV. (2005). Lipase Secretion and Citric Acid Production in Yarrowia lipolytica Yeast Grown on Animal and Vegetable Fat. Food Technol. Biotechnol. 43 (2):113-122.
  • Rahman, RNZRA., Salleh, AB. and Basri, M. (2006). Chapter 1, Lipases: Introduction. In: Salleh A.B. et al. (ed) New Lipases and Proteases, Nova Science Publishers, Inc. pp13.
  • Rajendran, A. and Thangavelu, V. (2007). Optimization of medium composition for lipase production by Candida rugosa NCIM 3462 using response surface methodology. Can. J. Microbiol. 53:643-655.
  • Sharma, R., Chisti, Y. and Banerjee, UC. (2001). Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19:627–662.
  • Sugihara, A, Tani, T. and Tominaga, Y. (1991). Purification and characterization of a novel thermostable lipase from Bacillus sp., J. Biochem. 109:211-216.
  • Treichel, H., Oliveira, D., Mazutti, MA., Luccio, MD. and Oliveira, JV. (2010). A Review on Microbial Lipases Production. Food and Bioprocess Technology. 3:182-196.
  • Vakhlu, J. and Kour, A. (2006). Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron. J. Biotechnol. 9 (1):69-85.
  • Yu, XW., Xua Y. and Xiao, R. (2016). Lipases from the genus Rhizopus: Characteristics, expression, protein engineering and application. Prog. Lipid Res. 64:57-68.
There are 23 citations in total.

Details

Primary Language English
Journal Section RESEARCH ARTICLE
Authors

Özgür Kebabcı 0000-0002-9404-747X

Nilüfer Cihangir 0000-0002-0830-635X

Publication Date April 28, 2022
Published in Issue Year 2022 Volume: 13 Issue: 1

Cite

APA Kebabcı, Ö., & Cihangir, N. (2022). A Novel Yeast Isolated From Olive Mill Waste Candida tropicalis; Optimization of Medium Composition For Lipase Production. Mantar Dergisi, 13(1), 8-14. https://doi.org/10.30708/mantar.992551

The works submitted to our journals are first judged grammatically. After this phase, articles are sent two reviewers. If necessary, the third reviewer is assessed. In the publication of works, a decision is made by evaluating the level of contribution to science and readers within the criteria specified in the writing rules. Reviewers are requested to submit their assessments within 30 days at the latest. The reviewers' evaluations and the answers to these evaluations are reviewed by the editor and it is decided whether the work will be published or not.

International Peer Reviewed Journal

The journal doesn’t have APC or any submission charges

Creative Commons Lisansı
This work is licensed under a Creative Commons Attribution 4.0 License