Review
BibTex RIS Cite

Aljinatın biyomedikal alanlarda kullanımı

Year 2022, Volume: 4 Issue: 1, 91 - 99, 30.06.2022
https://doi.org/10.51756/marlife.1084547

Abstract

Aljinat, biyouyumluluk ve jelasyon kolaylığı gibi elverişli özelliklerinden dolayı biyomedikal, farmasötik, mühendislik gibi birçok uygulama alanlarına kolayca entegre edilebilen bir biyomalzemedir. Aljinat polimerleri, farmasötik tabanlı birçok uygulamada, doku mühendisliği (dokulardaki hücre dışı matrislere yapısal benzerliği koruması) uygulamaları kapsamında kullanılmaktadır. Bu derleme çalışmasında, aljinat, kimyasal yapısı, genel özellikleri, aljinat kaynakları morfolojik özellikleri, ekstraksiyon yöntemleri, özellikle biyomedikal alanda kullanımı hakkında bilgiler verilmesi amaçlanmıştır.

References

  • Amadori, S., Torricelli, P., Panzavolta, S., Parrilli, A., Fini, M. & Bigi, A. (2015). Highly porous gelatin reinforced 3D scaffolds for articular cartilage regeneration. Macromolecular Bioscience, 15: 941-952. https://doi.org/10.1002/mabi.201500014
  • Andersen, T., Strand, B. L., Formo, K., Alsberg, E. & Christensen, B.E. (2012). Alginates as Biomaterials in Tissue Engineering. In Carbohydrate Chemistry: Chemical and Biological Approaches, 37: 227-258. https://doi.org/10.1039/9781849732765-00227
  • Annabi, N., Nichol, J. W. & Zhong, X. (2010). Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Engineering Part B: Reviews, 16: 371-383. https://doi.org/10.1089/ten.TEB.2009.0639
  • Bidarra, S. J., Barrias, C. C., Barbosa, M. A., Soares, R. & Granja, P. L. (2010). Immobilization of human mesenchymal stem cells within RGD-grafted alginate microspheres and assessment of their angiogenic potential. Biomacromolecules, 11: 1956–64. https://doi.org/10.1021/bm100264a
  • Boateng, J.S., Matthews, K. H., Stevens, H.N.E. & Eccleston, G.M. (2008). Wound healing dressings and drug delivery systems: A review. Journal of Pharmaceutical Sciences, 97: 2892-923. https://doi.org/10.1002/jps.21210
  • Boontheekul, T., Kong, H. J. & Mooney, D. J. (2005). Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials, 26: 2455-2465. https://doi.org/10.1016/j.biomaterials.2004.06.044
  • Bouhadir, K. H., Alsberg, E. & Mooney, D. J. (2001). Hydrogels for combination delivery of antineoplastic agents. Biomaterials, 22: 2625-2633. https://doi.org/10.1016/s0142-9612(01)00003-5
  • Chang, S. C. N., Rowley, J. A., Tobias, G., Genes, N. G., Roy, A. K., Mooney, D. J., Vacanti, C. A. & Bonassar, L. J. (2001). Injection molding of chondrocyte/alginate constructs in the shape of facial implants. Journal of Biomedical Materials Research, 55: 503-511. https://doi.org/10.1002/1097-4636(20010615)55:4<503::AID-JBM1043>3.0.CO;2-S
  • Chang, S. C. N., Tobias, G., Roy, A. K., Vacanti, C. A. & Bonassar, L. J. (2003). Tissue engineering of autologous cartilage for craniofacial reconstruction by injection molding. Plastic and Reconstructive Surgery, 112: 793-799. https://doi.org/10.1097/01.PRS.0000069711.31021.94
  • Chater, P. I., Wilcox, M. D., Brownlee, I. A., & Pearson, J. P. (2015). Alginate as a protease inhibitor in vitro and in a model gut system; selective inhibition of pepsin but not trypsin. Carbohydrate Polymers, 131: 142-151. https://doi.org/10.1016/j.carbpol.2015.05.062
  • Chu, T. M., Orton, D. G., Hollister, S. J., Feinberg, S. E. & Halloran, J. W. (2002). Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials, 23: 1283-1293. https://doi.org/10.1016/S0142-9612(01)00243-5
  • Coluccino, L., Stagnaro, P., Vassalli, M., & Scaglione, S. (2016). Bioactive TGF-β1/HA alginate-based scaffolds for osteochondral tissue repair: design, realization and multilevel characterization. Journal of Applied Biomaterials & Functional Materials, 14(1): 42-52. https://doi.org/10.5301/jabfm.5000249
  • Draget, K. I., Smidsrød, O., & Skjåk-Bræk, G. (2005). Alginates from algae. In: Polysaccharides and polyamides in the food industry: properties, production, and patents, 1-30.
  • Eming, S.A., Martin, P. & Tomic-Canic, M. (2014). Wound repair and regeneration: Mechanisms, signaling, and translation. Science Translational Medicine, 6: 265-266. https://doi.org/10.1126/scitranslmed.3009337
  • Eslahi, N., Abdorahim, M. & Simchi, A. (2016). Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions. Biomacromolecules, 17(11): 3441-3463. https://doi.org/10.1021/acs.biomac.6b01235
  • Fischbach, C., Kong, H. J., Hsiong, S. X., Evangelista, M. B., Yuen, W., Mooney D. J. (2009). Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proceedings of the National Academy of Sciences, 106: 399-404. https://doi.org/10.1073/pnas.0808932106
  • Florczyk, S. J., Kim, D. J., Wood, D. L. & Zhang, M. (2011). Influence of processingparameters on pore structure of 3D porous chitosan-alginate polyelectrolytecomplex scaffolds. Journal of Biomedical Materials Research Part A, 98(A): 614–620. https://doi.org/10.1002/jbm.a.33153
  • Frykberg, R. G. & Banks, J. (2015). Challenges in the treatment of chronic wounds. Advances in Wound Care (New Rochelle), 4: 560-582. https://doi.org/10.1002/jbm.a.33153
  • George, M., Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs. Journal of Controlled Release, 114: 1-14. https://doi.org/10.1016/j.jconrel.2006.04.017
  • Gevaert, M. (2012). Engineering 3D tissue systems to better mimic human biology. Bridge, 42: 48-55. Gombotz, W. R. & Wee, S. F. (1998). Protein release from alginate matrices. Advanced Drug Delivery Reviews, 31: 267-285. https://doi.org/10.1016/s0169-409x(97)00124-5
  • Guo, S. A. & DiPietro, L. A. (2010). Factors affecting wound healing. Journal of Dental Research, 89: 219-229. https://doi.org/10.1177/0022034509359125
  • Guarino, V. (2018). Alginate processing routes to fabricate bioinspired platforms for tissue engineering and drug delivery. Alginates and Their Biomedical Applications, 101-120. https://doi.org/10.1007/978-981-10-6910-9_4
  • Haug, A. (1959). Fractionation of alginic acid. Acta Chemica Scandinavica, 13: 601-603. https://doi.org/10.1002/pol.1962.1206016927
  • Haugstad, K. E., Hati, A. G. & Nordgard C. T. (2015). Direct determination of chitosan-mucin interactions using a singlemolecule strategy: comparison to alginate-mucin interactions. Polymers, 7: 161-185. https://doi.org/10.3390/polym7020161
  • Hsiong, S. X., Carampin, P., Kong, H. J., Lee, K. Y. & Mooney, D. J. (2008). Differentiation stage alters matrix control of stem cells. Journal of Biomedical Materials Research Part A, 85: 145-56. https://doi.org/10.1002/jbm.a.31521
  • Huebsch, N. & Mooney, D. J. (2009). Inspiration and Application in the Evolution of Biomaterials. Nature, 462: 426-432. https://doi.org/10.1038/nature08601
  • Jeon, O., Bouhadir, K. H., Mansour, J. M. & Alsberg, E. (2009). Photocrosslinked Alginate Hydrogels with Tunable Biodegradation Rates and Mechanical Properties. Biomaterials, 30: 2724-2734. https://doi.org/10.1016/j.biomaterials.2009.01.034
  • Khan, F., & Ahmad, S. R. (2013). Polysaccharides and their derivatives for versatile tissue engineering application. Macromolecular Bioscience, 13(4): 395-421. https://doi.org/10.1002/mabi.201200409
  • Khong, T. T., Aarstad, O .A., Skjåk-Bræk, G., Draget, K. I., Vårum, K .J. (2013). Gelling concept combining chitosan and alginate proof of principle. Biomacromolecules, 14: 2765-2771. https://doi.org/10.1021/bm400610b
  • Kong, H. J., Lee, K. Y. & Mooney, D. J. (2002). Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration. Polymer, 43: 6239-6246. https://doi.org/10.1016/S0032-3861(02)00559-1
  • Kuo, C. K. & Ma, P. X. (2001). Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials, 22: 511-521. https://doi.org/10.1016/s0142-9612(00)00201-5
  • Langer, R. & Vacanti, J. P. (1993). Tissue engineering. Science, 260: 920-926. https://doi.org/10.1126/science.8493529
  • Lee, K. Y. & Mooney, D. J. (2001). Hydrogels for tissue engineering. Chemical Reviews, 101: 1869-1879. https://doi.org/10.1021/cr000108x
  • Lee, K.Y., Peters, M.C. & Mooney, D.J. (2003). Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. Journal of Controlled Release, 87: 49-56. https://doi.org/10.1016/s0168-3659(02)00349-8
  • Lee, J., Cuddihy, M. J. & Kotov, N. A. (2008). Three-dimensional cell culture matrices: State of the Art. Tissue Engineering, 14: 61-86. https://doi.org/10.1089/teb.2007.0150
  • Lee, S. H. & Shin, H. (2007). Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Advanced Drug Delivery Reviews, 59: 339-359. https://doi.org/10.1016/j.addr.2007.03.016
  • LeRoux, M. A., Guilak, F. & Setton, L. A. (1999). Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. Journal of Biomedical Materials Research, 47: 46-53. https://doi.org/10.1002/(SICI)1097-4636(199910)47:1<46::AID-JBM6>3.0.CO;2-N
  • Li, Z., Ramay, H.R., Hauch, K.D., Xiao, D. & Zhang, M. (2005). Chitosan alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 26: 3919-3928. https://doi.org/10.1016/j.biomaterials.2004.09.062
  • Liu, H., Lee, Y. W., & Dean, M. (1998). Re-expression of differentiated proteoglycan phenotype by dedifferentiated human chondrocytes during culture in alginate beads. Biochimica et Biophysica Acta (BBA)-General Subjects, 1425(3): 505-515. https://doi.org/10.1016/S0304-4165(98)00105-6
  • Liu, X., Ma, X. (2004). Polymeric scaffolds for bone tissue engineering. Annals of Biomedical Engineering, 32: 477-486. https://doi.org/10.1023/B:ABME.0000017544.36001.8e
  • Liu, Z., Li, J., Nie, S., Liu, H., Ding, P. & Pan, W. (2006). Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. International Journal of Pharmaceutics, 315(1-2): 12-17. https://doi.org/10.1016/j.ijpharm.2006.01.029
  • Maiti, S., Singha, K., Ray, S., Dey, P. & Sa, B. (2009). Adipic acid dihydrazide treated partially oxidized alginate beads for sustained oral delivery of flurbiprofen. Pharmaceutical Development and Technology, 14: 461-470.https://doi.org/10.1080/10837450802712658
  • Marsich, E., Bellomo, F., Turco, G., Travan, A., Donati, I., Paoletti, S. (2013). Nanocomposite scaffolds for bone tissue engineering containing silver nanoparticles: preparation, characterization and biological properties. Journal of Materials Science. Materials in Medicine, 24: 1799-1807. https://doi.org/10.1007/s10856-013-4923-4
  • Moe, S. T. (1995). Alginates. Food polysaccharides and their applications, 245-286. Muzzarelli, R., El Mehtedi, M., Bottegoni, C., Aquili, A.& Gigante, A. (2015). Genipin crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Marine Drugs, 13: 7314–7338. https://doi.org/10.3390/md13127068
  • Mythri, G., Kavitha, K., Kumar, M. R. & Singh, S. D. (2011). Novel mucoadhesive polymers-a review. Journal of Applied Pharmaceutical Science, 1: 37-42.
  • Palumbo, F.S., Fiorica, C., Di Stefano, M., Pitarresi, G., Gulino, A., Agnello, S. & Giammona, G. (2015). In situ forming hydrogels of hyaluronic acid and ınulin derivatives for cartilage regeneration. Carbohydrate Polymers, 122: 408–416. https://doi.org/10.1016/j.carbpol.2014.11.002
  • Parmar, P. A., Chow, L. W., StPierre, J. P., Horejs, C. M., Peng, Y. Y., Werkmeister, J. A., Ramshaw, J. A. M., Stevens, M. M. (2015). Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials, 54: 213–225. https://doi.org/10.1016/j.biomaterials.2015.02.079
  • Prabhakar, A., Lynch, A. P. & Ahearne, M. (2016). Self-assembled ınfrapatellar fat-pad progenitor cells on a polye-caprolactone film for cartilage regeneration. Artificial Organs, 40: 376-384. https://doi.org/10.1111/aor.12565
  • Qin, Y. (2008). Alginate fibres: an overview of the production processes and applications in wound management. Polymer International, 57: 171-180. https://doi.org/10.1002/pi.2296
  • Queen, D., Orsted, H., Sanada, H. & Sussman G. (2004). A dressing history. International Wound Journal, 1: 59-77. https://doi.org/10.1111/j.1742-4801.2004.0009.x
  • Ratner, B. D. & Bryant, S. J. (2004). Biomaterials: where we have been and where we are going? Annual Review of Biomedical Engineering, 6: 41-75. https://doi.org/10.1146/annurev.bioeng.6.040803.140027
  • Remminghorst, U. & Rehm, B. H. A. (2006). Bacterial alginates: from biosynthesis to applications. Biotechnology Letters, 28, 1701-1712. https://doi.org/10.1007/s10529-006-9156-x
  • Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 57: 397-430. https://doi.org/10.1002/pi.2378
  • Rowley, J. A., Madlambayan, G. & Mooney, D. J. (1999). Alginate hydrogels as synthetic materials. Biomaterials, 20: 45-53. https://doi.org/10.1016/s0142-9612(98)00107-0
  • Sapir, Y., Kryukov, O. & Cohen, S. (2011). Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials, 32: 1838-1847. https://doi.org/10.1016/j.biomaterials.2010.11.008
  • Sachan, K. N., Pushkar, S., Jha, A. & Bhattcharya, A. (2009). Sodium alginate: the wonder polymer for controlled drug delivery. Journal of Pharmacy Research, 2:(8) 1191-1199.
  • Sajesh, K. M., Jayakumar, R., Nair, S. V. & Chennazhi, K. P. (2013). Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 62: 465-471. https://doi.org/10.1016/j.ijbiomac.2013.09.028
  • Sarker, B., Hum, J., Nazhat, S. N., Boccaccini, A. R. (2015). Combining collagen and bioactive glasses for bone tissue engineering: a review. Advanced Healthcare Materials, 4: 176-194. https://doi.org/10.1002/adhm.201400302
  • Sculean, A., Auschill, T. M., Donos, N., Brecx, M. & Arweiler, N. B. (2001). Effect of an enamel matrix protein on ex vivo dental plaque vitality. Journal of Clinical Periodontology, 28: 1074-1078. https://doi.org/10.1111/j.1600-051X.2001.281113.x
  • Sergeeva, A., Vikulina, A. S. & Volodkin, D. (2019). Porous alginate scaffolds assembled using vaterite CaCO3 crystals. Micromachines (Basel), 10(6): 357. https://doi.org/ 10.3390/mi10060357
  • Shapiro, L. & Cohen, S. (1997). Novel alginate sponges for cell culture and transplantation. Biomaterials, 18: 583-590. https://doi.org/10.1016/S0142-9612(96)00181-0
  • Silva, E. A. & Mooney, D. J. (2010). Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials, 31: 1235-1241. https://doi.org/10.1016/j.biomaterials.2009.10.052
  • Sun, J. & Tan, H. (2013). Alginate-based biomaterials for regenerative medicine applications. Materials (Basel), 6: 1285-1309. https://doi.org/10.3390/ma6041285
  • Sutherland, I.W. (1991). Alginates, in: D. Byrom (Ed.), Biomaterials; Novel Materials from Biological Sources (pp. 309-331). Stockton: New York.
  • Suzuki, T., Yamaguchi, T., & Ishida, M. (1998). Immobilization of Prototheca zopfü in calcium-alginate beads for the degradation of hydrocarbons. Process Biochemistry, 33(5): 541-546. https://doi.org/10.1016/S0032-9592(98)00022-3
  • Szekalska, M., Puciłowska, A., Szymanska, E., Ciosek, P. & Winnicka, K. (2016). Alginate: Current use and future perspectives in pharmaceutical and biomedical applications. International Journal of Polymer Science, 8: 1–17. https://doi.org/ 10.1155/2016/7697031
  • Taylor, C., Pearson, J.P., Draget, K.I., Dettmar, P.W. & Smidsrod, O. (2005). Rheological characterisation of mixed gels of mucin and alginate. Carbohydrate Polymers, 59: 189-195. https://doi.org/10.1016/j.carbpol.2004.09.009
  • Tonnesen, H. H. & Karlsen, J. (2002). Alginate in drug delivery systems. Drug Development and Industrial Pharmacy, 28: 621-630. https://doi.org/10.1081/DDC-120003853
  • Topuz, F., Henke, A., Richtering, W. & Groll, J. (2012). Magnesium ions and alginate do form hydrogels: A rheological study. Soft Matter, 8: 4877-4881. https://doi.org/10.1039/C2SM07465F
  • Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K. H. & Kim, S. K. (2015). Alginate composites for bone tissue engineering: a review. International Journal of Biological Macromolecules, 72: 269-281. https://doi.org/10.1039/C2SM07465F
  • Wang, L., Shelton, R.M., Cooper, P.R., Lawson, M., Triffitt, J.T. & Barralet, J.E. (2003). Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials, 24: 3475-3481. https://doi.org/10.1016/s0142-9612(03)00167-4
  • Wang, Y., Yang, C., Chen, X., Zhao, N. (2006). Development and characterization of novel biomimetic composite scaffolds based on bioglass-collagen-hyaluronic acid phosphatidylserine for tissue engineering applications. Macromolecular Materials and Engineering, 291: 254-262. https://doi.org/10.1002/mame.200500381
  • Wang, J., Zhang, F., Tsang, W.P., Wan, C. & Wu, C. (2017). Fabrication of ınjectable high strength hydrogel based on 4-arm star peg for cartilage tissue engineering. Biomaterials, 120: 11-21. https://doi.org/10.1016/j.biomaterials.2016.12.015
  • Williams, D. F. (2009). On the nature of biomaterials. Biomaterials, 30: 5897-5909. https://doi.org/10.1016/j.biomaterials.2009.07.027
  • Xu, S. Y., Huang, X. & Cheong, K. L. (2017). Recent advances in marine algae polysaccharides: ısolation, structure ande activities. Marine Drugs, 15: 388. https://doi.org/10.3390/md15120388
  • Yin, M., Xu, F., Ding, H., Tan, F., Song, F. & Wang, J. (2015). Incorporation of magnesium ions into photo-crosslinked alginate hydrogel enhanced cell adhesion ability. Journal of Tissue Engineering and Regenerative Medicine, 9: 1088-1092. https://doi.org/10.1002/term.2011
  • Zahedi, P., Rezaeian, I., Ranaei-Siadat, S. O., Jafari, S. H. & Supaphol, P. (2010). A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polymers for Advanced Technologies, 21: 77-95. https://doi.org/10.1002/pat.1625
  • Zmora, S., Glicklis, R. & Cohen, S. (2002). Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials, 23: 4087-4094. https://doi.org/10.1016/S0142-9612(02)00146-1

Alginate in usage biomedical areas

Year 2022, Volume: 4 Issue: 1, 91 - 99, 30.06.2022
https://doi.org/10.51756/marlife.1084547

Abstract

Alginate is a biomaterial that can be easily integrated into many application areas such as biomedical, pharmaceutical, engineering, due to its favorable properties such as biocompatibility and ease of gelation. Alginate polymers are used in tissue engineering (preserving structural similarity in tissues to extracellular matrices) applications in many pharmaceutical-based applications. In this review study, it is aimed to give information about alginate, its chemical structure, general properties, morphological properties of alginate sources, extraction methods, especially its use in the biomedical field.

References

  • Amadori, S., Torricelli, P., Panzavolta, S., Parrilli, A., Fini, M. & Bigi, A. (2015). Highly porous gelatin reinforced 3D scaffolds for articular cartilage regeneration. Macromolecular Bioscience, 15: 941-952. https://doi.org/10.1002/mabi.201500014
  • Andersen, T., Strand, B. L., Formo, K., Alsberg, E. & Christensen, B.E. (2012). Alginates as Biomaterials in Tissue Engineering. In Carbohydrate Chemistry: Chemical and Biological Approaches, 37: 227-258. https://doi.org/10.1039/9781849732765-00227
  • Annabi, N., Nichol, J. W. & Zhong, X. (2010). Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Engineering Part B: Reviews, 16: 371-383. https://doi.org/10.1089/ten.TEB.2009.0639
  • Bidarra, S. J., Barrias, C. C., Barbosa, M. A., Soares, R. & Granja, P. L. (2010). Immobilization of human mesenchymal stem cells within RGD-grafted alginate microspheres and assessment of their angiogenic potential. Biomacromolecules, 11: 1956–64. https://doi.org/10.1021/bm100264a
  • Boateng, J.S., Matthews, K. H., Stevens, H.N.E. & Eccleston, G.M. (2008). Wound healing dressings and drug delivery systems: A review. Journal of Pharmaceutical Sciences, 97: 2892-923. https://doi.org/10.1002/jps.21210
  • Boontheekul, T., Kong, H. J. & Mooney, D. J. (2005). Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials, 26: 2455-2465. https://doi.org/10.1016/j.biomaterials.2004.06.044
  • Bouhadir, K. H., Alsberg, E. & Mooney, D. J. (2001). Hydrogels for combination delivery of antineoplastic agents. Biomaterials, 22: 2625-2633. https://doi.org/10.1016/s0142-9612(01)00003-5
  • Chang, S. C. N., Rowley, J. A., Tobias, G., Genes, N. G., Roy, A. K., Mooney, D. J., Vacanti, C. A. & Bonassar, L. J. (2001). Injection molding of chondrocyte/alginate constructs in the shape of facial implants. Journal of Biomedical Materials Research, 55: 503-511. https://doi.org/10.1002/1097-4636(20010615)55:4<503::AID-JBM1043>3.0.CO;2-S
  • Chang, S. C. N., Tobias, G., Roy, A. K., Vacanti, C. A. & Bonassar, L. J. (2003). Tissue engineering of autologous cartilage for craniofacial reconstruction by injection molding. Plastic and Reconstructive Surgery, 112: 793-799. https://doi.org/10.1097/01.PRS.0000069711.31021.94
  • Chater, P. I., Wilcox, M. D., Brownlee, I. A., & Pearson, J. P. (2015). Alginate as a protease inhibitor in vitro and in a model gut system; selective inhibition of pepsin but not trypsin. Carbohydrate Polymers, 131: 142-151. https://doi.org/10.1016/j.carbpol.2015.05.062
  • Chu, T. M., Orton, D. G., Hollister, S. J., Feinberg, S. E. & Halloran, J. W. (2002). Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials, 23: 1283-1293. https://doi.org/10.1016/S0142-9612(01)00243-5
  • Coluccino, L., Stagnaro, P., Vassalli, M., & Scaglione, S. (2016). Bioactive TGF-β1/HA alginate-based scaffolds for osteochondral tissue repair: design, realization and multilevel characterization. Journal of Applied Biomaterials & Functional Materials, 14(1): 42-52. https://doi.org/10.5301/jabfm.5000249
  • Draget, K. I., Smidsrød, O., & Skjåk-Bræk, G. (2005). Alginates from algae. In: Polysaccharides and polyamides in the food industry: properties, production, and patents, 1-30.
  • Eming, S.A., Martin, P. & Tomic-Canic, M. (2014). Wound repair and regeneration: Mechanisms, signaling, and translation. Science Translational Medicine, 6: 265-266. https://doi.org/10.1126/scitranslmed.3009337
  • Eslahi, N., Abdorahim, M. & Simchi, A. (2016). Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions. Biomacromolecules, 17(11): 3441-3463. https://doi.org/10.1021/acs.biomac.6b01235
  • Fischbach, C., Kong, H. J., Hsiong, S. X., Evangelista, M. B., Yuen, W., Mooney D. J. (2009). Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proceedings of the National Academy of Sciences, 106: 399-404. https://doi.org/10.1073/pnas.0808932106
  • Florczyk, S. J., Kim, D. J., Wood, D. L. & Zhang, M. (2011). Influence of processingparameters on pore structure of 3D porous chitosan-alginate polyelectrolytecomplex scaffolds. Journal of Biomedical Materials Research Part A, 98(A): 614–620. https://doi.org/10.1002/jbm.a.33153
  • Frykberg, R. G. & Banks, J. (2015). Challenges in the treatment of chronic wounds. Advances in Wound Care (New Rochelle), 4: 560-582. https://doi.org/10.1002/jbm.a.33153
  • George, M., Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs. Journal of Controlled Release, 114: 1-14. https://doi.org/10.1016/j.jconrel.2006.04.017
  • Gevaert, M. (2012). Engineering 3D tissue systems to better mimic human biology. Bridge, 42: 48-55. Gombotz, W. R. & Wee, S. F. (1998). Protein release from alginate matrices. Advanced Drug Delivery Reviews, 31: 267-285. https://doi.org/10.1016/s0169-409x(97)00124-5
  • Guo, S. A. & DiPietro, L. A. (2010). Factors affecting wound healing. Journal of Dental Research, 89: 219-229. https://doi.org/10.1177/0022034509359125
  • Guarino, V. (2018). Alginate processing routes to fabricate bioinspired platforms for tissue engineering and drug delivery. Alginates and Their Biomedical Applications, 101-120. https://doi.org/10.1007/978-981-10-6910-9_4
  • Haug, A. (1959). Fractionation of alginic acid. Acta Chemica Scandinavica, 13: 601-603. https://doi.org/10.1002/pol.1962.1206016927
  • Haugstad, K. E., Hati, A. G. & Nordgard C. T. (2015). Direct determination of chitosan-mucin interactions using a singlemolecule strategy: comparison to alginate-mucin interactions. Polymers, 7: 161-185. https://doi.org/10.3390/polym7020161
  • Hsiong, S. X., Carampin, P., Kong, H. J., Lee, K. Y. & Mooney, D. J. (2008). Differentiation stage alters matrix control of stem cells. Journal of Biomedical Materials Research Part A, 85: 145-56. https://doi.org/10.1002/jbm.a.31521
  • Huebsch, N. & Mooney, D. J. (2009). Inspiration and Application in the Evolution of Biomaterials. Nature, 462: 426-432. https://doi.org/10.1038/nature08601
  • Jeon, O., Bouhadir, K. H., Mansour, J. M. & Alsberg, E. (2009). Photocrosslinked Alginate Hydrogels with Tunable Biodegradation Rates and Mechanical Properties. Biomaterials, 30: 2724-2734. https://doi.org/10.1016/j.biomaterials.2009.01.034
  • Khan, F., & Ahmad, S. R. (2013). Polysaccharides and their derivatives for versatile tissue engineering application. Macromolecular Bioscience, 13(4): 395-421. https://doi.org/10.1002/mabi.201200409
  • Khong, T. T., Aarstad, O .A., Skjåk-Bræk, G., Draget, K. I., Vårum, K .J. (2013). Gelling concept combining chitosan and alginate proof of principle. Biomacromolecules, 14: 2765-2771. https://doi.org/10.1021/bm400610b
  • Kong, H. J., Lee, K. Y. & Mooney, D. J. (2002). Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration. Polymer, 43: 6239-6246. https://doi.org/10.1016/S0032-3861(02)00559-1
  • Kuo, C. K. & Ma, P. X. (2001). Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials, 22: 511-521. https://doi.org/10.1016/s0142-9612(00)00201-5
  • Langer, R. & Vacanti, J. P. (1993). Tissue engineering. Science, 260: 920-926. https://doi.org/10.1126/science.8493529
  • Lee, K. Y. & Mooney, D. J. (2001). Hydrogels for tissue engineering. Chemical Reviews, 101: 1869-1879. https://doi.org/10.1021/cr000108x
  • Lee, K.Y., Peters, M.C. & Mooney, D.J. (2003). Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. Journal of Controlled Release, 87: 49-56. https://doi.org/10.1016/s0168-3659(02)00349-8
  • Lee, J., Cuddihy, M. J. & Kotov, N. A. (2008). Three-dimensional cell culture matrices: State of the Art. Tissue Engineering, 14: 61-86. https://doi.org/10.1089/teb.2007.0150
  • Lee, S. H. & Shin, H. (2007). Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Advanced Drug Delivery Reviews, 59: 339-359. https://doi.org/10.1016/j.addr.2007.03.016
  • LeRoux, M. A., Guilak, F. & Setton, L. A. (1999). Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. Journal of Biomedical Materials Research, 47: 46-53. https://doi.org/10.1002/(SICI)1097-4636(199910)47:1<46::AID-JBM6>3.0.CO;2-N
  • Li, Z., Ramay, H.R., Hauch, K.D., Xiao, D. & Zhang, M. (2005). Chitosan alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 26: 3919-3928. https://doi.org/10.1016/j.biomaterials.2004.09.062
  • Liu, H., Lee, Y. W., & Dean, M. (1998). Re-expression of differentiated proteoglycan phenotype by dedifferentiated human chondrocytes during culture in alginate beads. Biochimica et Biophysica Acta (BBA)-General Subjects, 1425(3): 505-515. https://doi.org/10.1016/S0304-4165(98)00105-6
  • Liu, X., Ma, X. (2004). Polymeric scaffolds for bone tissue engineering. Annals of Biomedical Engineering, 32: 477-486. https://doi.org/10.1023/B:ABME.0000017544.36001.8e
  • Liu, Z., Li, J., Nie, S., Liu, H., Ding, P. & Pan, W. (2006). Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. International Journal of Pharmaceutics, 315(1-2): 12-17. https://doi.org/10.1016/j.ijpharm.2006.01.029
  • Maiti, S., Singha, K., Ray, S., Dey, P. & Sa, B. (2009). Adipic acid dihydrazide treated partially oxidized alginate beads for sustained oral delivery of flurbiprofen. Pharmaceutical Development and Technology, 14: 461-470.https://doi.org/10.1080/10837450802712658
  • Marsich, E., Bellomo, F., Turco, G., Travan, A., Donati, I., Paoletti, S. (2013). Nanocomposite scaffolds for bone tissue engineering containing silver nanoparticles: preparation, characterization and biological properties. Journal of Materials Science. Materials in Medicine, 24: 1799-1807. https://doi.org/10.1007/s10856-013-4923-4
  • Moe, S. T. (1995). Alginates. Food polysaccharides and their applications, 245-286. Muzzarelli, R., El Mehtedi, M., Bottegoni, C., Aquili, A.& Gigante, A. (2015). Genipin crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Marine Drugs, 13: 7314–7338. https://doi.org/10.3390/md13127068
  • Mythri, G., Kavitha, K., Kumar, M. R. & Singh, S. D. (2011). Novel mucoadhesive polymers-a review. Journal of Applied Pharmaceutical Science, 1: 37-42.
  • Palumbo, F.S., Fiorica, C., Di Stefano, M., Pitarresi, G., Gulino, A., Agnello, S. & Giammona, G. (2015). In situ forming hydrogels of hyaluronic acid and ınulin derivatives for cartilage regeneration. Carbohydrate Polymers, 122: 408–416. https://doi.org/10.1016/j.carbpol.2014.11.002
  • Parmar, P. A., Chow, L. W., StPierre, J. P., Horejs, C. M., Peng, Y. Y., Werkmeister, J. A., Ramshaw, J. A. M., Stevens, M. M. (2015). Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials, 54: 213–225. https://doi.org/10.1016/j.biomaterials.2015.02.079
  • Prabhakar, A., Lynch, A. P. & Ahearne, M. (2016). Self-assembled ınfrapatellar fat-pad progenitor cells on a polye-caprolactone film for cartilage regeneration. Artificial Organs, 40: 376-384. https://doi.org/10.1111/aor.12565
  • Qin, Y. (2008). Alginate fibres: an overview of the production processes and applications in wound management. Polymer International, 57: 171-180. https://doi.org/10.1002/pi.2296
  • Queen, D., Orsted, H., Sanada, H. & Sussman G. (2004). A dressing history. International Wound Journal, 1: 59-77. https://doi.org/10.1111/j.1742-4801.2004.0009.x
  • Ratner, B. D. & Bryant, S. J. (2004). Biomaterials: where we have been and where we are going? Annual Review of Biomedical Engineering, 6: 41-75. https://doi.org/10.1146/annurev.bioeng.6.040803.140027
  • Remminghorst, U. & Rehm, B. H. A. (2006). Bacterial alginates: from biosynthesis to applications. Biotechnology Letters, 28, 1701-1712. https://doi.org/10.1007/s10529-006-9156-x
  • Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 57: 397-430. https://doi.org/10.1002/pi.2378
  • Rowley, J. A., Madlambayan, G. & Mooney, D. J. (1999). Alginate hydrogels as synthetic materials. Biomaterials, 20: 45-53. https://doi.org/10.1016/s0142-9612(98)00107-0
  • Sapir, Y., Kryukov, O. & Cohen, S. (2011). Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials, 32: 1838-1847. https://doi.org/10.1016/j.biomaterials.2010.11.008
  • Sachan, K. N., Pushkar, S., Jha, A. & Bhattcharya, A. (2009). Sodium alginate: the wonder polymer for controlled drug delivery. Journal of Pharmacy Research, 2:(8) 1191-1199.
  • Sajesh, K. M., Jayakumar, R., Nair, S. V. & Chennazhi, K. P. (2013). Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 62: 465-471. https://doi.org/10.1016/j.ijbiomac.2013.09.028
  • Sarker, B., Hum, J., Nazhat, S. N., Boccaccini, A. R. (2015). Combining collagen and bioactive glasses for bone tissue engineering: a review. Advanced Healthcare Materials, 4: 176-194. https://doi.org/10.1002/adhm.201400302
  • Sculean, A., Auschill, T. M., Donos, N., Brecx, M. & Arweiler, N. B. (2001). Effect of an enamel matrix protein on ex vivo dental plaque vitality. Journal of Clinical Periodontology, 28: 1074-1078. https://doi.org/10.1111/j.1600-051X.2001.281113.x
  • Sergeeva, A., Vikulina, A. S. & Volodkin, D. (2019). Porous alginate scaffolds assembled using vaterite CaCO3 crystals. Micromachines (Basel), 10(6): 357. https://doi.org/ 10.3390/mi10060357
  • Shapiro, L. & Cohen, S. (1997). Novel alginate sponges for cell culture and transplantation. Biomaterials, 18: 583-590. https://doi.org/10.1016/S0142-9612(96)00181-0
  • Silva, E. A. & Mooney, D. J. (2010). Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials, 31: 1235-1241. https://doi.org/10.1016/j.biomaterials.2009.10.052
  • Sun, J. & Tan, H. (2013). Alginate-based biomaterials for regenerative medicine applications. Materials (Basel), 6: 1285-1309. https://doi.org/10.3390/ma6041285
  • Sutherland, I.W. (1991). Alginates, in: D. Byrom (Ed.), Biomaterials; Novel Materials from Biological Sources (pp. 309-331). Stockton: New York.
  • Suzuki, T., Yamaguchi, T., & Ishida, M. (1998). Immobilization of Prototheca zopfü in calcium-alginate beads for the degradation of hydrocarbons. Process Biochemistry, 33(5): 541-546. https://doi.org/10.1016/S0032-9592(98)00022-3
  • Szekalska, M., Puciłowska, A., Szymanska, E., Ciosek, P. & Winnicka, K. (2016). Alginate: Current use and future perspectives in pharmaceutical and biomedical applications. International Journal of Polymer Science, 8: 1–17. https://doi.org/ 10.1155/2016/7697031
  • Taylor, C., Pearson, J.P., Draget, K.I., Dettmar, P.W. & Smidsrod, O. (2005). Rheological characterisation of mixed gels of mucin and alginate. Carbohydrate Polymers, 59: 189-195. https://doi.org/10.1016/j.carbpol.2004.09.009
  • Tonnesen, H. H. & Karlsen, J. (2002). Alginate in drug delivery systems. Drug Development and Industrial Pharmacy, 28: 621-630. https://doi.org/10.1081/DDC-120003853
  • Topuz, F., Henke, A., Richtering, W. & Groll, J. (2012). Magnesium ions and alginate do form hydrogels: A rheological study. Soft Matter, 8: 4877-4881. https://doi.org/10.1039/C2SM07465F
  • Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K. H. & Kim, S. K. (2015). Alginate composites for bone tissue engineering: a review. International Journal of Biological Macromolecules, 72: 269-281. https://doi.org/10.1039/C2SM07465F
  • Wang, L., Shelton, R.M., Cooper, P.R., Lawson, M., Triffitt, J.T. & Barralet, J.E. (2003). Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials, 24: 3475-3481. https://doi.org/10.1016/s0142-9612(03)00167-4
  • Wang, Y., Yang, C., Chen, X., Zhao, N. (2006). Development and characterization of novel biomimetic composite scaffolds based on bioglass-collagen-hyaluronic acid phosphatidylserine for tissue engineering applications. Macromolecular Materials and Engineering, 291: 254-262. https://doi.org/10.1002/mame.200500381
  • Wang, J., Zhang, F., Tsang, W.P., Wan, C. & Wu, C. (2017). Fabrication of ınjectable high strength hydrogel based on 4-arm star peg for cartilage tissue engineering. Biomaterials, 120: 11-21. https://doi.org/10.1016/j.biomaterials.2016.12.015
  • Williams, D. F. (2009). On the nature of biomaterials. Biomaterials, 30: 5897-5909. https://doi.org/10.1016/j.biomaterials.2009.07.027
  • Xu, S. Y., Huang, X. & Cheong, K. L. (2017). Recent advances in marine algae polysaccharides: ısolation, structure ande activities. Marine Drugs, 15: 388. https://doi.org/10.3390/md15120388
  • Yin, M., Xu, F., Ding, H., Tan, F., Song, F. & Wang, J. (2015). Incorporation of magnesium ions into photo-crosslinked alginate hydrogel enhanced cell adhesion ability. Journal of Tissue Engineering and Regenerative Medicine, 9: 1088-1092. https://doi.org/10.1002/term.2011
  • Zahedi, P., Rezaeian, I., Ranaei-Siadat, S. O., Jafari, S. H. & Supaphol, P. (2010). A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polymers for Advanced Technologies, 21: 77-95. https://doi.org/10.1002/pat.1625
  • Zmora, S., Glicklis, R. & Cohen, S. (2002). Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials, 23: 4087-4094. https://doi.org/10.1016/S0142-9612(02)00146-1
There are 78 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Review Article
Authors

Sinem Uğur 0000-0003-4309-7415

Erkan Uğurlu 0000-0001-8940-8421

Eyüp İlker Saygılı 0000-0002-0102-4237

Önder Duysak 0000-0002-7484-3102

Selin Sayın 0000-0002-7497-388X

Publication Date June 30, 2022
Submission Date March 8, 2022
Acceptance Date June 20, 2022
Published in Issue Year 2022 Volume: 4 Issue: 1

Cite

APA Uğur, S., Uğurlu, E., Saygılı, E. İ., Duysak, Ö., et al. (2022). Aljinatın biyomedikal alanlarda kullanımı. Marine and Life Sciences, 4(1), 91-99. https://doi.org/10.51756/marlife.1084547

Flag Counter