Karadeniz'den Yakalanan İstavrit, Trachurus trachurus Balıklarında Bulunan Nematod (Hysterothylacium aduncum) İçin Tahmin Modeli
Year 2024,
Volume: 6 Issue: 1, 10 - 16, 30.06.2024
Hijran Yavuzcan
,
Ercüment Genç
,
Doğukan Kaya
,
Bilgenur Harmanşa Yılmaz
Abstract
Hysterothylacium aduncum esas olarak deniz balıklarını etkileyen parazitik bir nematoddur. Balık türlerinde makroparazitlerin agrigasyonundaki heterojenliğe ilişkin bilgiler, avcılığı yapılan deniz balığı türlerini enfekte eden H. aduncum için istavrit (Trachurus trachurus) de dahil olmak üzere hali hazırda sınırlıdır. Bu çalışma, deniz balıklarında makroparazit agregasyonunun daha iyi anlaşılması için H. aduncum'un dağılımındaki heterojenliğin araştırılmasını amaçlamaktadır. Üç yıllık dönem boyunca bir konakçı balık popülasyonunda parazitlerin sıklık dağılımını analiz etmek için Maksimum olasılığı içeren Weibull testleri kullanılmıştır. Parazit H. aduncum'un (üçüncü larva evresi) prevalansı %88, kondisyon faktörü enfekte olmayan balıklarda 1,30∓0,029, enfekte balıklarda 1,12∓0,022 olarak bulunmuştur. İstavrit balığında bulunan H. aduncum varlığında kümelenmiş model gözlenmiştir. Parazit yükü ile balık kondisyon faktörü arasındaki ilişkinin önemli olduğu ve boy-ağırlık uyumunun parazit yükünden etkilendiği görülmüştür. H. aduncum dağılımında ilk kez agregasyon olgusu gözlemlenmiştir ve istavritteki nematod yoğunluğuna ilişkin tahminler yapılmıştır. Büyük bireysel varyasyonlarla ilgili bulgular, bu modelin anlamlı olduğunu ve konak-parazit dinamikleri için dikkate alınması gerektiğini belirtmektedir.
References
- Adroher, F. J., Valero, A., Ruiz-Valero, J., & Iglesias, L. (1996). Larval anisakids (Nematoda: Ascaridoidea) in horse mackerel (Trachurus trachurus) from the fish market in Granada (Spain). Parasitology Research, 82, 253-256. https://doi.org/10.1007/s004360050105
- Adroher-Auroux, F. J., & Benítez-Rodríguez, R. (2021). Hysterothylacium aduncum. In: Sitjà-Bobadilla, A., Bron, J. E., Wiegertjes, G., & Piazzon, M. C. (Eds.), Fish parasites: A handbook of protocols for their isolation, culture and transmission (pp. 311-329). 5m Books Ltd. https://doi.org/10.52517/9781789181531.021
- Amarante, C. F. D., Tassinari, W. D. S., Luque, J. L., & Pereira, M. J. S. (2015). Factors associated with parasite aggregation levels in fishes from Brazil. Revista Brasileira de Parasitologia Veterinária, 24, 174-182. https://doi.org/10.1590/S1984-29612015031
- Amor, N., Farjallah, S., Merella, P., Said, K., & Ben Slimane, B. (2011). Molecular characterization of Hysterothylacium aduncum (Nematoda: Raphidascaridae) from different fish caught off the Tunisian coast based on nuclear ribosomal DNA sequences. Parasitology Research, 109, 1429-1437. https://doi.org/10.1007/s00436-011-2391-7
- Balard, A., Jarquín‐Díaz, V. H., Jost, J., Martincová, I., Ďureje, Ľ., Piálek, J., Macholán, M., Goüy de Bellocq, J., Baird, S. J., & Heitlinger, E. (2020). Intensity of infection with intracellular Eimeria spp. and pinworms is reduced in hybrid mice compared to parental subspecies. Journal of Evolutionary Biology, 33(4), 435-448. https://doi.org/10.1111/jeb.13578
- Barber, I., & Wright, H. A. (2005). Effects of parasites on fish behaviour: Interactions with host physiology. Fish Physiology, 24, 109-149.
- Bush, A. O., Lafferty, K. D., Lotz, J. M., & Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology, 83(4), 575–583. https://doi.org/10.2307/3284227
- Gaba, S., Ginot, V., & Cabaret, J. (2005). Modelling macroparasite aggregation using a nematode-sheep system: the Weibull distribution as an alternative to the negative binomial distribution? Parasitology, 131(3), 393-401. https://doi.org/10.1017/S003118200500764X
- Grear, D. A., & Hudson, P. (2011). The dynamics of macroparasite host-self-infection: a study of the patterns and processes of pinworm (Oxyuridae) aggregation. Parasitology, 138(5), 619-627. https://doi:10.1017/S0031182011000096
- Ismen, A., & Bingel, F. (1999). Nematode infection in the whiting Merlangius merlangus euxinus off Turkish Coast of the Black Sea. Fisheries Research, 42(1-2), 183-189. https://doi.org/10.1016/S0165-7836(99)00022-3
- Klimpel, S., & Rückert, S. (2005). Life cycle strategy of Hysterothylacium aduncum to become the most abundant anisakid fish nematode in the North Sea. Parasitology Research, 97, 141-149. https://doi.org/10.1007/s00436-005-1407-6
- Lester, R. J. G. (2012). Overdispersion in marine fish parasites. Journal of Parasitology, 98(4), 718-721. https://doi.org/10.1645/GE-3017.1
- Luque, J. L., Mouillot, D., & Poulin, R. (2004). Parasite biodiversity and its determinants in coastal marine teleost fishes of Brazil. Parasitology, 128(6), 671-682. https://doi.org/10.1017/S0031182004005050
- McVinish, R., & Lester, R. J. (2020). Measuring aggregation in parasite populations. Journal of the Royal Society Interface, 17(165), 20190886. https://doi.org/10.1098/rsif.2019.0886
- Navone, G. T., Sardella, N. H., & Timi, J. T. (1998). Larvae and adults of Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda: Anisakidae) in fishes and crustaceans in the South West Atlantic. Parasite, 5(2), 127-136. https://doi.org/10.1051/parasite/1998052127
- Özer, A., Kornyychuk, Y. M., Yurakhno, V., & Öztürk, T. (2016). Seasonality and host-parasite interrelationship of Hysterothylacium aduncum (Nematoda) in whiting Merlangius merlangus off the southern and northern coasts of the Black Sea. Helminthologia, 53(3), 248-256. https://doi.org/10.1515/helmin-2016-0025
- Pekmezci, G. Z., Bolukbas, C. S., Gurler, A. T., & Onuk, E. E. (2013). Occurrence and molecular characterization of Hysterothylacium aduncum (Nematoda: Anisakidae) from Merlangius merlangus euxinus and Trachurus trachurus off the Turkish coast of Black Sea. Parasitology Research, 112, 1031-1037. https://doi.org/10.1007/s00436-012-3227-9
- Poulin, R. (2011). Evolutionary ecology of parasites. Princeton University Press. https://doi.org/10.1515/9781400840809
- Rabajante, J. F., Anzia, E. L., & Gokhale, C. S. (2020). On the mechanistic roots of an ecological law: Parasite aggregation. bioRxiv, 680041.
- Rohde, K. (2002). Ecology and biogeography of marine parasites. Advances in Marine Biology, 43, 1-86. https://doi.org/10.1016/s0065-2881(02)43002-7
- Rózsa, L., Reiczigel, J., & Majoros, G. (2000). Quantifying parasites in samples of hosts. Journal of Parasitology, 86(2), 228-232. https://doi.org/10.2307/3284760
- Timi, J. T., & Poulin, R. (2020). Why ignoring parasites in fish ecology is a mistake. International Journal for Parasitology, 50(10-11), 755-761. https://doi.org/10.1016/j.ijpara.2020.04.007
- Vijayalakshmi, G., & Pushpanjali, K. (2022). Reliability for weibull distribution using MS-Excel. International Journal of Statistics and Applied Mathematics, 7(5), 27-30. https://doi.org/10.22271/maths.2022.v7.i5a.878
- Wilber, M. Q., Johnson, P. T., & Briggs, C. J. (2017). When can we infer mechanism from parasite aggregation? A constraint‐based approach to disease ecology. Ecology, 98(3), 688-702. https://doi.org/10.1002/ecy.1675
- Wilson, K., Grenfell, B. T., & Shaw, D. J. (1996). Analysis of aggregated parasite distributions: A comparison of methods. Functional Ecology, 10(5), 592-601.
- Yang, F., Ren, H., & Hu, Z. (2019). Maximum likelihood estimation for three-parameter Weibull distribution using evolutionary strategy. Mathematical Problems in Engineering. 2019, 6281781. https://doi.org/10.1155/2019/6281781
- Yavuzcan, H., Demir, M., & Secer, F. S. (2022). Aggregation of Nematode, Hysterothylacium aduncum in whiting, Merlangius merlangus. Aquatic Research, 5(4), 268-274. https://doi.org/10.3153/AR22026
Predictive Model for the Nematode (Hysterothylacium aduncum) in Horse Mackerel, Trachurus trachurus From the Black Sea
Year 2024,
Volume: 6 Issue: 1, 10 - 16, 30.06.2024
Hijran Yavuzcan
,
Ercüment Genç
,
Doğukan Kaya
,
Bilgenur Harmanşa Yılmaz
Abstract
Hysterothylacium aduncum is a parasitic nematode that infects mainly marine fish. The information on the heterogeneity in the aggregation of macroparasites in fish species is still limited, particularly for the Raphidascarid nematode H. aduncum that infects exploitable marine fish species including horse mackerel (Trachurus trachurus). This study aimed to investigate the heterogeneity of the distribution of H. aduncum to understand macroparasite aggregation better in marine fish. Weibull tests comprising Maximum likelihood were used to analyze the frequency distribution of parasites within a fish host population over the three years period. The parasite, H. aduncum (third larval stage) prevalence was found to be 88% and the condition factor was 1.30∓0.029 in un-infected fish and 1.12∓0.022 in infected fish. The clustered pattern was observed in H. aduncum in horse mackerel. The relation between parasite load and the fish condition factor was found to be significant and conformity of length and weight was affected by parasite load. It is the first time that aggregation has been observed in H. aduncum distribution and made forecasts of nematode intensity in horse mackerel. The findings related to the large individual variations suggest that this pattern is significant and should be considered for host-parasite dynamics.
References
- Adroher, F. J., Valero, A., Ruiz-Valero, J., & Iglesias, L. (1996). Larval anisakids (Nematoda: Ascaridoidea) in horse mackerel (Trachurus trachurus) from the fish market in Granada (Spain). Parasitology Research, 82, 253-256. https://doi.org/10.1007/s004360050105
- Adroher-Auroux, F. J., & Benítez-Rodríguez, R. (2021). Hysterothylacium aduncum. In: Sitjà-Bobadilla, A., Bron, J. E., Wiegertjes, G., & Piazzon, M. C. (Eds.), Fish parasites: A handbook of protocols for their isolation, culture and transmission (pp. 311-329). 5m Books Ltd. https://doi.org/10.52517/9781789181531.021
- Amarante, C. F. D., Tassinari, W. D. S., Luque, J. L., & Pereira, M. J. S. (2015). Factors associated with parasite aggregation levels in fishes from Brazil. Revista Brasileira de Parasitologia Veterinária, 24, 174-182. https://doi.org/10.1590/S1984-29612015031
- Amor, N., Farjallah, S., Merella, P., Said, K., & Ben Slimane, B. (2011). Molecular characterization of Hysterothylacium aduncum (Nematoda: Raphidascaridae) from different fish caught off the Tunisian coast based on nuclear ribosomal DNA sequences. Parasitology Research, 109, 1429-1437. https://doi.org/10.1007/s00436-011-2391-7
- Balard, A., Jarquín‐Díaz, V. H., Jost, J., Martincová, I., Ďureje, Ľ., Piálek, J., Macholán, M., Goüy de Bellocq, J., Baird, S. J., & Heitlinger, E. (2020). Intensity of infection with intracellular Eimeria spp. and pinworms is reduced in hybrid mice compared to parental subspecies. Journal of Evolutionary Biology, 33(4), 435-448. https://doi.org/10.1111/jeb.13578
- Barber, I., & Wright, H. A. (2005). Effects of parasites on fish behaviour: Interactions with host physiology. Fish Physiology, 24, 109-149.
- Bush, A. O., Lafferty, K. D., Lotz, J. M., & Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology, 83(4), 575–583. https://doi.org/10.2307/3284227
- Gaba, S., Ginot, V., & Cabaret, J. (2005). Modelling macroparasite aggregation using a nematode-sheep system: the Weibull distribution as an alternative to the negative binomial distribution? Parasitology, 131(3), 393-401. https://doi.org/10.1017/S003118200500764X
- Grear, D. A., & Hudson, P. (2011). The dynamics of macroparasite host-self-infection: a study of the patterns and processes of pinworm (Oxyuridae) aggregation. Parasitology, 138(5), 619-627. https://doi:10.1017/S0031182011000096
- Ismen, A., & Bingel, F. (1999). Nematode infection in the whiting Merlangius merlangus euxinus off Turkish Coast of the Black Sea. Fisheries Research, 42(1-2), 183-189. https://doi.org/10.1016/S0165-7836(99)00022-3
- Klimpel, S., & Rückert, S. (2005). Life cycle strategy of Hysterothylacium aduncum to become the most abundant anisakid fish nematode in the North Sea. Parasitology Research, 97, 141-149. https://doi.org/10.1007/s00436-005-1407-6
- Lester, R. J. G. (2012). Overdispersion in marine fish parasites. Journal of Parasitology, 98(4), 718-721. https://doi.org/10.1645/GE-3017.1
- Luque, J. L., Mouillot, D., & Poulin, R. (2004). Parasite biodiversity and its determinants in coastal marine teleost fishes of Brazil. Parasitology, 128(6), 671-682. https://doi.org/10.1017/S0031182004005050
- McVinish, R., & Lester, R. J. (2020). Measuring aggregation in parasite populations. Journal of the Royal Society Interface, 17(165), 20190886. https://doi.org/10.1098/rsif.2019.0886
- Navone, G. T., Sardella, N. H., & Timi, J. T. (1998). Larvae and adults of Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda: Anisakidae) in fishes and crustaceans in the South West Atlantic. Parasite, 5(2), 127-136. https://doi.org/10.1051/parasite/1998052127
- Özer, A., Kornyychuk, Y. M., Yurakhno, V., & Öztürk, T. (2016). Seasonality and host-parasite interrelationship of Hysterothylacium aduncum (Nematoda) in whiting Merlangius merlangus off the southern and northern coasts of the Black Sea. Helminthologia, 53(3), 248-256. https://doi.org/10.1515/helmin-2016-0025
- Pekmezci, G. Z., Bolukbas, C. S., Gurler, A. T., & Onuk, E. E. (2013). Occurrence and molecular characterization of Hysterothylacium aduncum (Nematoda: Anisakidae) from Merlangius merlangus euxinus and Trachurus trachurus off the Turkish coast of Black Sea. Parasitology Research, 112, 1031-1037. https://doi.org/10.1007/s00436-012-3227-9
- Poulin, R. (2011). Evolutionary ecology of parasites. Princeton University Press. https://doi.org/10.1515/9781400840809
- Rabajante, J. F., Anzia, E. L., & Gokhale, C. S. (2020). On the mechanistic roots of an ecological law: Parasite aggregation. bioRxiv, 680041.
- Rohde, K. (2002). Ecology and biogeography of marine parasites. Advances in Marine Biology, 43, 1-86. https://doi.org/10.1016/s0065-2881(02)43002-7
- Rózsa, L., Reiczigel, J., & Majoros, G. (2000). Quantifying parasites in samples of hosts. Journal of Parasitology, 86(2), 228-232. https://doi.org/10.2307/3284760
- Timi, J. T., & Poulin, R. (2020). Why ignoring parasites in fish ecology is a mistake. International Journal for Parasitology, 50(10-11), 755-761. https://doi.org/10.1016/j.ijpara.2020.04.007
- Vijayalakshmi, G., & Pushpanjali, K. (2022). Reliability for weibull distribution using MS-Excel. International Journal of Statistics and Applied Mathematics, 7(5), 27-30. https://doi.org/10.22271/maths.2022.v7.i5a.878
- Wilber, M. Q., Johnson, P. T., & Briggs, C. J. (2017). When can we infer mechanism from parasite aggregation? A constraint‐based approach to disease ecology. Ecology, 98(3), 688-702. https://doi.org/10.1002/ecy.1675
- Wilson, K., Grenfell, B. T., & Shaw, D. J. (1996). Analysis of aggregated parasite distributions: A comparison of methods. Functional Ecology, 10(5), 592-601.
- Yang, F., Ren, H., & Hu, Z. (2019). Maximum likelihood estimation for three-parameter Weibull distribution using evolutionary strategy. Mathematical Problems in Engineering. 2019, 6281781. https://doi.org/10.1155/2019/6281781
- Yavuzcan, H., Demir, M., & Secer, F. S. (2022). Aggregation of Nematode, Hysterothylacium aduncum in whiting, Merlangius merlangus. Aquatic Research, 5(4), 268-274. https://doi.org/10.3153/AR22026