Research Article
BibTex RIS Cite

Leaf Senescence: A View of Its Physiological and Molecular Regulation

Year 2015, Volume: 27 Issue: 3, 83 - 92, 31.03.2015
https://doi.org/10.7240/mufbed.73178

Abstract

Studies related to senescence, which is an important developmental process in plants and leads to death of a cell, tissue or whole plant, is based on the end of the 1800s. The preliminary studies were at observational level but they were replaced by comprehensive biotechnological research in conjunction with the development of technology and genetic science. The scientists in various part of the world have carried out experiments related to elucidation of the genetic mechanism of senescence. Leaf senescence is one of the most studied types occurred in leaf and characterized by loss of chlorophyll. Elucidation of the mechanism of senescence will provide great economic benefits in improving product quality and extending the shelf life of vegetables such as parsley, broccoli, spinach and fruit such as tomato, apple and ornamental plants such as carnation, alstroemeria, petunia. In this review, regulatory mechanisms of leaf senescence were discussed

References

  • Ok Lim, P., Jung-Kim, H., Nam, G.H. (2007). Leaf Senescence. Annu. Rev. Plant Biol., 58, 115-136.
  • Liu, L., Zhou, Y., Zhou, G., Ye, R., Zhao, L., Li, X., Lin, Y. (2008). Identification of Early Senescence- associated genes in Rice Flag Leaves. Plant Mol. Biol., 67, 37-55.
  • Gregersen, P.L., Culetic, A., Boschian, L., Krupinska, K. (2013). Plant senescence and crop productivity. Plant Mol. Biol., 82, 603-622.
  • Gully, K., Hander, T., Boller, T., Bartels, S. (2015). Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation- induced senescence. Front. Plant. Sci., doi:10.3389/ fpls.2015.00014.
  • He, Y.J. and Gan, S. (2002). A Gene Encoding An Acyl Hydrolase Is Involved in Leaf Senescence in Arabidopsis. Plant Cell, 14, 805-815.
  • Christiansen, M.W. and Gregersen, P.L. (2014). Members of the barley NAC transcription factor gene family show differential co-rulation with senescence- associated genes during senescence of flag leaves. J. Exp. Bot., 65, 4009-4022.
  • Penfold, C.A. and Buchanan-Wollaston, V. (2014). Modelling transcriptional networks in leaf senescence. J. Exp. Bot., 65, 3859-3873.
  • Gan, S. (2003). Mitotic and Postmitotic Senescence in Plants. Sci. Aging Knowl. Environ., 2003 (38), RE7.
  • Wen, C.H., Lin, S.S., Chu, F.H. (2015). Transcriptome analysis of a subtropical diciduous tree: Autumn leaf senescence gene expression profile of formasan gum. Plant Cell Physiol., 56:163-174.
  • Avila-Ospina, L., Marmagne, A., Talbotec, J., Krupinska, K., Masclaux-Daubresse, C. (2015). The identification of new cytosolic glutamine synthetase and asparagine synthetase genes in barley and their expression during leaf senescence. . J. Exp. Bot., doi:10.1093/jxb/erv003.
  • Lin, M., Pang, C., Fan, S., Song, M., Wei, H., Yu, S. (2015). Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-seq. BMC Plant Biol., doi:10.1186/s12870-015-0433-5.
  • Wang, W. (2012). Regulatory RNA-binding proteins in senescence. Ageing Res. Rev., 11, 485-490.
  • Estiarte, M., Penuelas, J. (2015). Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Global Change Biology, 21,1005- 1017.
  • Inada, N., Sakai, A., Kuroiwa, H., Kuroiwa, T. (1998). Three-dimensional Analysis of the Senescence Program in Rice (Oryza sativa L.) Coleoptiles. Investigations of Tissues and Cells by Flourescence Microscopy. Planta, 205, 153-164.
  • Gan, S. and Amasino, R.M. (1997). Making Sense of Senescence. Plant Physiol. 113, 313-319.
  • Hortensteiner, S. And Feller, U. (2002). Nitrogen Metabolism and Remobilization during Senescence. J. Exp. Bot., 53, 927-937.
  • Yamauchi, Y., Suimoto, T., Sueyoshi, K., Oji, Y., Tanaka, K. (2002). Appearance of Endopeptidases during The Senescence of Cucumber Leaves. Plant Sci., 162, 615–619.
  • Kaup, M.T., Froese, C.D., Thompson, J.E. (2002). A Role of Diacylglycerol Acyltransferase During Leaf Senescence. Plant Physiol., 129, 1616-1626.
  • Palma, J.M., Sandalino, L.M., Corpas, F.J., Romero- Puertas, M.C., McCharty, I., Del Rio, L.A. (2002). Plant Proteases, Protein Degradation, and Oxidative Stress: Role of Peroxisomes. Plant. Physiol. Biochem., 40, 521-530.
  • Reyes-Arribas, T., Barrett, J.E., Huber, D.J., Nell, T.A., Clark, D.G. (2001). Leaf Senescence in A Non- Yellowing Cultivar of Chrysanthemum (Dendranthema grandiflora). Physiol. Plant., 111, 540-544.
  • Oleksyn, J., Zytkowiak, R., Reich, P.B., Tjoelker, M.B., and Karolewski, P. (2000). Ontogenetic Patterns of Leaf CO Exchange. Morphology and Chemistry in 2 Betula pendula trees. Trees, 14, 271-281.
  • Del Rio, L.A., Sandalio, L.M., Altomare, D.A., Zilinkas, B.A. (2003). Mitochondrial and Peroxisomal Manganese Superoxide Dismutase: Differential Expression during Leaf Senescence. J.Exp.Bot., 54, 923-933.
  • Lohman, K.N., Gan, S., John, C.M., Amasino, R. (1994). Molecular Analysis of Natural Leaf Senescence in Arabidopsis thaliana. Physiol. Plant., 92, 322-328.
  • Kanazawa, S., Sano, S., Koshiba, T., Ushimaru, T. (2000). Changes in Antioxidative Enzymez in Cucumber Cotyledons during Natural Senescence: Comparison with Those during Dark-Induced Senescence. Physiol. Plant., 109, 211-216.
  • Quirino, B.F., Noh, Y.S., Himelblau, E., Amasino, R.M. (2000). Molecular Aspects of Leaf Senescence. Trends in Plant Science. 5, 278-282.
  • Thomas, H., Ougham, H.J., Wagstaff, C., Stead, A.D. (2003). Defining Senescence and Death. J. Exp. Bot., 54, 1127-1132.
  • Buchanan-Wollaston, V. (1997). The Molecular Biology of Leaf Senescence. J. Exp. Bot., 48, 181-199.
  • Nooden, L.D. and Penney, J.P. (2001). Correlative Controls of Senescence and Plant Death in Arabidopsis thaliana (Brassicaceae). J. Exp. Bot., 52, 2151-2159.
  • Rolland, F., Moore, B., Sheen, J. (2002). Sugar Sensing and Signaling in Plants. Plant Cell, 14, S185-S205.
  • Hensel, L.L., Girbic, V., Baumgarten, D.A., Bleecker, A.B. (1993). Developmental and Age-Related Processes That Influence The Longevity and Senescence of Photosynthetic Tissues in Arabidopsis. Plant Cell, 5, 553-564.
  • Masclaux, C., Valadier, M.H., Brugiere, N., Morot- Gaudry, J.F., Hirel, B. (2000). Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) Shoots in Relation to Nitrogen Management and Leaf senescence. Planta, 211, 510-518.
  • Stessman, D., Miller, A., Spalding, M., Rodermel, S. (2002). Regulation of Photosynthesis During Arabidopsis Leaf Development in Continuous Light. Photosyn. Res., 72, 27-37.
  • Dickinson, C.D., Altabella, T., Chrispeels, M.J. (1991). Slow-Growth Phenotype of Transgenic Tomato Expressing Apoplastic Invertase. Plant Physiol., 95, 420-425.
  • Ding, B., Haudenshield, J.S., Willmitzer, L., Lucas, W.J. (1993). Correlation Between Arrested Secondary Plasmodesmal Development and Onset of Accelerated Leaf Senescence in Yeast Acid Invertase Transgenic Tobacco Plants. Plant J., 95, 420-425.
  • Graham, L.E., Schippers, J.H.M., Dijkwel, P.P., Wagstaff, C. (2012). “Ethylene and senescence process”, in Annual Plant Reviews, Vol. 44, ed. Michael T. McNaus, 305-341.
  • Grbic, V. and Bleecker, A.B. (1995). Ethylene Regulates the Timing of Leaf Senescence in Arabidopsis. Plant J., 8, 595-602.
  • Li, Z., Peng, J., Wen, X., Guo, H. (2013). Ethylene- insensitive3 is a senescence associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell, 25, 3311-3328.
  • John, I., Drake, R., Farrell, A., Cooper, W., Lee, P., Horton, P., Grierson, D. (1995). Delayed Leaf Senescence in Ethylene-deficient ACC-oxidase Antisense Tomato Plants- Molecular and Physiological Analysis. Plant J., 7, 483-490.
  • Savin, K.W., Baudinette, S.C., Graham, M.W., Michael, M.Z., Nugent, G.D., Lu, C.Y., Chandler, S.F., Cornish, E.C. (1995). Antisense ACC Oxidase RNA Delays Carnation Petal Senescence. Hortscience, 30, 970-972.
  • Srivastava, L.M. (2002). Plant Growth and Development. Hormones and Environment, Academic Press, California, 0-12-660570-X.
  • Matsuoko, D., Yasufuku, T., Furuya, T., Nanmori, T. (2015). An Abscisic acid inducible Arabidopsis MAPKKK, MAPKKK18 regulates leaf senescence via its kinase activity. Plant. Mol. Biol., doi:10.1007/ s11103-015-0295-0
  • Finkelstein, R. (2013). Abscisic acid synthesis and response. Arabidopsis book 11:e0166 doi:10.1199/ tab.0166
  • Morris, K., Mackerness, S.A., Page, T., John, C.F., Murphy, A.M., Carr, J.P., Buchanan-Wollaston, V. (2000). Salicylic Acid Has a Role in Regulating Gene Expression during Leaf Senescence. Plant J., 23, 677- 685.
  • Ueda, J. and Kato, J. (1980). Isolation and Identification of a Senescence-promoting Substance from Wormwood (Artesemia absinthium L.), Plant Physiol., 66, 246-249.
  • Springer, A., Acker, G., Bartsch, S., Bauerschmitt, S.R., Reinbothe, C. (2015). Differences in gene expression between natural and artifically induced leaf senescence in barley. J. Plant. Physiol., 176, 180-191.
  • He, Y., Fukushige, H., Hildebrand, D.F., Gan, S. (2002). Evidence Supporting a Role of Jasmonic Acid in Arabidopsis Leaf Senescence. Plant Physiol., 128, 876-884.
  • Clouse, S.D. (2002). Brassinosteroids. Plant Counterparts to Animal Steroid Hormones?. Vitam. Horm., 65, 195-223.
  • He, Y., Xu, R., Zhao, Y. (1996). Enhancement of Senescence by epibrassinolide in Leaves of Mung Bean Seedling. Acta Phytophysiol. Sinica, 22, 58-62.
  • Zhao, Y., Xu, R., Wo, W. (1990). Antagonist Effect of ABA on Detached Cucumber Cotyledon Senescence Induced by eBR. Chinese Sci. Bull., 35, 928-931.
  • Vardhini, B.V. and Rao, S.S. (2002). Acceleration of Ripening of Tomato Pericarp Discs by Brassinosteroids. Phytochemistry, 61, 843-847.
  • Clouse, S.D. and Sasse, J.M. (1998). Brassinosteroids: Essential Regulators of Plant Growth and Development. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 427- 451.
  • Yin, Y., Wang, Z.Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., Chory, J. (2002). BES1 Accumulates in the Nucleus in Response to Brassinostreoids to Regulate Gene Expression and Promote Stem Elongation. Cell, 109, 181-191.
  • He, Y., Tang, W., Swain, J.D., Green, A.L., Jack, T.P., Gan, S. (2001). Networking Senescence-Regulating Pathways by Using Arabidopsis Enhancer Trap Lines. Plant Physiol., 126, 707-716.
  • Crafts-Brandner, S.J. (1991). Non-structural
  • Carbohydrate Metabolism during Leaf Ageing in
  • Tobacco (Nicotiana tabacum). Physiol. Plant., 82, 299- 305.
  • Lanahan, M.B., Yen, H.C., Klee, H.J. (1994). The Never Ripe Mutation Blocks Ethylene Perception in Tomato. Plant Cell, 6, 521-530.
  • Gan, S. and Amasino, R.M. (1995). Inhibition of Leaf Senescence by Autoregulated Production of Cytokinin. Science, 270, 1986-1988.
  • Parker, J.E. (2000). Signalling in Plant Disease Resistance. In: Molecular Plant Pathology, (Eds. M. Dickinson, and J. Beynon), CRC Press, Sheffield, UK.
  • Hosch, W.A., Zeldin, E.L., McCown, B.H. (2001). Physiological Significance of Anthocyanins During Autumnal Leaf Senescence. Tree Physiol., 21, 1-8.
  • Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T., Pink, D. (2003). The Molecular Analysis of Leaf Senescence- A Genomics Approach. Plant Biotech. J., 1, 3-22.
  • Shi, H., Reiter, R.J., Tan, D-X., Chan, Z. (2015). INDOLE-3-ACETIC ACID INDUCIBLE 17 positively modulates natural leaf senescence through melatonin- mediated pathway in Arabidopsis. J. Pineal. Res., 58, 26-33.
  • Yoshida, Y. (1961). Nuclear Control of Chloroplat Activity in Elodea Leaf Cells. Protoplasma, 54, 476- 492.
  • Pujol, B. (2015). Genes and quantitative genetic variation involved with senescence in cells, organs and the whole plant. Front. Plant. Sci., doi:10.3389/ fgene.2015.00057.
  • Smalle, J., Kurepa, J., Yang, P., Babiychuk, E., Kushnir, S., Durski, A.,Vierstra, D. R. (2002). Cytokinin Growth Responses in Arabidopsis Involve the 26S Proteasome Subunit RPN12. Plant Cell, 14, 17-32.
  • Eckardt, N.A. (2003). A New Classic of Cytokinin Research: Cytokinin-Deficient Arabidopsis Plants Provide New Insights into Cytokinin Biology. Plant Cell, 15, 2489-2492.
  • Gan, S. and Amasino, R.M. (1996). Cytokinin in Plant Senescence: From Spray and Pray to Clone and Play. BioEssays, 18, 557-565.
  • Carimi, F., Terzi, M., De Michele, R., Zottini, M., Schiavo, F.L. (2004). High Levels of The Cytokinin BAP Induce PCD by Accelerating Senescence. Plant Sci., 166, 963-969.
  • Guera, A. and Sabater, B. (2002). Synthesis of Chloroplast Proteins by Barley Leaf Segments Effects of Senescence Induction and Kinetin Treatment. Acta Botanica Neerlandica, 41, 43-49.
  • Gören, N. And Çağ, S. (2007). The Effect of Indole- 3-Acetic Acid and Benzyladenine on Sequential Leaf Senescence on Helianthus annuus L. Seedlings. Biotechnol. & Biotechnol. Eq., 21, 322-327.
  • Liu, X., and Huang, B. (2002). Cytokinin Effects on Creeping Bentgrass Response to Heat Stress: II. Leaf Senescence and Antioxidant Metabolism. Crop. Sci., 42, 466-472.
  • Jeevanandam, M. and Petersen, S.R. (2001). Clinical Role of Polyamine Analaysis: Problem and Promise. Curr. Opin. Clin. Nutr. Metab. Care, 385-390.
  • Cai, G., Sobieszczuk,-Nowicka, E., Aloisi, I., Fattorini, L., Serafani-Fracassini, D., Del Duca, S. (2015). Polyamines are common players in different facets of plant programmed cell death. Aminoacids, 47, 27-44.
  • Wi, S.J. and Park, K.Y. (2002). Antisense Expression of Carnation cDNA Encoding ACC Synthase or ACC Oxidase Enhances Polyamine Content and Abiotic Stress Tolerance in Transgenic Tobacco Plants. Mol. Cells, 13, 209-220.
  • Wu, X., Kuai, B., Jia, J., Jing, H. (2012). Regulation of leaf senescence and crop genetic improvement. J. Int. Plant Biol., 54, 936-952.
  • Del Duca, S., Serafini-Fracassini, D., Cai, G. (2014). Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. Front. Plant Sci., 5, 1-16
  • Ventarakayappa, T., Fletcher R.A., Thompson, J.E. (1984). Retardation and reversal of senescence in bean- leaves by benzyladenine and decapitation, Plant Cell Physiol., 25, 407-418

Yaprak Senesensi: Fizyolojik ve Moleküler Düzenlenmesine Bakış

Year 2015, Volume: 27 Issue: 3, 83 - 92, 31.03.2015
https://doi.org/10.7240/mufbed.73178

Abstract

Bitkilerde görülen, tüm bitki, organ, doku ya da hücre ölümü ile sonuçlanan önemli bir gelişme süreci olan senesens ile ilgili çalışmalar 1800’lü yılların sonlarına dayanmaktadır. İlk yıllarda gözlemlerden oluşan bu çalışmalar günümüzde teknolojinin ve genetik biliminin gelişmesiyle yerini kapsamlı biyoteknolojik araştırmalara bırakmıştır. Dünyanın çeşitli yerlerindeki araştırma merkezlerinde bilim adamları senesensin genetik mekanizmasının aydınlatılması ile ilgili deneyler yapmaktadırlar. Üzerinde en çok araştırma yapılan senesens çeşidi yapraklarda görülen ve klorofil kaybı ile karakterize edilen yaprak senesensidir. Senesens mekanizmasının aydınlatılması ekonomik düzeyde ürün kalitesinin artırılmasında, maydanoz, brokoli, ıspanak gibi sebze, meyve ve süs bitkilerinin raf ömrünün uzatılmasında büyük yararlar sağlayacaktır. Bu derlemede yaprak senesensinin düzenlenme mekanizmaları anlatılmıştır.

References

  • Ok Lim, P., Jung-Kim, H., Nam, G.H. (2007). Leaf Senescence. Annu. Rev. Plant Biol., 58, 115-136.
  • Liu, L., Zhou, Y., Zhou, G., Ye, R., Zhao, L., Li, X., Lin, Y. (2008). Identification of Early Senescence- associated genes in Rice Flag Leaves. Plant Mol. Biol., 67, 37-55.
  • Gregersen, P.L., Culetic, A., Boschian, L., Krupinska, K. (2013). Plant senescence and crop productivity. Plant Mol. Biol., 82, 603-622.
  • Gully, K., Hander, T., Boller, T., Bartels, S. (2015). Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation- induced senescence. Front. Plant. Sci., doi:10.3389/ fpls.2015.00014.
  • He, Y.J. and Gan, S. (2002). A Gene Encoding An Acyl Hydrolase Is Involved in Leaf Senescence in Arabidopsis. Plant Cell, 14, 805-815.
  • Christiansen, M.W. and Gregersen, P.L. (2014). Members of the barley NAC transcription factor gene family show differential co-rulation with senescence- associated genes during senescence of flag leaves. J. Exp. Bot., 65, 4009-4022.
  • Penfold, C.A. and Buchanan-Wollaston, V. (2014). Modelling transcriptional networks in leaf senescence. J. Exp. Bot., 65, 3859-3873.
  • Gan, S. (2003). Mitotic and Postmitotic Senescence in Plants. Sci. Aging Knowl. Environ., 2003 (38), RE7.
  • Wen, C.H., Lin, S.S., Chu, F.H. (2015). Transcriptome analysis of a subtropical diciduous tree: Autumn leaf senescence gene expression profile of formasan gum. Plant Cell Physiol., 56:163-174.
  • Avila-Ospina, L., Marmagne, A., Talbotec, J., Krupinska, K., Masclaux-Daubresse, C. (2015). The identification of new cytosolic glutamine synthetase and asparagine synthetase genes in barley and their expression during leaf senescence. . J. Exp. Bot., doi:10.1093/jxb/erv003.
  • Lin, M., Pang, C., Fan, S., Song, M., Wei, H., Yu, S. (2015). Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-seq. BMC Plant Biol., doi:10.1186/s12870-015-0433-5.
  • Wang, W. (2012). Regulatory RNA-binding proteins in senescence. Ageing Res. Rev., 11, 485-490.
  • Estiarte, M., Penuelas, J. (2015). Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Global Change Biology, 21,1005- 1017.
  • Inada, N., Sakai, A., Kuroiwa, H., Kuroiwa, T. (1998). Three-dimensional Analysis of the Senescence Program in Rice (Oryza sativa L.) Coleoptiles. Investigations of Tissues and Cells by Flourescence Microscopy. Planta, 205, 153-164.
  • Gan, S. and Amasino, R.M. (1997). Making Sense of Senescence. Plant Physiol. 113, 313-319.
  • Hortensteiner, S. And Feller, U. (2002). Nitrogen Metabolism and Remobilization during Senescence. J. Exp. Bot., 53, 927-937.
  • Yamauchi, Y., Suimoto, T., Sueyoshi, K., Oji, Y., Tanaka, K. (2002). Appearance of Endopeptidases during The Senescence of Cucumber Leaves. Plant Sci., 162, 615–619.
  • Kaup, M.T., Froese, C.D., Thompson, J.E. (2002). A Role of Diacylglycerol Acyltransferase During Leaf Senescence. Plant Physiol., 129, 1616-1626.
  • Palma, J.M., Sandalino, L.M., Corpas, F.J., Romero- Puertas, M.C., McCharty, I., Del Rio, L.A. (2002). Plant Proteases, Protein Degradation, and Oxidative Stress: Role of Peroxisomes. Plant. Physiol. Biochem., 40, 521-530.
  • Reyes-Arribas, T., Barrett, J.E., Huber, D.J., Nell, T.A., Clark, D.G. (2001). Leaf Senescence in A Non- Yellowing Cultivar of Chrysanthemum (Dendranthema grandiflora). Physiol. Plant., 111, 540-544.
  • Oleksyn, J., Zytkowiak, R., Reich, P.B., Tjoelker, M.B., and Karolewski, P. (2000). Ontogenetic Patterns of Leaf CO Exchange. Morphology and Chemistry in 2 Betula pendula trees. Trees, 14, 271-281.
  • Del Rio, L.A., Sandalio, L.M., Altomare, D.A., Zilinkas, B.A. (2003). Mitochondrial and Peroxisomal Manganese Superoxide Dismutase: Differential Expression during Leaf Senescence. J.Exp.Bot., 54, 923-933.
  • Lohman, K.N., Gan, S., John, C.M., Amasino, R. (1994). Molecular Analysis of Natural Leaf Senescence in Arabidopsis thaliana. Physiol. Plant., 92, 322-328.
  • Kanazawa, S., Sano, S., Koshiba, T., Ushimaru, T. (2000). Changes in Antioxidative Enzymez in Cucumber Cotyledons during Natural Senescence: Comparison with Those during Dark-Induced Senescence. Physiol. Plant., 109, 211-216.
  • Quirino, B.F., Noh, Y.S., Himelblau, E., Amasino, R.M. (2000). Molecular Aspects of Leaf Senescence. Trends in Plant Science. 5, 278-282.
  • Thomas, H., Ougham, H.J., Wagstaff, C., Stead, A.D. (2003). Defining Senescence and Death. J. Exp. Bot., 54, 1127-1132.
  • Buchanan-Wollaston, V. (1997). The Molecular Biology of Leaf Senescence. J. Exp. Bot., 48, 181-199.
  • Nooden, L.D. and Penney, J.P. (2001). Correlative Controls of Senescence and Plant Death in Arabidopsis thaliana (Brassicaceae). J. Exp. Bot., 52, 2151-2159.
  • Rolland, F., Moore, B., Sheen, J. (2002). Sugar Sensing and Signaling in Plants. Plant Cell, 14, S185-S205.
  • Hensel, L.L., Girbic, V., Baumgarten, D.A., Bleecker, A.B. (1993). Developmental and Age-Related Processes That Influence The Longevity and Senescence of Photosynthetic Tissues in Arabidopsis. Plant Cell, 5, 553-564.
  • Masclaux, C., Valadier, M.H., Brugiere, N., Morot- Gaudry, J.F., Hirel, B. (2000). Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) Shoots in Relation to Nitrogen Management and Leaf senescence. Planta, 211, 510-518.
  • Stessman, D., Miller, A., Spalding, M., Rodermel, S. (2002). Regulation of Photosynthesis During Arabidopsis Leaf Development in Continuous Light. Photosyn. Res., 72, 27-37.
  • Dickinson, C.D., Altabella, T., Chrispeels, M.J. (1991). Slow-Growth Phenotype of Transgenic Tomato Expressing Apoplastic Invertase. Plant Physiol., 95, 420-425.
  • Ding, B., Haudenshield, J.S., Willmitzer, L., Lucas, W.J. (1993). Correlation Between Arrested Secondary Plasmodesmal Development and Onset of Accelerated Leaf Senescence in Yeast Acid Invertase Transgenic Tobacco Plants. Plant J., 95, 420-425.
  • Graham, L.E., Schippers, J.H.M., Dijkwel, P.P., Wagstaff, C. (2012). “Ethylene and senescence process”, in Annual Plant Reviews, Vol. 44, ed. Michael T. McNaus, 305-341.
  • Grbic, V. and Bleecker, A.B. (1995). Ethylene Regulates the Timing of Leaf Senescence in Arabidopsis. Plant J., 8, 595-602.
  • Li, Z., Peng, J., Wen, X., Guo, H. (2013). Ethylene- insensitive3 is a senescence associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell, 25, 3311-3328.
  • John, I., Drake, R., Farrell, A., Cooper, W., Lee, P., Horton, P., Grierson, D. (1995). Delayed Leaf Senescence in Ethylene-deficient ACC-oxidase Antisense Tomato Plants- Molecular and Physiological Analysis. Plant J., 7, 483-490.
  • Savin, K.W., Baudinette, S.C., Graham, M.W., Michael, M.Z., Nugent, G.D., Lu, C.Y., Chandler, S.F., Cornish, E.C. (1995). Antisense ACC Oxidase RNA Delays Carnation Petal Senescence. Hortscience, 30, 970-972.
  • Srivastava, L.M. (2002). Plant Growth and Development. Hormones and Environment, Academic Press, California, 0-12-660570-X.
  • Matsuoko, D., Yasufuku, T., Furuya, T., Nanmori, T. (2015). An Abscisic acid inducible Arabidopsis MAPKKK, MAPKKK18 regulates leaf senescence via its kinase activity. Plant. Mol. Biol., doi:10.1007/ s11103-015-0295-0
  • Finkelstein, R. (2013). Abscisic acid synthesis and response. Arabidopsis book 11:e0166 doi:10.1199/ tab.0166
  • Morris, K., Mackerness, S.A., Page, T., John, C.F., Murphy, A.M., Carr, J.P., Buchanan-Wollaston, V. (2000). Salicylic Acid Has a Role in Regulating Gene Expression during Leaf Senescence. Plant J., 23, 677- 685.
  • Ueda, J. and Kato, J. (1980). Isolation and Identification of a Senescence-promoting Substance from Wormwood (Artesemia absinthium L.), Plant Physiol., 66, 246-249.
  • Springer, A., Acker, G., Bartsch, S., Bauerschmitt, S.R., Reinbothe, C. (2015). Differences in gene expression between natural and artifically induced leaf senescence in barley. J. Plant. Physiol., 176, 180-191.
  • He, Y., Fukushige, H., Hildebrand, D.F., Gan, S. (2002). Evidence Supporting a Role of Jasmonic Acid in Arabidopsis Leaf Senescence. Plant Physiol., 128, 876-884.
  • Clouse, S.D. (2002). Brassinosteroids. Plant Counterparts to Animal Steroid Hormones?. Vitam. Horm., 65, 195-223.
  • He, Y., Xu, R., Zhao, Y. (1996). Enhancement of Senescence by epibrassinolide in Leaves of Mung Bean Seedling. Acta Phytophysiol. Sinica, 22, 58-62.
  • Zhao, Y., Xu, R., Wo, W. (1990). Antagonist Effect of ABA on Detached Cucumber Cotyledon Senescence Induced by eBR. Chinese Sci. Bull., 35, 928-931.
  • Vardhini, B.V. and Rao, S.S. (2002). Acceleration of Ripening of Tomato Pericarp Discs by Brassinosteroids. Phytochemistry, 61, 843-847.
  • Clouse, S.D. and Sasse, J.M. (1998). Brassinosteroids: Essential Regulators of Plant Growth and Development. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 427- 451.
  • Yin, Y., Wang, Z.Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., Chory, J. (2002). BES1 Accumulates in the Nucleus in Response to Brassinostreoids to Regulate Gene Expression and Promote Stem Elongation. Cell, 109, 181-191.
  • He, Y., Tang, W., Swain, J.D., Green, A.L., Jack, T.P., Gan, S. (2001). Networking Senescence-Regulating Pathways by Using Arabidopsis Enhancer Trap Lines. Plant Physiol., 126, 707-716.
  • Crafts-Brandner, S.J. (1991). Non-structural
  • Carbohydrate Metabolism during Leaf Ageing in
  • Tobacco (Nicotiana tabacum). Physiol. Plant., 82, 299- 305.
  • Lanahan, M.B., Yen, H.C., Klee, H.J. (1994). The Never Ripe Mutation Blocks Ethylene Perception in Tomato. Plant Cell, 6, 521-530.
  • Gan, S. and Amasino, R.M. (1995). Inhibition of Leaf Senescence by Autoregulated Production of Cytokinin. Science, 270, 1986-1988.
  • Parker, J.E. (2000). Signalling in Plant Disease Resistance. In: Molecular Plant Pathology, (Eds. M. Dickinson, and J. Beynon), CRC Press, Sheffield, UK.
  • Hosch, W.A., Zeldin, E.L., McCown, B.H. (2001). Physiological Significance of Anthocyanins During Autumnal Leaf Senescence. Tree Physiol., 21, 1-8.
  • Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T., Pink, D. (2003). The Molecular Analysis of Leaf Senescence- A Genomics Approach. Plant Biotech. J., 1, 3-22.
  • Shi, H., Reiter, R.J., Tan, D-X., Chan, Z. (2015). INDOLE-3-ACETIC ACID INDUCIBLE 17 positively modulates natural leaf senescence through melatonin- mediated pathway in Arabidopsis. J. Pineal. Res., 58, 26-33.
  • Yoshida, Y. (1961). Nuclear Control of Chloroplat Activity in Elodea Leaf Cells. Protoplasma, 54, 476- 492.
  • Pujol, B. (2015). Genes and quantitative genetic variation involved with senescence in cells, organs and the whole plant. Front. Plant. Sci., doi:10.3389/ fgene.2015.00057.
  • Smalle, J., Kurepa, J., Yang, P., Babiychuk, E., Kushnir, S., Durski, A.,Vierstra, D. R. (2002). Cytokinin Growth Responses in Arabidopsis Involve the 26S Proteasome Subunit RPN12. Plant Cell, 14, 17-32.
  • Eckardt, N.A. (2003). A New Classic of Cytokinin Research: Cytokinin-Deficient Arabidopsis Plants Provide New Insights into Cytokinin Biology. Plant Cell, 15, 2489-2492.
  • Gan, S. and Amasino, R.M. (1996). Cytokinin in Plant Senescence: From Spray and Pray to Clone and Play. BioEssays, 18, 557-565.
  • Carimi, F., Terzi, M., De Michele, R., Zottini, M., Schiavo, F.L. (2004). High Levels of The Cytokinin BAP Induce PCD by Accelerating Senescence. Plant Sci., 166, 963-969.
  • Guera, A. and Sabater, B. (2002). Synthesis of Chloroplast Proteins by Barley Leaf Segments Effects of Senescence Induction and Kinetin Treatment. Acta Botanica Neerlandica, 41, 43-49.
  • Gören, N. And Çağ, S. (2007). The Effect of Indole- 3-Acetic Acid and Benzyladenine on Sequential Leaf Senescence on Helianthus annuus L. Seedlings. Biotechnol. & Biotechnol. Eq., 21, 322-327.
  • Liu, X., and Huang, B. (2002). Cytokinin Effects on Creeping Bentgrass Response to Heat Stress: II. Leaf Senescence and Antioxidant Metabolism. Crop. Sci., 42, 466-472.
  • Jeevanandam, M. and Petersen, S.R. (2001). Clinical Role of Polyamine Analaysis: Problem and Promise. Curr. Opin. Clin. Nutr. Metab. Care, 385-390.
  • Cai, G., Sobieszczuk,-Nowicka, E., Aloisi, I., Fattorini, L., Serafani-Fracassini, D., Del Duca, S. (2015). Polyamines are common players in different facets of plant programmed cell death. Aminoacids, 47, 27-44.
  • Wi, S.J. and Park, K.Y. (2002). Antisense Expression of Carnation cDNA Encoding ACC Synthase or ACC Oxidase Enhances Polyamine Content and Abiotic Stress Tolerance in Transgenic Tobacco Plants. Mol. Cells, 13, 209-220.
  • Wu, X., Kuai, B., Jia, J., Jing, H. (2012). Regulation of leaf senescence and crop genetic improvement. J. Int. Plant Biol., 54, 936-952.
  • Del Duca, S., Serafini-Fracassini, D., Cai, G. (2014). Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. Front. Plant Sci., 5, 1-16
  • Ventarakayappa, T., Fletcher R.A., Thompson, J.E. (1984). Retardation and reversal of senescence in bean- leaves by benzyladenine and decapitation, Plant Cell Physiol., 25, 407-418
There are 77 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Nihal Gören Sağlam

Publication Date March 31, 2015
Published in Issue Year 2015 Volume: 27 Issue: 3

Cite

APA Gören Sağlam, N. (2015). Yaprak Senesensi: Fizyolojik ve Moleküler Düzenlenmesine Bakış. Marmara Fen Bilimleri Dergisi, 27(3), 83-92. https://doi.org/10.7240/mufbed.73178
AMA Gören Sağlam N. Yaprak Senesensi: Fizyolojik ve Moleküler Düzenlenmesine Bakış. MFBD. October 2015;27(3):83-92. doi:10.7240/mufbed.73178
Chicago Gören Sağlam, Nihal. “Yaprak Senesensi: Fizyolojik Ve Moleküler Düzenlenmesine Bakış”. Marmara Fen Bilimleri Dergisi 27, no. 3 (October 2015): 83-92. https://doi.org/10.7240/mufbed.73178.
EndNote Gören Sağlam N (October 1, 2015) Yaprak Senesensi: Fizyolojik ve Moleküler Düzenlenmesine Bakış. Marmara Fen Bilimleri Dergisi 27 3 83–92.
IEEE N. Gören Sağlam, “Yaprak Senesensi: Fizyolojik ve Moleküler Düzenlenmesine Bakış”, MFBD, vol. 27, no. 3, pp. 83–92, 2015, doi: 10.7240/mufbed.73178.
ISNAD Gören Sağlam, Nihal. “Yaprak Senesensi: Fizyolojik Ve Moleküler Düzenlenmesine Bakış”. Marmara Fen Bilimleri Dergisi 27/3 (October 2015), 83-92. https://doi.org/10.7240/mufbed.73178.
JAMA Gören Sağlam N. Yaprak Senesensi: Fizyolojik ve Moleküler Düzenlenmesine Bakış. MFBD. 2015;27:83–92.
MLA Gören Sağlam, Nihal. “Yaprak Senesensi: Fizyolojik Ve Moleküler Düzenlenmesine Bakış”. Marmara Fen Bilimleri Dergisi, vol. 27, no. 3, 2015, pp. 83-92, doi:10.7240/mufbed.73178.
Vancouver Gören Sağlam N. Yaprak Senesensi: Fizyolojik ve Moleküler Düzenlenmesine Bakış. MFBD. 2015;27(3):83-92.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr