A Natural Approach To Tomorrow’s High Performance Fibers: Hagfish Slime Fibers
Year 2015,
Volume: 27 Issue: 4, 135 - 142, 06.05.2016
Ece Kalaycı
Ozan Avinç
Arzu Yavaş
Abstract
Hagfishes, also known as ‘hyperotreti’, release a mucus-like slime from their glands located on their body when they feel threatened. This slime contains fibers that are one of the toughest fibers known to date. Those fibers are approximately 15 cm long and 1-3 μm in width and have superior properties to most of natural and synthetic fibers. Hagfish slime fibers differ with their structural features from other natural protein fibers which contain α-keratin such as wool and hair. With a high breaking strength, these fibers also exhibit considerably good elongation. The hagfish slime fibers are not commercially manufactured yet while research is still in progress.
References
- Ewoldt, R.H., Winegard T.M., Fudge D.S. (2011). Non-linear viscoelasticity of hagfish slime, International Journal of Non-Linear Mechanics, 46, (4), 627-636.
- Fudge, D.S., Levy N., Chiu S., Gosline J.M. (2005). Composition, morphology and mechanics of hagfish slime, Journal of Experimental Biology, 208, (24), 4613-4625.
- Knight, K. (2014). Adhesive constrains hagfish thread skeins, The Journal of Experimental Biology, 217, (8), 1199-1200.
- Hearle, J.W.S. (2009). 3 - an introduction to protein fibres, In: Eichhorn SJ, Hearle JWS, Jaffe M, Kikutani T (eds) Handbook of textile fibre structure, vol 2. Woodhead Publishing, 95-107.
- Lim, J., Fudge D.S., Levy N., Gosline J.M. (2006). Hagfish slime ecomechanics: Testing the gill-clogging hypothesis, Journal of Experimental Biology, 209, (4), 702-710.
- Winegard, T., Fudge D. (2010). Deployment of hagfish slime thread skeins requires the transmission of mixing forces via mucin strands, The Journal of Experimental Biology, 213, (8), 1235-1240.
- Pinto, N., Yang F.C., Negishi A., Rheinstädter M.C., Gillis T.E., Fudge D.S. (2014). Self-assembly enhances the strength of fibers made from vimentin intermediate filament proteins, Biomacromolecules, 15, (2), 574-581.
- Winegard, T., Herr J., Mena C., Lee B., Dinov I., Bird D., Bernards Jr M., Hobel S., Van Valkenburgh B., Toga A., Fudge D. (2014). Coiling and maturation of a high-performance fibre in hagfish slime gland thread cells, Nature Communications, 5.
- Fudge, D.S. (2002). The biomechanics of intermediate filament-based materials: Insights from hagfish slime threads, University of British Columbia,
- Winegard, T., Herr J., Mena C., Lee B., Dinov I., Bird D., Bernards Jr M., Hobel S., Van Valkenburgh B., Toga A. (2014). Coiling and maturation of a high- performance fibre in hagfish slime gland thread cells, Nature Communications, 5.
- Susan L. Edwards, G.G.G. (2015). Hagfish biology, CRC Press, Boca Raton, FL.
- Simon, M. Absurd creature of the week: This oceanic ‘nightmare’ suffocates foes with clouds of slime, http://www.wired.com/2014/05/absurd-creature-of- the-week-hagfish/, (Haziran 2015)
- Kwok, R. Slime is the new silk, http:// conservationmagazine.org/2013/03/slime-is-the- new-silk/, (October 2014)
- Herr, J.E., Clifford A.M., Goss G.G., Fudge D.S. (2014). Defensive slime formation in pacific hagfish requires ca2+-and aquaporin-mediated swelling of released mucin vesicles, The Journal of Experimental Biology, 217, (13), 2288-2296.
- Kreplak, L., Fudge D. (2007). Biomechanical properties of intermediate filaments: From tissues to single filaments and back, BioEssays, 29, (1), 26-35.
- Hearle, J.W., Morton W.E. (2008). Physical properties of textile fibres, CRC Press, Cambridge.
- Winegard, T., Herr J., Mena C., Lee B., Dinov I., Bird D., Bernards Jr M., Hobel S., Van Valkenburgh B., Toga A., Fudge D. (2014). Coiling and maturation of a high-performance fibre in hagfish slime gland thread cells, Nat Commun, 5.
- Levy, N. (2005). Hagfish slime: Fine-tuning the mechanical properties of a new high performance fiber, University of British Columbia, [28] Ara filament, filament, (Haziran 2015)
- Koch, E.A., Spitzer R.H., Pithawalla R.B., Parry D. (1994). An unusual intermediate filament subunit from the cytoskeletal biopolymer released extracellularly into seawater by the primitive hagfish (eptatretus stouti), Journal of cell science, 107, (11), 3133-3144.
- Yalçın, A. (2012). Posttranslasyonel modifikasyon ve protein fonksiyonu.
- Fudge, D. (2012). Hagfish slime threads, In: The functional fold: Amyloid structures in nature. 15-33.
- Fu, J., Guerette P.A., Miserez A. (2015). Self- assembly of recombinant hagfish thread keratins amenable to a strain-induced α-helix to β-sheet transition, Biomacromolecules, 16, (8), 2327-2339.
- Hearle, J.W.S. (2008). An alternative model for the structural mechanics of hagfish slime threads, International Journal of Biological Macromolecules, 42, (5), 420-428.
- Bernards, M.A., Oke I., Heyland A., Fudge D.S. (2014). Spontaneous unraveling of hagfish slime thread skeins is mediated by a seawater-soluble protein adhesive, The Journal of Experimental Biology, 217, (8), 1263-1268.
- Fudge, D.S., Gardner K.H., Forsyth V.T., Riekel C., Gosline J.M. (2003). The mechanical properties of hydrated intermediate filaments: Insights from hagfish slime threads, Biophysical Journal, 85, (3), 2015-2027.
- Fudge, D.S., Gosline J.M. (2004). Molecular design of the α–keratin composite: Insights from a matrix– free model, hagfish slime threads, Proceedings of the Royal Society of London Series B: Biological Sciences, 271, (1536), 291-299.
- Fudge, D.S., Winegard T., Ewoldt R., Beriault D., Szewciw L., McKinley G. (2009). From ultra- soft slime to hard α-keratins: The many lives of intermediate filaments, Integrative and comparative biology, 49, (1), 32-39.
- Carr, S.M. Secondary protein structure, http://www. mun.ca/biology/scarr/MGA2_03-18b.html, (Haziran 2015)
- Meier, C., Welland M.E. (2011). Wet-spinning of amyloid protein nanofibers into multifunctional high- performance biofibers, Biomacromolecules, 12, (10), 3453-3459.
- Weisman, S., Haritos V.S., Church J.S., Huson M.G., Mudie S.T., Rodgers A.J., Dumsday G.J., Sutherland T.D. (2010). Honeybee silk: Recombinant protein production, assembly and fiber spinning, Biomaterials, 31, (9), 2695-2700.
- Shao, Z., Vollrath F. (1999). The effect of solvents on the contraction and mechanical properties of spider silk, Polymer, 40, (7), 1799-1806.
- Reddy, N., Yang Y. (2014). Innovative biofibers from renewable resources, Springer.
- Hagfish slime as a model for tomorrow’s natural fabrics, http://phys.org/news/2012-11-hagfish-slime- tomorrow-natural-fabrics.html, (October 2014)
- Schaffeld, M., Schultess J. (2006). Genes coding for intermediate filament proteins closely related to the hagfish “thread keratins (tk)” α and γ also exist in lamprey, teleosts and amphibians, Experimental Cell Research, 312, (9), 1447-1462.
- Riemer, D., Weber K. (1998). Common and variant properties of intermediate filament proteins from lower chordates and vertebrates; two proteins from the tunicate styela and the identification of a type iii homologue, Journal of cell science, 111, (19), 2967- 2975.
- Hewitt, J. The ultimate biofilament: Hagfish slime, http://phys.org/news/2014-09-ultimate-biofilament- hagfish-slime.html, (October 2014)
- Barker, T.W. The biomimicry manual: What can designers learn from the hagfish about spandex?, http:// inhabitat.com/ebiomimicrymanualwhatcandesigners learnfromthehagfishaboutspandex/, (Haziran 2015)
- Lakhtakia, A., Martin-Palma R.J. (2013). Engineered biomimicry, Elsevier, Waltham.
Yarının Yüksek Performanslı Liflerine Doğal Bir Yaklaşım: Balık Asalağı Salgısı Lifleri
Year 2015,
Volume: 27 Issue: 4, 135 - 142, 06.05.2016
Ece Kalaycı
Ozan Avinç
Arzu Yavaş
Abstract
‘Hiperotreti’ olarak da bilinen balık asalakları kendilerini tehlike altında hissettiklerinde vücutları üzerinde bulunan salgı bezlerinden mukusa benzer bir sıvı salgılar. Bu salgı içerisinde bulunan lifler bugüne dek bilinen en tok liflerden biridir. Yaklaşık 15 cm uzunluğunda ve ortalama 1-3 μm çapında olan bu lifler birçok doğal ve sentetik liften daha üstün özelliklere sahiptir. Balık asalağı salgısı lifleri yapısal özellikleri ile yün ve saç gibi α-keratin içeren diğer doğal protein liflerinden ayrılmaktadır. Kopma mukavemeti de yüksek olan balık asalağı salgısı lifleri oldukça iyi bir esneme kabiliyetine sahiptir. Henüz ticari olarak üretilemeyen bu lifler üzerinde araştırmalar halen devam etmektedir.
References
- Ewoldt, R.H., Winegard T.M., Fudge D.S. (2011). Non-linear viscoelasticity of hagfish slime, International Journal of Non-Linear Mechanics, 46, (4), 627-636.
- Fudge, D.S., Levy N., Chiu S., Gosline J.M. (2005). Composition, morphology and mechanics of hagfish slime, Journal of Experimental Biology, 208, (24), 4613-4625.
- Knight, K. (2014). Adhesive constrains hagfish thread skeins, The Journal of Experimental Biology, 217, (8), 1199-1200.
- Hearle, J.W.S. (2009). 3 - an introduction to protein fibres, In: Eichhorn SJ, Hearle JWS, Jaffe M, Kikutani T (eds) Handbook of textile fibre structure, vol 2. Woodhead Publishing, 95-107.
- Lim, J., Fudge D.S., Levy N., Gosline J.M. (2006). Hagfish slime ecomechanics: Testing the gill-clogging hypothesis, Journal of Experimental Biology, 209, (4), 702-710.
- Winegard, T., Fudge D. (2010). Deployment of hagfish slime thread skeins requires the transmission of mixing forces via mucin strands, The Journal of Experimental Biology, 213, (8), 1235-1240.
- Pinto, N., Yang F.C., Negishi A., Rheinstädter M.C., Gillis T.E., Fudge D.S. (2014). Self-assembly enhances the strength of fibers made from vimentin intermediate filament proteins, Biomacromolecules, 15, (2), 574-581.
- Winegard, T., Herr J., Mena C., Lee B., Dinov I., Bird D., Bernards Jr M., Hobel S., Van Valkenburgh B., Toga A., Fudge D. (2014). Coiling and maturation of a high-performance fibre in hagfish slime gland thread cells, Nature Communications, 5.
- Fudge, D.S. (2002). The biomechanics of intermediate filament-based materials: Insights from hagfish slime threads, University of British Columbia,
- Winegard, T., Herr J., Mena C., Lee B., Dinov I., Bird D., Bernards Jr M., Hobel S., Van Valkenburgh B., Toga A. (2014). Coiling and maturation of a high- performance fibre in hagfish slime gland thread cells, Nature Communications, 5.
- Susan L. Edwards, G.G.G. (2015). Hagfish biology, CRC Press, Boca Raton, FL.
- Simon, M. Absurd creature of the week: This oceanic ‘nightmare’ suffocates foes with clouds of slime, http://www.wired.com/2014/05/absurd-creature-of- the-week-hagfish/, (Haziran 2015)
- Kwok, R. Slime is the new silk, http:// conservationmagazine.org/2013/03/slime-is-the- new-silk/, (October 2014)
- Herr, J.E., Clifford A.M., Goss G.G., Fudge D.S. (2014). Defensive slime formation in pacific hagfish requires ca2+-and aquaporin-mediated swelling of released mucin vesicles, The Journal of Experimental Biology, 217, (13), 2288-2296.
- Kreplak, L., Fudge D. (2007). Biomechanical properties of intermediate filaments: From tissues to single filaments and back, BioEssays, 29, (1), 26-35.
- Hearle, J.W., Morton W.E. (2008). Physical properties of textile fibres, CRC Press, Cambridge.
- Winegard, T., Herr J., Mena C., Lee B., Dinov I., Bird D., Bernards Jr M., Hobel S., Van Valkenburgh B., Toga A., Fudge D. (2014). Coiling and maturation of a high-performance fibre in hagfish slime gland thread cells, Nat Commun, 5.
- Levy, N. (2005). Hagfish slime: Fine-tuning the mechanical properties of a new high performance fiber, University of British Columbia, [28] Ara filament, filament, (Haziran 2015)
- Koch, E.A., Spitzer R.H., Pithawalla R.B., Parry D. (1994). An unusual intermediate filament subunit from the cytoskeletal biopolymer released extracellularly into seawater by the primitive hagfish (eptatretus stouti), Journal of cell science, 107, (11), 3133-3144.
- Yalçın, A. (2012). Posttranslasyonel modifikasyon ve protein fonksiyonu.
- Fudge, D. (2012). Hagfish slime threads, In: The functional fold: Amyloid structures in nature. 15-33.
- Fu, J., Guerette P.A., Miserez A. (2015). Self- assembly of recombinant hagfish thread keratins amenable to a strain-induced α-helix to β-sheet transition, Biomacromolecules, 16, (8), 2327-2339.
- Hearle, J.W.S. (2008). An alternative model for the structural mechanics of hagfish slime threads, International Journal of Biological Macromolecules, 42, (5), 420-428.
- Bernards, M.A., Oke I., Heyland A., Fudge D.S. (2014). Spontaneous unraveling of hagfish slime thread skeins is mediated by a seawater-soluble protein adhesive, The Journal of Experimental Biology, 217, (8), 1263-1268.
- Fudge, D.S., Gardner K.H., Forsyth V.T., Riekel C., Gosline J.M. (2003). The mechanical properties of hydrated intermediate filaments: Insights from hagfish slime threads, Biophysical Journal, 85, (3), 2015-2027.
- Fudge, D.S., Gosline J.M. (2004). Molecular design of the α–keratin composite: Insights from a matrix– free model, hagfish slime threads, Proceedings of the Royal Society of London Series B: Biological Sciences, 271, (1536), 291-299.
- Fudge, D.S., Winegard T., Ewoldt R., Beriault D., Szewciw L., McKinley G. (2009). From ultra- soft slime to hard α-keratins: The many lives of intermediate filaments, Integrative and comparative biology, 49, (1), 32-39.
- Carr, S.M. Secondary protein structure, http://www. mun.ca/biology/scarr/MGA2_03-18b.html, (Haziran 2015)
- Meier, C., Welland M.E. (2011). Wet-spinning of amyloid protein nanofibers into multifunctional high- performance biofibers, Biomacromolecules, 12, (10), 3453-3459.
- Weisman, S., Haritos V.S., Church J.S., Huson M.G., Mudie S.T., Rodgers A.J., Dumsday G.J., Sutherland T.D. (2010). Honeybee silk: Recombinant protein production, assembly and fiber spinning, Biomaterials, 31, (9), 2695-2700.
- Shao, Z., Vollrath F. (1999). The effect of solvents on the contraction and mechanical properties of spider silk, Polymer, 40, (7), 1799-1806.
- Reddy, N., Yang Y. (2014). Innovative biofibers from renewable resources, Springer.
- Hagfish slime as a model for tomorrow’s natural fabrics, http://phys.org/news/2012-11-hagfish-slime- tomorrow-natural-fabrics.html, (October 2014)
- Schaffeld, M., Schultess J. (2006). Genes coding for intermediate filament proteins closely related to the hagfish “thread keratins (tk)” α and γ also exist in lamprey, teleosts and amphibians, Experimental Cell Research, 312, (9), 1447-1462.
- Riemer, D., Weber K. (1998). Common and variant properties of intermediate filament proteins from lower chordates and vertebrates; two proteins from the tunicate styela and the identification of a type iii homologue, Journal of cell science, 111, (19), 2967- 2975.
- Hewitt, J. The ultimate biofilament: Hagfish slime, http://phys.org/news/2014-09-ultimate-biofilament- hagfish-slime.html, (October 2014)
- Barker, T.W. The biomimicry manual: What can designers learn from the hagfish about spandex?, http:// inhabitat.com/ebiomimicrymanualwhatcandesigners learnfromthehagfishaboutspandex/, (Haziran 2015)
- Lakhtakia, A., Martin-Palma R.J. (2013). Engineered biomimicry, Elsevier, Waltham.