Research Article
BibTex RIS Cite

Humik asitlerin stres altındaki bitkilerin büyümesine ve besleyicilerin alınmasına etkileri I: Tuzluluk

Year 2017, Volume: 29 Issue: 4, 134 - 143, 31.12.2017
https://doi.org/10.7240/marufbd.319900

Abstract

Organik maddeler, karbon grubuna sahip bileşiklerdir ve canlıların
yapısını oluştururlar. Ölen canlıların (detritus) artıklarıdır ve/veya
yerkabuğunun doğal bileşenidir. Humik asitler rengi kahverengiden siyaha
değişen kompleks, değişik sayıda karbon atomu taşıyan humus maddeler olarak
tanımlanır. Sağlıklıverimli, yaşayan bir toprak, milyarlarca mikroskobik yaşam
formlarınının devamlılığı için yeterli karbonu bulundurmalıdır. Humik maddeler
yararlı toprak organizmaları için etkili enerji kaynaklarıdır. Karbon yanında
oksijen, hidrojen, nitrojen ve sülfür içerirler. Humik asitler toprağın su
tutma kapasitesini, katyon ve anyon değişimini arttırması, toprak taneciklerinin
arasında gevşemeyi ve toprak sıcaklığını dengelemesi ile bitki gelişimini
desteklemektedir. Humik asitlerin, susuzluk, tuzluluk ve bazı toksik
elementlerin neden olduğu stres faktörlerine karşı kullanıldığı çok sayıda
araştırma bulunmaktadır. Çalışmanın bu bölümü, humik asitlerin tuz stresi
altındaki bitkilerdeki rollerini belirleyen araştırmaları derleme amaçlıdır. 

References

  • [1] Sharif, M., Khattak, R.A. ve Sarir, M.S. (2002). Effect of different levels of lignitic coal derived humic acid on growth of maize plants. Communications in Soil Science and Plant Analysis, 33, 3567-3580. [2] Karaca, A., Turgay, O.C. ve Tamer, N. (2006). Effects of a humic deposit (gyttja) on soil chemical and microbiological properties and heavy metal availability. Biology and Fertility of Soils, 42, 585-592.
  • [3] Selim, E.M.ve Mosa, A.A. (2012). Fertigation of humic substances improves yield and quality of broccoli and nutrient retention in a sandy soil. Journal of Plant Nutrition and Soil Science, 175, 273-281.
  • [4] Bastida, F., Kandeler, E., Hernandez, T., Garcia, C. (2008). Long-term effect of municipal solid waste amendment on microbial abundance and humus associated enzyme activities under semiarid conditions. Microbial Ecology, 55, 651-661. [5] Fu Jiu C, Dao Qi, Y. ve Quing Sheng, W. (1995). Physiological effects of humic acid on drought resistance of wheat, Ying yong Sheng tai Xue bao, 6, 363-367. [6] Stevenson, F.J. (1994). Humus Chemistry, Genesis, Composition, Reactions. John Wiley and Sons, New York. [7] Sangeetha, M., Singaram, P. ve Devi, R.D. (2006). Effect of lignite humic acid and fertilizers on the yield ofonion and nutrient availability. Proceedings of 18th World Congress of Soil Science July 9-15, Philadelphia Pennsylvania, USA. [8] Serenella, N., Pizzeghelloa, D., Muscolob, A., Vianello, A. (2002). Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, 34, 1527-1536.
  • [9] Rengrudkij, P.H.ve Partida, G.J. (2003). The effects of humic acid and phosphoric acid on grafted Hass avocado on Mexican seedling rootstocks. Actas V Congreso Mundial del Aguacate. pp 395-400. [10] Nardi, S., Tosoni, M., Pizzeghello, D., Provenzano, M.R., Cilenti, A., Sturaro, A., Rella, R.ve Vianello, A. (2005). Chemicalcharacteristics and biological activity of organic substances extracted from soils by root exudates. Soil Science Society of America Journal, 69, 2012-2019.
  • [11] Trevisan, S., Pizzeghello, D., Ruperti, B., Francioso, O., Sassi, A., Palme, K., Quaggiotti, S. ve Nardi, S. (2009). Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biology, 12, 604-614. [12] Pettit, R.E. (2004). Organic matter, humus, humate, humic acid, fulvic acid and humin: Their importance in soil fertility and plant health. CTI Research. [Available at www.humate.info/mainpage.htm.]. [13] Kulikova, N.A., Stepanova, E.V., Koroleva, O.V. (2005). Mitigating activity of humic substances: Direct Influence on Biota. In: Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice, NATO Science Series IV: Earth and Environmental Series, Perminova, I.V. (Eds). Kluwer Academic Publishers, USA, pp. 285-309. [14] Xudan, X. (1986). The effect of foliar application of fulvic acid on water use, nutrient uptake and wheat yield. Australian Journal of Agricultural Research, 37: 343-350.
  • [15] Akıncı, Ş. (2011). Hümik Asitler, Bitki Büyümesi ve Besleyici Alımı. Marmara Üniversitesi Fen Bilimleri Dergisi, 23(1), 46‐56. [16] Dell’Amico, C., Masciandaro, G., Ganni, A., Ceccanti, B., Garcia, C., Hernandez, T., Costa, F. (1994). Effects of specific humic fractions on plant growth. In Humic Substances in the Global Environment and Implications on Human Health; Senesi, N., Miano, T.M., Eds.; Elsevier Science: Amsterdam, The Netherlands, pp. 563-566. [17] Garcia, C., Hernandez, T., Costa, F., Ceccanti, B., Dell’Amico, C. (1992) Characterization of the Organic Fractions of an Uncomposted and Composted Sewage Sludge by Isoelectric Focusing and Gel-filtration. Biology and Fertility of Soils, 13, 112-118.
  • [18] Vaughan, D. (1985). Effect of Humic Substances on Metabolic Processes in Plants. In Humic Substances Effects on Soil and Plants; Burns, R.G., Dell’Agnola, S., Miele, S., Nardi, G., Savoini, G., Schnitzer, M. Sequi, P., Vaughan, D., Visser, S.A. Eds.; Reda: Roma, pp. 54-77. [19] Bohme, M., Thi Lua, H. (1997). Influence of mineral and organic treatments in the rhizosphere on the growth of tomato plants. Acta Horticulture, 450, 161-168. [20] Tan, K.H. (2003). Humic Matter in Soil and Environment, Principles and Controversies. Marcel Dekker, Inc., Madison, New York. [21] Saruhan, V., Kusvuran, A. ve Kokten, K. (2011). The effect of different replications of humic acid fertilization on yield performances of common vetch (Vicia sativa L.). African Journal of Biotechnology, 10, 5587-5592.
  • [22] Daur, I. ve Bakhashwain, A.A. (2013). Effect of humic acid on growth and quality of maize fodder production. Pakistan Journal of Botany, 45, 21-25. [23] Vaughan, D. (1974). Possible mechanism for humic acid action on cell elongation in root segments of Pisum sativum under aseptic conditions. Soil Biology and Biochemistry, 6, 241-247.
  • [24] Cacco, G. ve Dell’Agnolla, G. (1984). Plant growth regulator activity of soluble humic substances. Canadian Journal of Soil Science, 64, 25- 28. [25] Russo, R.O., Berlyn, G.P. (1990). The use of organic biostimulants to help low input sustainable agriculture. Journal of Sustainable Agriculture, 1, 19-42.
  • [26] Masciandaro, G., Ceccanti, B., Ronchi, V., Benedicto, S., Howard, L. (2002). Humic substances to reduce salt effect on plant germination and growth. Communications in Soil Science and Plant Analysis, 33, 365-378.
  • [27] Padem, H., Ocal, A., Alan, R. (1997). Effect of humic acid added foliar fertilizer on seedling quality and nutrient content of eggplant and pepper. ISHS Symposium on Greenhouse Management for Better Yields and Quality in Mild Winter Climates, 3-5 November 1997. Acta Horticulturae, 491, 241-246. [28] Aydin, A., Turan, M., Sezen, Y. (1999). Effect of fulvic-humic acid application on yield and nutrient uptake in sunflower and corn. Improved Crop Quality by Nutrient Management (pp. 249-252). Boston, London: Kluwer Acedemic Publishers Dordrecht. [29] Akinremi, O.O., Janzen, H.H., Lemke, R.L., Larney, F.J. (2000). Response of canola, wheat and green beans to leonardite additions. Canadian Journal of Soil Science, 80, 437-443
  • [30] Dursun, A., Guvenc, I., Turan, M. (2002). Effects of different levels of humic acid on seedling growth and macro and micronutrient contents of tomato and eggplant. Acta Agrobotanica, 56, 81-88. [31] Cimrin, K.M., Yilmaz, I. (2005). Humic acid applications to lettuce do not improve yield but do improve phosphorus availability. Acta Agriculturae Scandinavica, Section B, Soil and Plant Sci, 55, 58-63. [32] Chen, Y., Aviad, T. (1990). Effect of Humic Substances on Plant Growth, p. 161-187. In: MacCarthy P, Clapp CE, Malcolm RL, Bloom PR (Eds.). Humic substances in soil and crop sciences: selected reading. Soil Science Society Am, Madison. [33] Varanini, Z., Pinton, R. (1995). Humic substances and plant nutrition. Progress in Botany, 56, 97-117.
  • [34] Eyheraguibel, B., Silvestre, J. ve Morard, P. (2008). Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresource Technology, 99, 4206-4212.
  • [35] Pinton, R., Varanini, Z., Nannipieri, P. (2007). The rhizosphere: Biochemistry and organic substances at the soil-plant interface. 2nd edn. CRC Press, Madison, P.447.
  • [36] Chen, Y., Clapp, C.E., Magen, H. (2004). Mechanisms of plant growth stimulation by humic substances: The role of organo iron complexes. Soil Science and Plant Nutrition, 50, 1089-1095.
  • [37] Jones, C.A., Jacobsen, J.S. ve Mugaas, A. (2007). Effect of low rate commercial humic acid on phosphorus availability, micronutrient uptake, and spring wheat yield. Communications in Soil Science and Plant Analysis, 38, 921-933. [38] Arjumend, T., Abbasi, M. K., Rafique, E. (2015). Effects of lignite-derived humic acid on some selected soil properties, growth and nutrient uptake of wheat (Triticum aestivum L.) grown under greenhouse conditions. Pakistan Journal of Botany, 47(6), 2231-2238. [39] Tahir, M.M., Khurshid, M., Khan, M.Z., Abbasi, M.K.ve Kazmi, M.H. (2011). Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere, 21, 124-131. [40] Hai, S.M. ve Mir, S. (1998). The lignitic coal derived HA and the prospective utilization in Pakistan agriculture and industry. Science, Technology and Development, 17, 32-40.
  • [41] Vaughan, D.ve Ord, B.G. (1991). Influence of natural and synthetic humic substances on the activity of urease. European Journal of Soil Science, 42, 17-23.
  • [42] Hua, Q.X., Li, J.Y., Zhou, J.M., Wang, H.Y., Du, C.W. ve Chen, X.Q. (2008). Enhancement of phosphorus solubility by humic substances in ferrosols. Pedosphere, 18, 533-538.
  • [43] Turgay, O.C., Karaca, A., Unver, S.ve Tamer, N. (2011). Effects of coal- derived humic substance on some soil properties and bread wheat yield. Communications in Soil Science and Plant Analysis, 42, 1050-1070. [44] Padem, H.ve Ocal, A. (1999). Effect of humic acid applications on yield and some characteristics of processing tomato. Acta Horticulturae, 487, 159-163. [45] Neri, D., Lodolini, E.M., Savini, G., Sabbatini, P., Bonanomi, G.ve Zucconi, F. (2002). Foliar application of humic acid on strawberry (cv. Onda). Acta Horticulturae, 594, 297-302. [46] El-Desuki, M. (2004). Response of onion plants to humic acid and mineral fertilizers application. Annals of Agricultural Sciences, Moshtohor, 42(4), 1955-1964.
  • [47] Pollhamer, Z. (1993). Effect of humic acid, fulvic acid and NPK fertilizer on the quality of winter wheat varieties on chemical-free soil (in Hungarian), Novenytermeles 42, 447-455. [48] Saha, R., Saieed, M. A. U., Chowdhury, M. A. K. ve Chowdhury, M. A. H. (2014). Influence of humic acid and poultry manure on nutrient content and their uptake by T. aman rice. .Journal of the Bangladesh Agricultural University, 12(1), 19-24. [49] Chen, Y., Magen, H. ve Clapp, C. E. (2001). Plant growth stimulation by humic substances and their complexes with iron. Proceedings of International Fertiliser Society, Israel. pp 14. [50] Aydin, A., Kant, C., Turan, M. (2012). Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. African Journal of Agricultural Research, 7, 1073-1086. [51] Reddy, M.P., Vora, A.B. (1986). Changes in pigment composition, hill reaction activity and saccharides metabolism in bajra (Pennisetum typhoides S&H) leaves NaCl salinity. Photosynthica, 20, 50-55. [52] Yeo, A.R., Flowers, T.J. (1983). Varietals differences in the toxicity of sodium ions in rice leaves. Physiologia Plantarum, 59, 189-195. [53] Turan, M.A., Asik, B.B., Katkat, A.V. ve Celik, H. (2011). The effects of soil-applied humic substances to the dry weight and mineral nutrient uptake of maize plants under soil salinity conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(1), 171-177.
  • [54] Lutts, S., Kinet, J.M., Bouharmont, J. (1996). Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regulation,19, 207-218.
  • [55] Inal, A., Gunes, A., Alpaslan, M. (1997). The effect of increasing levels of NaCl on fresh and weight, chlorophyll, proline, and mineral constituents of tomato grown on peat-perlite medium. Turkish Journal of Agriculture and Forestry, 21, 95-99.
  • [56] Villora, G, Diego, A., Pulgar, G., Romero, L. (2000). Yield improvement in zucchini under salt stress: determining micronutrient balance. Scientia Horticulturea, 86, 175-183. [57] Kaya, C., Bekir, D., Erol, A.K., Higgs, D., Murillo-Amador, B. (2002). Influence of foliar-applied calcium nitrate on strawberry plants grown under salt stressed conditions. Australian Journal of Experimental Agriculture, 42, 631-636.
  • [58] Turan, M., Aydın, A. (2005). Effects of different salt sources on growth, inorganic ions and proline accumulation in corn (Zea mays L.). European Journal of Horticultural Science, 70, 149-155.
  • [59] Grattan, S.R., Grieve, C.M. (1999). Mineral nutrient acquisition and response by plants grown in saline environments. In: Pessarakli M. (ed.): Handbook of Plant and Crop Stress. Marcel Dekker, New York: 203-229.
  • [60] Benlloch-Gonzalez, M., Fournier, J.M., Ramos, J., Benlloch, M. (2005). Strategies underlying salt tolerance in halophytes are present in Cynara cardunculus. Plant Science, 168, 653-659.
  • [61] Turan, M.A., Türkmen, N., Taban, S. (2007a). Effect of NaCl on stomatal resistance and proline, chlorophyll, Na, Cl and K concentrations of lentil plants. Journal of Agronomy, 6, 378-381.
  • [62] Turan, M.A., Katkat, A.V., Taban, S, (2007b). Variations in proline, chlorophyll and mineral elements contents of wheat plants grown under salinity stress. Journal of Agronomy, 6, 137-141.
  • [63] Dhanapackiam, S. ve Ilyas, M. (2010). Effect of salinity on chlorophyll and carbohydrate contents of Sesbania grandi flora seedlings. Indian Journal of Science and Technology, 3(1), 64-66.
  • [64] Alam, S.M. (1994). Nutrient uptake by plants under stress conditions. In: Handbook of plants and crop stress. Edited by M. Pessarakli. Mercel Dekker, Inc. New York
  • [65] Navarro, J.M., Botella, M.A., Cerda, A., Martinez, V. (2001). Phosphorus uptake and translocation in salt-stressed melon plants. Journal of Plant Physiology, 158, 375-381.
  • [66] Lopez, M.V. ve Satti, S.M.E. (1996). Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress. Plant Science, 114, 19-27. [67] Yermiyahu, U., Nir, S., Ben-Hayyim, G., Kafkafi, U. ve Kinraide, B. (1997). Root elongation in saline solution related to calcium binding to root cell plasma membranes. Plant Soil, 191, 67-76.
  • [68] Francois, L.E. ve Maas, E.V. (1999). Crop response and management of salt affected soils. In: Hand Book of Plant and Crop Stress. (Eds.): M. Pessarakli. Marcel Dekker, Inc., New York, pp. 169-201.
  • [69] Mayhew, L. (2004). Humic substances in biological agriculture [Online] .Available at www.acresusa.com / toolbox / reprints/ Jan04_Humic% 20Substances.pdf. [70] Daur, L. (2014). Effect of humic acid on growth, protein and mineral composition of pearl millet [Pennisetum glaucum (L.) r.br.] fodder. Pakistan Journal of Botany, 46, 505-509.
  • [71] Delfine, S., Tognetti, R., Desiderio, E.ve Alvino, A. (2005). Effect of foliar application of nitrogen and humic acids on growth and yield of durum wheat. Agronomy for Sustainable Development, 25, 183-191.
  • [72] Nikbakht, A., Kafi, M., Babalar, M., Xia, Y.P., Luo, A.ve Etemadi, N. (2008). Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. Journal of Plant Nutrition, 31, 2155-2167.
  • [73] Haghighi, M., Nikbakht, A., Xia, Y.P.ve Pessarakli, M. (2014). Influence of humic acid in diluted nutrient solution on growth, nutrient efficiency, and postharvest attributes of gerbera. Communications in Soil Science and Plant Analysis, 45, 177-188.
  • [74] Çelik, H., Katkat, A.V., Asik, B.B. ve Turan, M.A. (2011). Effect of foliar applied humic acid to dry weight and mineral nutrient uptake of maize under calcareous soil conditions. Communications in Soil Science and Plant Analysis, 45, 29-38.
  • [75] El-Nemr, M.A., El-Desuki, M., El-Bassiony, A.M. ve Fawzy, Z.F. (2012). Response of growth and yield of cucumber plants (Cucumis sativus L.) to different foliar applications of humic acid and bio-stimulators. Australian Journal of Basic and Applied Sciences, 6, 630-637. [76] Mohamed, W.H. (2012). Effects of humic acid and calcium forms on dry weight and nutrient uptake of maize plant under saline condition. Australian Journal of Basic Applied Science, 6, 597-604. [77] Pilanali, N., Kaplan, M. (2003). Investigation of effect on nutrient uptake of humic acid applications of different forms to strawberry plant. Journal of Plant Nutrition, 26, 835-843. [78] Turkmen, O., Dursun, A., Turan, M. ve Erdinc, C. (2004). Calcium and humic acid affect seed germination, growth and nutrient content of tomato (Lycopersicon esculentum L.) seedlings under saline soil conditions. Acta Agriculturae Scandinavica, Section B- Plant Soil Science, 54(3), 168-174.
  • [79] Cimrin, K.M., Önder, T., Turan, M., Burcu, T. (2010) Phosphorus and humic acid application alleviate salinity stress of pepper seedling. African Journal of Biotechnology, 9, 5845-5851.
  • [80] Fahramand, M., Moradi, H., Noori, M., Sobhkhizi, A., Adibian, M., Abdollahi, S. ve Rigi, K. (2014). Influence of humic acid on increase yield of plants and soil properties. International and Journal of Farming and Allied Sciences, 3, 339-341. [81] Khaled, H., Fawy, H.A. (2011). Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research, 6, 21-29.
  • [82] Fagbenro, J.A., Agboda, A.A. (1993) .Effect of different levels of humic acid on the growth and nutrient uptake of teak seedlings. Journal of Plant Nutrition,16, 1465-1483.
  • [83] David, P.P., Nelson, P.V.ve Sanders, D.C. (1994). A humic acid improves growth of tomato seedling in solution culture. Journal of Plant Nutrition, 17, 173-184.
  • [84] Zientara, M, (1983). Effect of sodium humate on membrane potential in internodal cells of Nitellopsis obtuse. Acta Societatis Botanicorum Poloniae, 52, 271-277. [85] Taylor, C.B. (1996). Proline and water deficit: ups, downs, ins and outs. The Plant Cell, 8, 1221-1224. [86] Demir, Y., Oztürk, L. (2003). Influence of ethephon and 2,5- norbornadiene on antioxidative enzymes and proline content in salt stressed spinach leaves. Biologia Plantarum, 47, 609-612.
  • [87] Jiménez-Bremont, J.F., Becerra-Flora, A., Hernández-Lucero, E., Rodríguez-Kessler, M., Acosta-Gallegos, J.A., Ramírez-Pımentel, J.G. (2006). Proline accumulation in two bean cultivars under salt stress and the effect of polyamins and arnithine. Biologia Plantarum, 50, 763-766
  • [88] Trotel, P., Bouchereau, A., Niogret, M.F., Larher, F. (1996). The fate of osmoaccumulated proline in leaf discs of rape (Brassica napus L.) incubated in a medium of low osmolarity. Plant Science, 118, 31-45. [89] Botella, M.A., Cerda, A., Lips, S.H. (1994). Kinetics of NO3- and NH4+ uptake by wheat seedlings: effect of salinity and nitrogen source. Journal of Plant Physiology, 144, 53-57.
  • [90] Liu, C. (1998). Effects of humic substances on creeping bentgrass growth and stress tolerance., North Carolina State Univ., PhD Thesis, Philosophy Department of Crop Science. [91] Asik, B.B., Turan, M.A., Celik, H., Katkat, V.A. (2009). Effect of humic substances on plant growth and mineral nutrients uptake of wheat (Triticum durum cv. ‘Salihli’) under conditions of salinity. Asian Journal of Crop Science, 1, 87-95.
  • [92] Arancon, N.Q., Edwards, C.A, Lee, S., Byrne, R. (2006). Effects of humic acids from verrnicomposts on plant growth. European Journal of Soil Biology, 42, 65-69.
  • [93] Çelik, H., Katkat, A.V., Aşik, B.B. ve Turan, M.A. (2010). Effect of humus on growth and nutrient uptake of maize under saline and calcareous conditions. Agriculture, 97(4), 15-22. [94] Gumuzzıo, J., Polo, A., Dıaz, M.A. ve Ibanez, J.J. (1985). Ecological Aspects of Humification in Saline Soils in Central Spain. Reuved' Ecologie el de Biologic du Sd, 22(2), 193-203.
  • [95] Wallace, A., Wallace, G. A.ve Abouzamzam, A. M. (1986). Amelioration of sodic soils with polymers. Soil Science, 141, 359-362.
  • [96] Lee, Y.S. ve Bartlett, R.J. (1976). Stimulation of plant growth by humic substances. Soil Science Society of American Journal, 40, 876-879.
  • [97] Büyükkeskin, T. (2008). Hümik Asitin Vicia faba L. (Bakla) da Fide Gelişimine ve Alüminyum Toksisitesine Etkisinin Belirlenmesi, Doktora tezi, M.Ü Fen Bilimleri Enstitüsü, İstanbul. [98] Akıncı, Ş., Büyükkeskin, T., Eroğlu, A., Erdoğan, B. E. (2009). The Effect of Humic Acid on Nutrient Composition in Broad Bean (Vicia faba L.) Roots, Notulae Scientia Biologicae, 1(1), 81-87.
  • Büyükkeskin, T., Akıncı, Ş. (2011). The Effects of Humic Acid on Above-Ground Parts of Broad Bean (Vicia faba L.) Seedlings Under Al3+ Toxicity, Fresenius Environmental Bulletin, 20(3), 539-548.[100] Kirn, A., Kashif, S.R. ve Yaseen, M. (2010). Using indigenous humic acid from lignite to increase growth and yield of okra (Abelmoschus esculentus L.). Soil & Environment, 29, 187-191.
  • [101] Tan, K. H., Binger, A. (1986). Effect of humic acid on aluminum toxicity in corn plants. Soil Science, 141, 20-25.
  • [102] Harper, S.M., Edwards, D.G., Kerven, G.L.ve Asher, C.J. (1995). Effects of organic acid fractions extracted from Eucalyptus camaldulensis leaves on root elongation of maize (Zea mays) in the presence and absence of aluminium. Plant Soil, 171, 189-192.
  • [103] Gardner, J.L., Al-Hamdani, S. (1997). Interactive effects of aluminum and humic substances on Salvinia. Journal of Aquatic Plant Management, 35, 30-34.
  • [104] Hartz, T.K. ve Bottoms, T.G. (2010). Humic substances generally ineffective in improving vegetable crop nutrient uptake or productivity. Horticultural Science, 45(6), 906-910.

The effects of humic acids on plant growth and nutrients uptake under stress I: Salinity

Year 2017, Volume: 29 Issue: 4, 134 - 143, 31.12.2017
https://doi.org/10.7240/marufbd.319900

Abstract

Organic matters are compounds having carbon group and exist in the
structure of organisms. They are residues of detritus and/or natural component
of earth crust. Humic acids are defined that complex matters of humus having
various numbers of carbon atom and its colour changed from brown to black. A
healthy fertile living soil must contain carbon
adequately for continuity of billions of microscopic life
forms. Humic substances are effective energy sources for useful soil organisms.
It contains oxygen, hydrogen, nitrogen and sulphur in addition to carbon. Humic
acids support plant growth by increasing soil water retention capacity, cation
and anion exchange, loosing in soil particles interaction and stabilising soil
temperature. There are many reports available that humic acids have been used
against stress factors caused by such as drought, salinity and some toxic
elements. This part of study was aimed to review to determine roles of humic
acids on plants under salinity stress.

References

  • [1] Sharif, M., Khattak, R.A. ve Sarir, M.S. (2002). Effect of different levels of lignitic coal derived humic acid on growth of maize plants. Communications in Soil Science and Plant Analysis, 33, 3567-3580. [2] Karaca, A., Turgay, O.C. ve Tamer, N. (2006). Effects of a humic deposit (gyttja) on soil chemical and microbiological properties and heavy metal availability. Biology and Fertility of Soils, 42, 585-592.
  • [3] Selim, E.M.ve Mosa, A.A. (2012). Fertigation of humic substances improves yield and quality of broccoli and nutrient retention in a sandy soil. Journal of Plant Nutrition and Soil Science, 175, 273-281.
  • [4] Bastida, F., Kandeler, E., Hernandez, T., Garcia, C. (2008). Long-term effect of municipal solid waste amendment on microbial abundance and humus associated enzyme activities under semiarid conditions. Microbial Ecology, 55, 651-661. [5] Fu Jiu C, Dao Qi, Y. ve Quing Sheng, W. (1995). Physiological effects of humic acid on drought resistance of wheat, Ying yong Sheng tai Xue bao, 6, 363-367. [6] Stevenson, F.J. (1994). Humus Chemistry, Genesis, Composition, Reactions. John Wiley and Sons, New York. [7] Sangeetha, M., Singaram, P. ve Devi, R.D. (2006). Effect of lignite humic acid and fertilizers on the yield ofonion and nutrient availability. Proceedings of 18th World Congress of Soil Science July 9-15, Philadelphia Pennsylvania, USA. [8] Serenella, N., Pizzeghelloa, D., Muscolob, A., Vianello, A. (2002). Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, 34, 1527-1536.
  • [9] Rengrudkij, P.H.ve Partida, G.J. (2003). The effects of humic acid and phosphoric acid on grafted Hass avocado on Mexican seedling rootstocks. Actas V Congreso Mundial del Aguacate. pp 395-400. [10] Nardi, S., Tosoni, M., Pizzeghello, D., Provenzano, M.R., Cilenti, A., Sturaro, A., Rella, R.ve Vianello, A. (2005). Chemicalcharacteristics and biological activity of organic substances extracted from soils by root exudates. Soil Science Society of America Journal, 69, 2012-2019.
  • [11] Trevisan, S., Pizzeghello, D., Ruperti, B., Francioso, O., Sassi, A., Palme, K., Quaggiotti, S. ve Nardi, S. (2009). Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biology, 12, 604-614. [12] Pettit, R.E. (2004). Organic matter, humus, humate, humic acid, fulvic acid and humin: Their importance in soil fertility and plant health. CTI Research. [Available at www.humate.info/mainpage.htm.]. [13] Kulikova, N.A., Stepanova, E.V., Koroleva, O.V. (2005). Mitigating activity of humic substances: Direct Influence on Biota. In: Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice, NATO Science Series IV: Earth and Environmental Series, Perminova, I.V. (Eds). Kluwer Academic Publishers, USA, pp. 285-309. [14] Xudan, X. (1986). The effect of foliar application of fulvic acid on water use, nutrient uptake and wheat yield. Australian Journal of Agricultural Research, 37: 343-350.
  • [15] Akıncı, Ş. (2011). Hümik Asitler, Bitki Büyümesi ve Besleyici Alımı. Marmara Üniversitesi Fen Bilimleri Dergisi, 23(1), 46‐56. [16] Dell’Amico, C., Masciandaro, G., Ganni, A., Ceccanti, B., Garcia, C., Hernandez, T., Costa, F. (1994). Effects of specific humic fractions on plant growth. In Humic Substances in the Global Environment and Implications on Human Health; Senesi, N., Miano, T.M., Eds.; Elsevier Science: Amsterdam, The Netherlands, pp. 563-566. [17] Garcia, C., Hernandez, T., Costa, F., Ceccanti, B., Dell’Amico, C. (1992) Characterization of the Organic Fractions of an Uncomposted and Composted Sewage Sludge by Isoelectric Focusing and Gel-filtration. Biology and Fertility of Soils, 13, 112-118.
  • [18] Vaughan, D. (1985). Effect of Humic Substances on Metabolic Processes in Plants. In Humic Substances Effects on Soil and Plants; Burns, R.G., Dell’Agnola, S., Miele, S., Nardi, G., Savoini, G., Schnitzer, M. Sequi, P., Vaughan, D., Visser, S.A. Eds.; Reda: Roma, pp. 54-77. [19] Bohme, M., Thi Lua, H. (1997). Influence of mineral and organic treatments in the rhizosphere on the growth of tomato plants. Acta Horticulture, 450, 161-168. [20] Tan, K.H. (2003). Humic Matter in Soil and Environment, Principles and Controversies. Marcel Dekker, Inc., Madison, New York. [21] Saruhan, V., Kusvuran, A. ve Kokten, K. (2011). The effect of different replications of humic acid fertilization on yield performances of common vetch (Vicia sativa L.). African Journal of Biotechnology, 10, 5587-5592.
  • [22] Daur, I. ve Bakhashwain, A.A. (2013). Effect of humic acid on growth and quality of maize fodder production. Pakistan Journal of Botany, 45, 21-25. [23] Vaughan, D. (1974). Possible mechanism for humic acid action on cell elongation in root segments of Pisum sativum under aseptic conditions. Soil Biology and Biochemistry, 6, 241-247.
  • [24] Cacco, G. ve Dell’Agnolla, G. (1984). Plant growth regulator activity of soluble humic substances. Canadian Journal of Soil Science, 64, 25- 28. [25] Russo, R.O., Berlyn, G.P. (1990). The use of organic biostimulants to help low input sustainable agriculture. Journal of Sustainable Agriculture, 1, 19-42.
  • [26] Masciandaro, G., Ceccanti, B., Ronchi, V., Benedicto, S., Howard, L. (2002). Humic substances to reduce salt effect on plant germination and growth. Communications in Soil Science and Plant Analysis, 33, 365-378.
  • [27] Padem, H., Ocal, A., Alan, R. (1997). Effect of humic acid added foliar fertilizer on seedling quality and nutrient content of eggplant and pepper. ISHS Symposium on Greenhouse Management for Better Yields and Quality in Mild Winter Climates, 3-5 November 1997. Acta Horticulturae, 491, 241-246. [28] Aydin, A., Turan, M., Sezen, Y. (1999). Effect of fulvic-humic acid application on yield and nutrient uptake in sunflower and corn. Improved Crop Quality by Nutrient Management (pp. 249-252). Boston, London: Kluwer Acedemic Publishers Dordrecht. [29] Akinremi, O.O., Janzen, H.H., Lemke, R.L., Larney, F.J. (2000). Response of canola, wheat and green beans to leonardite additions. Canadian Journal of Soil Science, 80, 437-443
  • [30] Dursun, A., Guvenc, I., Turan, M. (2002). Effects of different levels of humic acid on seedling growth and macro and micronutrient contents of tomato and eggplant. Acta Agrobotanica, 56, 81-88. [31] Cimrin, K.M., Yilmaz, I. (2005). Humic acid applications to lettuce do not improve yield but do improve phosphorus availability. Acta Agriculturae Scandinavica, Section B, Soil and Plant Sci, 55, 58-63. [32] Chen, Y., Aviad, T. (1990). Effect of Humic Substances on Plant Growth, p. 161-187. In: MacCarthy P, Clapp CE, Malcolm RL, Bloom PR (Eds.). Humic substances in soil and crop sciences: selected reading. Soil Science Society Am, Madison. [33] Varanini, Z., Pinton, R. (1995). Humic substances and plant nutrition. Progress in Botany, 56, 97-117.
  • [34] Eyheraguibel, B., Silvestre, J. ve Morard, P. (2008). Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresource Technology, 99, 4206-4212.
  • [35] Pinton, R., Varanini, Z., Nannipieri, P. (2007). The rhizosphere: Biochemistry and organic substances at the soil-plant interface. 2nd edn. CRC Press, Madison, P.447.
  • [36] Chen, Y., Clapp, C.E., Magen, H. (2004). Mechanisms of plant growth stimulation by humic substances: The role of organo iron complexes. Soil Science and Plant Nutrition, 50, 1089-1095.
  • [37] Jones, C.A., Jacobsen, J.S. ve Mugaas, A. (2007). Effect of low rate commercial humic acid on phosphorus availability, micronutrient uptake, and spring wheat yield. Communications in Soil Science and Plant Analysis, 38, 921-933. [38] Arjumend, T., Abbasi, M. K., Rafique, E. (2015). Effects of lignite-derived humic acid on some selected soil properties, growth and nutrient uptake of wheat (Triticum aestivum L.) grown under greenhouse conditions. Pakistan Journal of Botany, 47(6), 2231-2238. [39] Tahir, M.M., Khurshid, M., Khan, M.Z., Abbasi, M.K.ve Kazmi, M.H. (2011). Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere, 21, 124-131. [40] Hai, S.M. ve Mir, S. (1998). The lignitic coal derived HA and the prospective utilization in Pakistan agriculture and industry. Science, Technology and Development, 17, 32-40.
  • [41] Vaughan, D.ve Ord, B.G. (1991). Influence of natural and synthetic humic substances on the activity of urease. European Journal of Soil Science, 42, 17-23.
  • [42] Hua, Q.X., Li, J.Y., Zhou, J.M., Wang, H.Y., Du, C.W. ve Chen, X.Q. (2008). Enhancement of phosphorus solubility by humic substances in ferrosols. Pedosphere, 18, 533-538.
  • [43] Turgay, O.C., Karaca, A., Unver, S.ve Tamer, N. (2011). Effects of coal- derived humic substance on some soil properties and bread wheat yield. Communications in Soil Science and Plant Analysis, 42, 1050-1070. [44] Padem, H.ve Ocal, A. (1999). Effect of humic acid applications on yield and some characteristics of processing tomato. Acta Horticulturae, 487, 159-163. [45] Neri, D., Lodolini, E.M., Savini, G., Sabbatini, P., Bonanomi, G.ve Zucconi, F. (2002). Foliar application of humic acid on strawberry (cv. Onda). Acta Horticulturae, 594, 297-302. [46] El-Desuki, M. (2004). Response of onion plants to humic acid and mineral fertilizers application. Annals of Agricultural Sciences, Moshtohor, 42(4), 1955-1964.
  • [47] Pollhamer, Z. (1993). Effect of humic acid, fulvic acid and NPK fertilizer on the quality of winter wheat varieties on chemical-free soil (in Hungarian), Novenytermeles 42, 447-455. [48] Saha, R., Saieed, M. A. U., Chowdhury, M. A. K. ve Chowdhury, M. A. H. (2014). Influence of humic acid and poultry manure on nutrient content and their uptake by T. aman rice. .Journal of the Bangladesh Agricultural University, 12(1), 19-24. [49] Chen, Y., Magen, H. ve Clapp, C. E. (2001). Plant growth stimulation by humic substances and their complexes with iron. Proceedings of International Fertiliser Society, Israel. pp 14. [50] Aydin, A., Kant, C., Turan, M. (2012). Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. African Journal of Agricultural Research, 7, 1073-1086. [51] Reddy, M.P., Vora, A.B. (1986). Changes in pigment composition, hill reaction activity and saccharides metabolism in bajra (Pennisetum typhoides S&H) leaves NaCl salinity. Photosynthica, 20, 50-55. [52] Yeo, A.R., Flowers, T.J. (1983). Varietals differences in the toxicity of sodium ions in rice leaves. Physiologia Plantarum, 59, 189-195. [53] Turan, M.A., Asik, B.B., Katkat, A.V. ve Celik, H. (2011). The effects of soil-applied humic substances to the dry weight and mineral nutrient uptake of maize plants under soil salinity conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(1), 171-177.
  • [54] Lutts, S., Kinet, J.M., Bouharmont, J. (1996). Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regulation,19, 207-218.
  • [55] Inal, A., Gunes, A., Alpaslan, M. (1997). The effect of increasing levels of NaCl on fresh and weight, chlorophyll, proline, and mineral constituents of tomato grown on peat-perlite medium. Turkish Journal of Agriculture and Forestry, 21, 95-99.
  • [56] Villora, G, Diego, A., Pulgar, G., Romero, L. (2000). Yield improvement in zucchini under salt stress: determining micronutrient balance. Scientia Horticulturea, 86, 175-183. [57] Kaya, C., Bekir, D., Erol, A.K., Higgs, D., Murillo-Amador, B. (2002). Influence of foliar-applied calcium nitrate on strawberry plants grown under salt stressed conditions. Australian Journal of Experimental Agriculture, 42, 631-636.
  • [58] Turan, M., Aydın, A. (2005). Effects of different salt sources on growth, inorganic ions and proline accumulation in corn (Zea mays L.). European Journal of Horticultural Science, 70, 149-155.
  • [59] Grattan, S.R., Grieve, C.M. (1999). Mineral nutrient acquisition and response by plants grown in saline environments. In: Pessarakli M. (ed.): Handbook of Plant and Crop Stress. Marcel Dekker, New York: 203-229.
  • [60] Benlloch-Gonzalez, M., Fournier, J.M., Ramos, J., Benlloch, M. (2005). Strategies underlying salt tolerance in halophytes are present in Cynara cardunculus. Plant Science, 168, 653-659.
  • [61] Turan, M.A., Türkmen, N., Taban, S. (2007a). Effect of NaCl on stomatal resistance and proline, chlorophyll, Na, Cl and K concentrations of lentil plants. Journal of Agronomy, 6, 378-381.
  • [62] Turan, M.A., Katkat, A.V., Taban, S, (2007b). Variations in proline, chlorophyll and mineral elements contents of wheat plants grown under salinity stress. Journal of Agronomy, 6, 137-141.
  • [63] Dhanapackiam, S. ve Ilyas, M. (2010). Effect of salinity on chlorophyll and carbohydrate contents of Sesbania grandi flora seedlings. Indian Journal of Science and Technology, 3(1), 64-66.
  • [64] Alam, S.M. (1994). Nutrient uptake by plants under stress conditions. In: Handbook of plants and crop stress. Edited by M. Pessarakli. Mercel Dekker, Inc. New York
  • [65] Navarro, J.M., Botella, M.A., Cerda, A., Martinez, V. (2001). Phosphorus uptake and translocation in salt-stressed melon plants. Journal of Plant Physiology, 158, 375-381.
  • [66] Lopez, M.V. ve Satti, S.M.E. (1996). Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress. Plant Science, 114, 19-27. [67] Yermiyahu, U., Nir, S., Ben-Hayyim, G., Kafkafi, U. ve Kinraide, B. (1997). Root elongation in saline solution related to calcium binding to root cell plasma membranes. Plant Soil, 191, 67-76.
  • [68] Francois, L.E. ve Maas, E.V. (1999). Crop response and management of salt affected soils. In: Hand Book of Plant and Crop Stress. (Eds.): M. Pessarakli. Marcel Dekker, Inc., New York, pp. 169-201.
  • [69] Mayhew, L. (2004). Humic substances in biological agriculture [Online] .Available at www.acresusa.com / toolbox / reprints/ Jan04_Humic% 20Substances.pdf. [70] Daur, L. (2014). Effect of humic acid on growth, protein and mineral composition of pearl millet [Pennisetum glaucum (L.) r.br.] fodder. Pakistan Journal of Botany, 46, 505-509.
  • [71] Delfine, S., Tognetti, R., Desiderio, E.ve Alvino, A. (2005). Effect of foliar application of nitrogen and humic acids on growth and yield of durum wheat. Agronomy for Sustainable Development, 25, 183-191.
  • [72] Nikbakht, A., Kafi, M., Babalar, M., Xia, Y.P., Luo, A.ve Etemadi, N. (2008). Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. Journal of Plant Nutrition, 31, 2155-2167.
  • [73] Haghighi, M., Nikbakht, A., Xia, Y.P.ve Pessarakli, M. (2014). Influence of humic acid in diluted nutrient solution on growth, nutrient efficiency, and postharvest attributes of gerbera. Communications in Soil Science and Plant Analysis, 45, 177-188.
  • [74] Çelik, H., Katkat, A.V., Asik, B.B. ve Turan, M.A. (2011). Effect of foliar applied humic acid to dry weight and mineral nutrient uptake of maize under calcareous soil conditions. Communications in Soil Science and Plant Analysis, 45, 29-38.
  • [75] El-Nemr, M.A., El-Desuki, M., El-Bassiony, A.M. ve Fawzy, Z.F. (2012). Response of growth and yield of cucumber plants (Cucumis sativus L.) to different foliar applications of humic acid and bio-stimulators. Australian Journal of Basic and Applied Sciences, 6, 630-637. [76] Mohamed, W.H. (2012). Effects of humic acid and calcium forms on dry weight and nutrient uptake of maize plant under saline condition. Australian Journal of Basic Applied Science, 6, 597-604. [77] Pilanali, N., Kaplan, M. (2003). Investigation of effect on nutrient uptake of humic acid applications of different forms to strawberry plant. Journal of Plant Nutrition, 26, 835-843. [78] Turkmen, O., Dursun, A., Turan, M. ve Erdinc, C. (2004). Calcium and humic acid affect seed germination, growth and nutrient content of tomato (Lycopersicon esculentum L.) seedlings under saline soil conditions. Acta Agriculturae Scandinavica, Section B- Plant Soil Science, 54(3), 168-174.
  • [79] Cimrin, K.M., Önder, T., Turan, M., Burcu, T. (2010) Phosphorus and humic acid application alleviate salinity stress of pepper seedling. African Journal of Biotechnology, 9, 5845-5851.
  • [80] Fahramand, M., Moradi, H., Noori, M., Sobhkhizi, A., Adibian, M., Abdollahi, S. ve Rigi, K. (2014). Influence of humic acid on increase yield of plants and soil properties. International and Journal of Farming and Allied Sciences, 3, 339-341. [81] Khaled, H., Fawy, H.A. (2011). Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research, 6, 21-29.
  • [82] Fagbenro, J.A., Agboda, A.A. (1993) .Effect of different levels of humic acid on the growth and nutrient uptake of teak seedlings. Journal of Plant Nutrition,16, 1465-1483.
  • [83] David, P.P., Nelson, P.V.ve Sanders, D.C. (1994). A humic acid improves growth of tomato seedling in solution culture. Journal of Plant Nutrition, 17, 173-184.
  • [84] Zientara, M, (1983). Effect of sodium humate on membrane potential in internodal cells of Nitellopsis obtuse. Acta Societatis Botanicorum Poloniae, 52, 271-277. [85] Taylor, C.B. (1996). Proline and water deficit: ups, downs, ins and outs. The Plant Cell, 8, 1221-1224. [86] Demir, Y., Oztürk, L. (2003). Influence of ethephon and 2,5- norbornadiene on antioxidative enzymes and proline content in salt stressed spinach leaves. Biologia Plantarum, 47, 609-612.
  • [87] Jiménez-Bremont, J.F., Becerra-Flora, A., Hernández-Lucero, E., Rodríguez-Kessler, M., Acosta-Gallegos, J.A., Ramírez-Pımentel, J.G. (2006). Proline accumulation in two bean cultivars under salt stress and the effect of polyamins and arnithine. Biologia Plantarum, 50, 763-766
  • [88] Trotel, P., Bouchereau, A., Niogret, M.F., Larher, F. (1996). The fate of osmoaccumulated proline in leaf discs of rape (Brassica napus L.) incubated in a medium of low osmolarity. Plant Science, 118, 31-45. [89] Botella, M.A., Cerda, A., Lips, S.H. (1994). Kinetics of NO3- and NH4+ uptake by wheat seedlings: effect of salinity and nitrogen source. Journal of Plant Physiology, 144, 53-57.
  • [90] Liu, C. (1998). Effects of humic substances on creeping bentgrass growth and stress tolerance., North Carolina State Univ., PhD Thesis, Philosophy Department of Crop Science. [91] Asik, B.B., Turan, M.A., Celik, H., Katkat, V.A. (2009). Effect of humic substances on plant growth and mineral nutrients uptake of wheat (Triticum durum cv. ‘Salihli’) under conditions of salinity. Asian Journal of Crop Science, 1, 87-95.
  • [92] Arancon, N.Q., Edwards, C.A, Lee, S., Byrne, R. (2006). Effects of humic acids from verrnicomposts on plant growth. European Journal of Soil Biology, 42, 65-69.
  • [93] Çelik, H., Katkat, A.V., Aşik, B.B. ve Turan, M.A. (2010). Effect of humus on growth and nutrient uptake of maize under saline and calcareous conditions. Agriculture, 97(4), 15-22. [94] Gumuzzıo, J., Polo, A., Dıaz, M.A. ve Ibanez, J.J. (1985). Ecological Aspects of Humification in Saline Soils in Central Spain. Reuved' Ecologie el de Biologic du Sd, 22(2), 193-203.
  • [95] Wallace, A., Wallace, G. A.ve Abouzamzam, A. M. (1986). Amelioration of sodic soils with polymers. Soil Science, 141, 359-362.
  • [96] Lee, Y.S. ve Bartlett, R.J. (1976). Stimulation of plant growth by humic substances. Soil Science Society of American Journal, 40, 876-879.
  • [97] Büyükkeskin, T. (2008). Hümik Asitin Vicia faba L. (Bakla) da Fide Gelişimine ve Alüminyum Toksisitesine Etkisinin Belirlenmesi, Doktora tezi, M.Ü Fen Bilimleri Enstitüsü, İstanbul. [98] Akıncı, Ş., Büyükkeskin, T., Eroğlu, A., Erdoğan, B. E. (2009). The Effect of Humic Acid on Nutrient Composition in Broad Bean (Vicia faba L.) Roots, Notulae Scientia Biologicae, 1(1), 81-87.
  • Büyükkeskin, T., Akıncı, Ş. (2011). The Effects of Humic Acid on Above-Ground Parts of Broad Bean (Vicia faba L.) Seedlings Under Al3+ Toxicity, Fresenius Environmental Bulletin, 20(3), 539-548.[100] Kirn, A., Kashif, S.R. ve Yaseen, M. (2010). Using indigenous humic acid from lignite to increase growth and yield of okra (Abelmoschus esculentus L.). Soil & Environment, 29, 187-191.
  • [101] Tan, K. H., Binger, A. (1986). Effect of humic acid on aluminum toxicity in corn plants. Soil Science, 141, 20-25.
  • [102] Harper, S.M., Edwards, D.G., Kerven, G.L.ve Asher, C.J. (1995). Effects of organic acid fractions extracted from Eucalyptus camaldulensis leaves on root elongation of maize (Zea mays) in the presence and absence of aluminium. Plant Soil, 171, 189-192.
  • [103] Gardner, J.L., Al-Hamdani, S. (1997). Interactive effects of aluminum and humic substances on Salvinia. Journal of Aquatic Plant Management, 35, 30-34.
  • [104] Hartz, T.K. ve Bottoms, T.G. (2010). Humic substances generally ineffective in improving vegetable crop nutrient uptake or productivity. Horticultural Science, 45(6), 906-910.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Şener Akıncı

Publication Date December 31, 2017
Acceptance Date December 26, 2017
Published in Issue Year 2017 Volume: 29 Issue: 4

Cite

APA Akıncı, Ş. (2017). Humik asitlerin stres altındaki bitkilerin büyümesine ve besleyicilerin alınmasına etkileri I: Tuzluluk. Marmara Fen Bilimleri Dergisi, 29(4), 134-143. https://doi.org/10.7240/marufbd.319900
AMA Akıncı Ş. Humik asitlerin stres altındaki bitkilerin büyümesine ve besleyicilerin alınmasına etkileri I: Tuzluluk. MAJPAS. December 2017;29(4):134-143. doi:10.7240/marufbd.319900
Chicago Akıncı, Şener. “Humik Asitlerin Stres altındaki Bitkilerin büyümesine Ve Besleyicilerin alınmasına Etkileri I: Tuzluluk”. Marmara Fen Bilimleri Dergisi 29, no. 4 (December 2017): 134-43. https://doi.org/10.7240/marufbd.319900.
EndNote Akıncı Ş (December 1, 2017) Humik asitlerin stres altındaki bitkilerin büyümesine ve besleyicilerin alınmasına etkileri I: Tuzluluk. Marmara Fen Bilimleri Dergisi 29 4 134–143.
IEEE Ş. Akıncı, “Humik asitlerin stres altındaki bitkilerin büyümesine ve besleyicilerin alınmasına etkileri I: Tuzluluk”, MAJPAS, vol. 29, no. 4, pp. 134–143, 2017, doi: 10.7240/marufbd.319900.
ISNAD Akıncı, Şener. “Humik Asitlerin Stres altındaki Bitkilerin büyümesine Ve Besleyicilerin alınmasına Etkileri I: Tuzluluk”. Marmara Fen Bilimleri Dergisi 29/4 (December 2017), 134-143. https://doi.org/10.7240/marufbd.319900.
JAMA Akıncı Ş. Humik asitlerin stres altındaki bitkilerin büyümesine ve besleyicilerin alınmasına etkileri I: Tuzluluk. MAJPAS. 2017;29:134–143.
MLA Akıncı, Şener. “Humik Asitlerin Stres altındaki Bitkilerin büyümesine Ve Besleyicilerin alınmasına Etkileri I: Tuzluluk”. Marmara Fen Bilimleri Dergisi, vol. 29, no. 4, 2017, pp. 134-43, doi:10.7240/marufbd.319900.
Vancouver Akıncı Ş. Humik asitlerin stres altındaki bitkilerin büyümesine ve besleyicilerin alınmasına etkileri I: Tuzluluk. MAJPAS. 2017;29(4):134-43.

Marmara Journal of Pure and Applied Sciences

e-ISSN : 2146-5150