Research Article
BibTex RIS Cite

Nanoparticle Characterization Methods and Its Importance in Ecotoxicity Experiments

Year 2018, Volume: 30 Issue: 1, 1 - 17, 31.03.2018
https://doi.org/10.7240/marufbd.346547

Abstract

Nanotechnology is an important area of innovation, scientific and economic
growth. However, nanoparticles may have harmful effects on human health and the
environment. So far, despite the increased number of studies on the toxicity of
nanoparticles, there is still a lack of quantitative ecotoxicity data. At least
one dimension of Naparticles is ≤100 nm and can consist of very different base
materials such as carbon, silicon and metals. The reactivity is high because
about 40-50% of the atoms in the nanoparticle are on the surface. Accordingly,
different biological effects are expected. Nanoparticles and nanoparticle
aggregates should be characterized in detail in ecotoxicity assays. Because the
environmental concentrations of nanoparticles change both the efficacy ratings
and the exposure assessments. The structure of the surrounding nanoparticles
and aggregate nanoparticles is of great importance to the properties of end
products and their behavior in the environment. When measuring nanoparticles in
different media, it is not enough to provide data on concentrations. It is also
necessary to know the size distribution and physicochemical properties of
nanoparticles. A single technique can not provide all of this information, so a
different analytical technique is required. In this review, the significance of
nanoparticle characterization in assessing nanoparticle toxicity is described.
At the same time, the characterization of nanoparticles has been discussed in
detail, taking into consideration the nanoparticle size and physicochemical
properties, such as microscopic, chromatographic, spectroscopic methods,
centrifugation and filtration techniques and other techniques.

References

  • Moore, M.N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?. Environmental intenational. 32:967–976.
  • Royal Society and the Royal Academy of Engineering, 2004.
  • Borm, P.J.A., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins R., Stone, V., Kreyling, W., Lademann, J. (2006). The potential risks of nanomaterials: a review carried out for ECETOC. Particle Fibre Toxicol 3.
  • Peter, H., Bruske-Hohlfeld, I., Salata, O. (2004). Nanoparticles - known and unknown health risks. Journal of Nanobiotechnology. 2 (1):12.
  • Pal, S., Tak, Y.K., Song, J.M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appli Environ Microbiol. 73:1712–1720.
  • Madden, A.S., Hochella, J. (2005). A test of geochemical reaktivity as a function of mineral size: Manganese oxidation by hematite nanoparticles promoted. Geochim Cosmochim Acta. 69:389–398.
  • Chau, C-F., Wu, S-H., Yen, G-C. (2007). The development of regulations for food nanotechnology Trends in Food. Science & Technology. 18.5: 269-280.
  • Tiede, K., Boxall, A.B.A., Tear, S.P., Lewis, J., David, H., Hassellov, M. (2008). Detection and characterization of engineered nanoparticles in food and the environment. Food Additives and Contaminants. 25(7), 795-821.
  • Maynard AD. (2000). Overview of methods for analysing single ultrafine particles Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 358.1775: 2593-2610.
  • Mavrocordatos, D., Pronk, W., Boller, M. (2004). Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy. Water Science and Technology. 50.12: 9-18.
  • Palchoudhury, S., Baalousha, M., Lead, J. (2015). Methods for measuring concentration (mass, surface area and number) of nanoparticles. DOI: 10.1016/B978-0-08-099948-7.00005-1.
  • Brunauer, S., Emmet, P.H., Teller, E. (1938). Adsoprtion of gases in multimolecular layers. J Am Chem Soc. 60:309–319.
  • Farre, M., Gajda-Schrantz, K., Kantiani, L., Barceló, D. (2009). Ecotoxicity and analysis of nanomaterials in the aquatic environment. Analytical and Bioanalytical Chemistry 393.1: 81-95.
  • Ledin, A., Karlsson, S., Düker, A., Allard, B. (1994). Measurements in situ of concentration and size distribution of colloidal matter in deep groundwaters by photon correlation spectroscopy Water Research 28.7: 1539-1545.
  • Tiede, K., Boxall, B.A.A., Tear, P.S., Lewis, J. (2008). David H., Hassellow M., Detection and characterization of engineered nanoparticles in food and the environment. Food additives and contaminants. 25,7: 795-821.
  • Guzman, K.A.D., Finnegan, M.P., Banfield, J.F. (2006). Influence of surface potential on aggregation and transport of titania nanoparticles. Environmental Science & Technology 40.24: 7688-7693.
  • Hassellov, M., Readman, J.W., Ranville, J.F., Tiede, K. (2008). Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology. 17.5: 344-361.
  • Balnois, E., Papastavrou, G., Wilkinson, K.J. (2007). Force microscopy and force measurements of environmental colloids. In: Wilkinson KJ, Lead JR (eds) Environmental colloids and particles: behaviour, structure and characterization. IUPAC series on analytical and physical chemistry of environmental systems. John Wiley and Sons, Chichester. pp 405–468.
  • Ledin, A., Karlsson, S., Duker, A., Allard, B. (1994). Measurements in situ of concentration and size distribution of colloidal matter in deep groundwaters by photon-correlation spectroscopy. Water Res. 28:1539–1545.
  • Lead, J.R., Wilkinson, K.J. (2006). Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem. 3:159–1.
  • Hall, G.E.M. (1998). Relative contamination levels observed in different types of bottles used to collect water samples. Explorer. 101:1–7.
  • Sugimoto, Y., Pou, P., Abe, M., Jelinek, P., Perez, R., Morita, S. (2007). Chemical identification of individual surface atoms by atomic force microscopy. Nature. 446.7131: 64-67.
  • Trevethan, T., Shluger. A.L. (2007). Building blocks for molecular devices: Organic molecules on the MgO (001) surface The Journal of Physical Chemistry C 111.42: 15375-15381.
  • Warheit, D.B., Laurence, B.R., Reed, K.L., Roach, D.H., Reynolds, G.A.,Webb, T.R. (2004). Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats.Toxicological Sciences. 77, 117–125.
  • Colvin, V.L. (2003). The potential environmental impact of engineered nanomaterials Nature biotechnology 21.10: 1166-1170.
  • Bootz, A., Vogel, V. (2004). Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm. 57(2):369–375.
  • Nurmi, J.T., Tratnyek, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C.M., Linehan, J.C., Matson, D.W., Penn, R.L. (2005). Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environ Sci Technol. 39:1221–1230.
  • Ho, C.S., Lam, C.W.K., Chan, M.H.M., et al. (2003). Electrospray ionisation mass spectrometry: principles and clinical applications. Clinical Biochemistry Review, vol. 24, pp. 3–12.
  • [30] Holt, M.S., Fox, K., Griebach, E., Johnsen, S., Kinnunen, J., Lecloux, A., Murray-Smith, R., Peterson, D.R., Schroder, R., Silvani, M., Ten Berge, W.F.J., Toy, R.J., Feijtel, T.C.M. (2000). Monitoring, modelling and environmental exposure assessment of industrial chemicals in the aquatic environment. Chemosphere. 41:1799–1.
  • Crane, M., Handy, R.D. (2007). An assessment of regulatory testing strategies and methods for characterizing the ecotoxicological hazards of nanomaterials, Report for Defra, London, UK. Available at: 2007 http://randd.defra.gov.uk/Document.aspx?DocumentID=2270.
  • E.P.A. (2007). Nanotechnology white paper, U.S. Environmental Protection Agency, Washington, DC. http://es.epa.gov/ncer/nano/publications/ whitepaper12022005.pdf.
  • SCENIHR. (2005). Opinion on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnology. Scientific Committee on Emerging and Newly Identified Health Risks, European Commission. http://ec.europa.eu/health/ph_risk/committees/04_scenihr/ docs/scenihr_o_003b.pdf.
  • Kim, J.I., Walther, C. (2007). Laser induced breakdown detection (LIBD). In: Wilkinson KJ, Lead JR (eds) Environmental colloids and particles: behaviour, structure and characterization. IUPAC series on analytical and physical chemistry of environmental systems. John Wiley and Sons, Chichester. pp 555–612.
  • Burleson, D.J., Driessen, M.D., Penn, R.L. (2004). On the characterization of environmental nanoparticles. J Environ Sci Health A. 39:2707–2753.
  • Gimbert, L.J., Worsfold, P.J., Haygarth, P.M. (2007). Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: colloid and sediment characterization methods. Hydrol Processes. 21:275–279.
  • [Mavrocordatos, D., Perret, D., Leppard, G.G. (2007). Strategies and advances in the characterization of environmental colloids by electron microscopy. In: Wilkinson KJ, Lead JR, editors. Environmental Colloids and Particles: Behaviour, Structure and Characterization. Chichester: Wiley. pp. 345–404.
  • Ito, T., Sun, L., Henriquez, R.R., Crooks, R.M. (2004). A carbon nanotube-based Coulter nanoparticle counter. Accounts of chemical research. 37.12: 937-945.
  • McMurry, P.H., Litchy, M., Huang, P.F., Cai, X.P., Turpin, B.J., Dick, W.D., Hanson, A. (1996). Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA. Atmos Environ. 30:101–108.
  • Weber, A.P., Baltensperger, U., Gaggeler, H.W., SchmidtOtt, A. (1996). In situ characterization and structure modification of agglomerated aerosol particles. J Aerosol Sci. 27:915–929.
  • Okada, Y., Yabumoto, J., Takeuchi, K. (2002). Aerosol spectrometer for size and composition analysis of nanoparticles. J Aerosol Sci.33:961–965.
  • Colvin, V.L. (2003). The potential environmental impact of engineered nanomaterials. Nat Biotechnol. 21:1166–70.
  • Howard, C.V. (2004). Small particles — big problems. Int Lab News. 34(2):28–9.
  • Perkel, J.M. (2004). Nanoscience is out of the bottle. The Scientist. 17(15):20–3.
  • Aitken, R.J., Hankin, S.M., Tran, C.L., Donaldson, K., Stone, V., Cumpson, P., Jhonstone, J., Chaudhry, Q., Cash, S. (2007). REFNANO: Reference materials for engineered nanoparticle toxicology and metrology Final Report on Project CB01099. London: IOM.
  • Tejamaya, M., Roemer, I., Merrifield, R.C., Lead, J.R. (2012). Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol. 46:7011-7017.
  • Hartmann, G., Schuster, M. (2013). Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry. Anal Chim Acta. 761:27-33.
  • Reipa, V., Purdum, G., Choi, J. (2010). Measurement of nanoparticle concentration using quartz crystal microgravimetry. J Phys Chem B. 114:16112-16117.
  • Baalousha, M., Nur, Y., Roemer, I., Tejamaya, M., Lead, J.R. (2013). Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci Total Environ. 454:119-131.
  • Mitrano, D., Ranville, J., Neubauer, K., Thomas, R. (2012). Field-flow fractionation coupled with ICP-MS for the analysis of engineered nanoparticles in environmental samples. Spectroscopy. 27:36-44.

Nanopartikül Karakterizasyon Yöntemleri ve Ekotoksisite Deneylerindeki Önemi

Year 2018, Volume: 30 Issue: 1, 1 - 17, 31.03.2018
https://doi.org/10.7240/marufbd.346547

Abstract

Nanoteknoloji önemli bir yenilikçi, bilimsel ve ekonomik büyüme alanıdır.
Bununla birlikte, nanopartiküller insan sağlığı ve çevre üzerinde zararlı
etkilere sahip olabilir. Şimdiye kadar, nanopartiküllerin toksisitesi üzerine
artan sayıda çalışma yapılmasına rağmen hala niceliksel ekotoksisite veri
eksikliği bulunmaktadır. Napartiküller en az bir boyutu ≤100 nm olup karbon,
silikon ve metaller gibi çok farklı temel materyalden oluşabilir. Nanopartikül
atomlarının yaklaşık % 40-50'si yüzeyde olmasından dolayı reaktivitesi yüksekdir.
Buna bağlı olarak da farklı biyolojik etkiler göstermesi beklenmektedir.
Ekotoksisite deneylerinde nanopartiküller ile nanopartikül agregatlarının
ayrıntılı bir şekilde karakterize edilmesi gerekir. Çünkü, nanopartiküllerin çevresel
konsantrasyonları hem etki derecelerini hem de maruz kalma değerlendirmelerini
değiştirmektedir. Çevredeki nanopartiküller ile agregat nanopartiküllerinin
yapısı son ürünlerin özellikleri ve ortamdaki davranışları üzerine büyük önem
taşımaktadır. Farklı ortamlardaki nanopartikülleri ölçerken, konsantrasyonlarla
ilgili veriler sağlamak tek başına yeterli değildir, aynı zamanda nanopartiküllerin
boyut dağılımı ve fizikokimyasal özellikleri hakkında da bilgi gereklidir. Tek
bir teknik bu bilgilerin hepsini sağlayamaz, bu nedenle farklı analitik teknikler
gereklidir.
Bu
derlemede, nanopartikül toksisitesinin değerlendirilmesinde nanopartikül
karakterizasyonun önemi açıklanmıştır. Aynı zamanda, nanopartiküllerin
mikroskopik, kromatografik, spektroskopik yöntemler, santrifüjleme ve
filtrasyon teknikleri ve diğer teknikler adı altında nanopartikül boyut ve fizikokimyasal
özellikleri dikkate alınarak karakterizasyonu ayrıntılı olarak tartışılmıştır.

References

  • Moore, M.N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?. Environmental intenational. 32:967–976.
  • Royal Society and the Royal Academy of Engineering, 2004.
  • Borm, P.J.A., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins R., Stone, V., Kreyling, W., Lademann, J. (2006). The potential risks of nanomaterials: a review carried out for ECETOC. Particle Fibre Toxicol 3.
  • Peter, H., Bruske-Hohlfeld, I., Salata, O. (2004). Nanoparticles - known and unknown health risks. Journal of Nanobiotechnology. 2 (1):12.
  • Pal, S., Tak, Y.K., Song, J.M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appli Environ Microbiol. 73:1712–1720.
  • Madden, A.S., Hochella, J. (2005). A test of geochemical reaktivity as a function of mineral size: Manganese oxidation by hematite nanoparticles promoted. Geochim Cosmochim Acta. 69:389–398.
  • Chau, C-F., Wu, S-H., Yen, G-C. (2007). The development of regulations for food nanotechnology Trends in Food. Science & Technology. 18.5: 269-280.
  • Tiede, K., Boxall, A.B.A., Tear, S.P., Lewis, J., David, H., Hassellov, M. (2008). Detection and characterization of engineered nanoparticles in food and the environment. Food Additives and Contaminants. 25(7), 795-821.
  • Maynard AD. (2000). Overview of methods for analysing single ultrafine particles Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 358.1775: 2593-2610.
  • Mavrocordatos, D., Pronk, W., Boller, M. (2004). Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy. Water Science and Technology. 50.12: 9-18.
  • Palchoudhury, S., Baalousha, M., Lead, J. (2015). Methods for measuring concentration (mass, surface area and number) of nanoparticles. DOI: 10.1016/B978-0-08-099948-7.00005-1.
  • Brunauer, S., Emmet, P.H., Teller, E. (1938). Adsoprtion of gases in multimolecular layers. J Am Chem Soc. 60:309–319.
  • Farre, M., Gajda-Schrantz, K., Kantiani, L., Barceló, D. (2009). Ecotoxicity and analysis of nanomaterials in the aquatic environment. Analytical and Bioanalytical Chemistry 393.1: 81-95.
  • Ledin, A., Karlsson, S., Düker, A., Allard, B. (1994). Measurements in situ of concentration and size distribution of colloidal matter in deep groundwaters by photon correlation spectroscopy Water Research 28.7: 1539-1545.
  • Tiede, K., Boxall, B.A.A., Tear, P.S., Lewis, J. (2008). David H., Hassellow M., Detection and characterization of engineered nanoparticles in food and the environment. Food additives and contaminants. 25,7: 795-821.
  • Guzman, K.A.D., Finnegan, M.P., Banfield, J.F. (2006). Influence of surface potential on aggregation and transport of titania nanoparticles. Environmental Science & Technology 40.24: 7688-7693.
  • Hassellov, M., Readman, J.W., Ranville, J.F., Tiede, K. (2008). Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology. 17.5: 344-361.
  • Balnois, E., Papastavrou, G., Wilkinson, K.J. (2007). Force microscopy and force measurements of environmental colloids. In: Wilkinson KJ, Lead JR (eds) Environmental colloids and particles: behaviour, structure and characterization. IUPAC series on analytical and physical chemistry of environmental systems. John Wiley and Sons, Chichester. pp 405–468.
  • Ledin, A., Karlsson, S., Duker, A., Allard, B. (1994). Measurements in situ of concentration and size distribution of colloidal matter in deep groundwaters by photon-correlation spectroscopy. Water Res. 28:1539–1545.
  • Lead, J.R., Wilkinson, K.J. (2006). Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem. 3:159–1.
  • Hall, G.E.M. (1998). Relative contamination levels observed in different types of bottles used to collect water samples. Explorer. 101:1–7.
  • Sugimoto, Y., Pou, P., Abe, M., Jelinek, P., Perez, R., Morita, S. (2007). Chemical identification of individual surface atoms by atomic force microscopy. Nature. 446.7131: 64-67.
  • Trevethan, T., Shluger. A.L. (2007). Building blocks for molecular devices: Organic molecules on the MgO (001) surface The Journal of Physical Chemistry C 111.42: 15375-15381.
  • Warheit, D.B., Laurence, B.R., Reed, K.L., Roach, D.H., Reynolds, G.A.,Webb, T.R. (2004). Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats.Toxicological Sciences. 77, 117–125.
  • Colvin, V.L. (2003). The potential environmental impact of engineered nanomaterials Nature biotechnology 21.10: 1166-1170.
  • Bootz, A., Vogel, V. (2004). Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm. 57(2):369–375.
  • Nurmi, J.T., Tratnyek, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C.M., Linehan, J.C., Matson, D.W., Penn, R.L. (2005). Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environ Sci Technol. 39:1221–1230.
  • Ho, C.S., Lam, C.W.K., Chan, M.H.M., et al. (2003). Electrospray ionisation mass spectrometry: principles and clinical applications. Clinical Biochemistry Review, vol. 24, pp. 3–12.
  • [30] Holt, M.S., Fox, K., Griebach, E., Johnsen, S., Kinnunen, J., Lecloux, A., Murray-Smith, R., Peterson, D.R., Schroder, R., Silvani, M., Ten Berge, W.F.J., Toy, R.J., Feijtel, T.C.M. (2000). Monitoring, modelling and environmental exposure assessment of industrial chemicals in the aquatic environment. Chemosphere. 41:1799–1.
  • Crane, M., Handy, R.D. (2007). An assessment of regulatory testing strategies and methods for characterizing the ecotoxicological hazards of nanomaterials, Report for Defra, London, UK. Available at: 2007 http://randd.defra.gov.uk/Document.aspx?DocumentID=2270.
  • E.P.A. (2007). Nanotechnology white paper, U.S. Environmental Protection Agency, Washington, DC. http://es.epa.gov/ncer/nano/publications/ whitepaper12022005.pdf.
  • SCENIHR. (2005). Opinion on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnology. Scientific Committee on Emerging and Newly Identified Health Risks, European Commission. http://ec.europa.eu/health/ph_risk/committees/04_scenihr/ docs/scenihr_o_003b.pdf.
  • Kim, J.I., Walther, C. (2007). Laser induced breakdown detection (LIBD). In: Wilkinson KJ, Lead JR (eds) Environmental colloids and particles: behaviour, structure and characterization. IUPAC series on analytical and physical chemistry of environmental systems. John Wiley and Sons, Chichester. pp 555–612.
  • Burleson, D.J., Driessen, M.D., Penn, R.L. (2004). On the characterization of environmental nanoparticles. J Environ Sci Health A. 39:2707–2753.
  • Gimbert, L.J., Worsfold, P.J., Haygarth, P.M. (2007). Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: colloid and sediment characterization methods. Hydrol Processes. 21:275–279.
  • [Mavrocordatos, D., Perret, D., Leppard, G.G. (2007). Strategies and advances in the characterization of environmental colloids by electron microscopy. In: Wilkinson KJ, Lead JR, editors. Environmental Colloids and Particles: Behaviour, Structure and Characterization. Chichester: Wiley. pp. 345–404.
  • Ito, T., Sun, L., Henriquez, R.R., Crooks, R.M. (2004). A carbon nanotube-based Coulter nanoparticle counter. Accounts of chemical research. 37.12: 937-945.
  • McMurry, P.H., Litchy, M., Huang, P.F., Cai, X.P., Turpin, B.J., Dick, W.D., Hanson, A. (1996). Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA. Atmos Environ. 30:101–108.
  • Weber, A.P., Baltensperger, U., Gaggeler, H.W., SchmidtOtt, A. (1996). In situ characterization and structure modification of agglomerated aerosol particles. J Aerosol Sci. 27:915–929.
  • Okada, Y., Yabumoto, J., Takeuchi, K. (2002). Aerosol spectrometer for size and composition analysis of nanoparticles. J Aerosol Sci.33:961–965.
  • Colvin, V.L. (2003). The potential environmental impact of engineered nanomaterials. Nat Biotechnol. 21:1166–70.
  • Howard, C.V. (2004). Small particles — big problems. Int Lab News. 34(2):28–9.
  • Perkel, J.M. (2004). Nanoscience is out of the bottle. The Scientist. 17(15):20–3.
  • Aitken, R.J., Hankin, S.M., Tran, C.L., Donaldson, K., Stone, V., Cumpson, P., Jhonstone, J., Chaudhry, Q., Cash, S. (2007). REFNANO: Reference materials for engineered nanoparticle toxicology and metrology Final Report on Project CB01099. London: IOM.
  • Tejamaya, M., Roemer, I., Merrifield, R.C., Lead, J.R. (2012). Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol. 46:7011-7017.
  • Hartmann, G., Schuster, M. (2013). Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry. Anal Chim Acta. 761:27-33.
  • Reipa, V., Purdum, G., Choi, J. (2010). Measurement of nanoparticle concentration using quartz crystal microgravimetry. J Phys Chem B. 114:16112-16117.
  • Baalousha, M., Nur, Y., Roemer, I., Tejamaya, M., Lead, J.R. (2013). Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci Total Environ. 454:119-131.
  • Mitrano, D., Ranville, J., Neubauer, K., Thomas, R. (2012). Field-flow fractionation coupled with ICP-MS for the analysis of engineered nanoparticles in environmental samples. Spectroscopy. 27:36-44.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Yeşim Dağlıoglu

Publication Date March 31, 2018
Acceptance Date March 29, 2018
Published in Issue Year 2018 Volume: 30 Issue: 1

Cite

APA Dağlıoglu, Y. (2018). Nanopartikül Karakterizasyon Yöntemleri ve Ekotoksisite Deneylerindeki Önemi. Marmara Fen Bilimleri Dergisi, 30(1), 1-17. https://doi.org/10.7240/marufbd.346547
AMA Dağlıoglu Y. Nanopartikül Karakterizasyon Yöntemleri ve Ekotoksisite Deneylerindeki Önemi. MAJPAS. March 2018;30(1):1-17. doi:10.7240/marufbd.346547
Chicago Dağlıoglu, Yeşim. “Nanopartikül Karakterizasyon Yöntemleri Ve Ekotoksisite Deneylerindeki Önemi”. Marmara Fen Bilimleri Dergisi 30, no. 1 (March 2018): 1-17. https://doi.org/10.7240/marufbd.346547.
EndNote Dağlıoglu Y (March 1, 2018) Nanopartikül Karakterizasyon Yöntemleri ve Ekotoksisite Deneylerindeki Önemi. Marmara Fen Bilimleri Dergisi 30 1 1–17.
IEEE Y. Dağlıoglu, “Nanopartikül Karakterizasyon Yöntemleri ve Ekotoksisite Deneylerindeki Önemi”, MAJPAS, vol. 30, no. 1, pp. 1–17, 2018, doi: 10.7240/marufbd.346547.
ISNAD Dağlıoglu, Yeşim. “Nanopartikül Karakterizasyon Yöntemleri Ve Ekotoksisite Deneylerindeki Önemi”. Marmara Fen Bilimleri Dergisi 30/1 (March 2018), 1-17. https://doi.org/10.7240/marufbd.346547.
JAMA Dağlıoglu Y. Nanopartikül Karakterizasyon Yöntemleri ve Ekotoksisite Deneylerindeki Önemi. MAJPAS. 2018;30:1–17.
MLA Dağlıoglu, Yeşim. “Nanopartikül Karakterizasyon Yöntemleri Ve Ekotoksisite Deneylerindeki Önemi”. Marmara Fen Bilimleri Dergisi, vol. 30, no. 1, 2018, pp. 1-17, doi:10.7240/marufbd.346547.
Vancouver Dağlıoglu Y. Nanopartikül Karakterizasyon Yöntemleri ve Ekotoksisite Deneylerindeki Önemi. MAJPAS. 2018;30(1):1-17.

Marmara Journal of Pure and Applied Sciences

e-ISSN : 2146-5150