Research Article
BibTex RIS Cite

Ortalama Karesel Hata Matrisi Kriterine göre Yanlı Tahmin Ediciler Üzerine Çalışma

Year 2018, Volume: 30 Issue: 1, 18 - 25, 31.03.2018
https://doi.org/10.7240/marufbd.371450

Abstract

Çoklu doğrusallığa sahip regresyon modelleri, r- (k, d)
sınıfı tahmincileri, ana bileşen regresyonu, Liu tipi tahminciler gibi çeşitli
tahmincileri kullanarak ele alınabilir. Bu çalışmada, r- (k, d) sınıfı kestiricisinin,
ana bileşenlerin regresyonu, Liu tipi tahmincileri ve sıradan en küçük kareler
üzerinde, ortalama karesel hata matrisi (MSEM) kriteri açısından üstün olduğu
koşulları belirledik. Son olarak, sayısal bir örnek ve Monte Carlo simülasyonu
ile teorik sonuçları gösterdik.

References

  • [1] Stein, C., Inadmissibility of the usual estimator for mean of multivariate normal distribution. In Neyman J (ed). Proceedings of the third Berkley symposium on mathematical and statistics probability 1, (1956), 197–206. [2] Inan, D., Combining the Liu-type estimator and the principal component regression estimator. Statistical Papers 56, (2015), 147-156. [3] Rao, C. and Toutenburg, H., Linear Models: Least Squares and Alternatives. New York:Springer-Verlag Inc. 1995. [4] Trenkler, G., Mean Square Error Matrix Comparisons of Estimators in Linear Regression. Communications in Statistics Theory and Methods A.14,( 1985) 2495–2509. [5] Trenkler, G. and Toutenburg, H., Mean squared error matrix comparisons between biased estimators an overview of recent results, Statistical Paper 31 (1990 )165–179. [6] Baksalary, J.K. and Trenkler, G., Nonnegative and positive definiteness of matrices modified by two matrices of rank one, Linear Algebra and Its Application 151, (1991), 169–184. [7] Graybill, F.A., Theory and Application of the Linear Model. Duxbury Press, North Scituate, Massachusetts,1976. [8] Woods, H., Steinour , H.H. and Starke. H.R., Effect of composition of Portland cement on heat evolved during hardening, Industrial and Engineering Chemistry 24, (1932),1207–1214. [9] Kaçıranlar, S., Sakallioglu, S., Akdeniz, F., Styan, G.P.H. and Werner. H.J., A new biased estimator in linear regression and a detailed analysis of the widely-analysed dataset on Portland Cement, Sankhya Indian J Stat 61(B),( 1999), 443–459. [10] Liu, K., Using Liu-type estimator to combat collinearity, Communications in Statistics Theory and Methods 32. (5), (2003),1009–1020. [11] Kibria. B.M.G., Performance of some new ridge regression estimators, Communications in Statistics - Simulation and Computation. 32, (2003),2389-2413.

The Research on Biased Estimators Based on Mean Square Error Matrix Criteria

Year 2018, Volume: 30 Issue: 1, 18 - 25, 31.03.2018
https://doi.org/10.7240/marufbd.371450

Abstract

Regression models with
multicollinearity can be tackled by using various estimators such as
  class estimators, principal
components regression, Liu-type estimators. In this study, we defined
conditions where the
  class estimator is superior over
the biased estimators in terms of mean square error matrix (MSEM) criterion.
Finally, we showed theoretical results by means of a numerical example and a
simulation study.

References

  • [1] Stein, C., Inadmissibility of the usual estimator for mean of multivariate normal distribution. In Neyman J (ed). Proceedings of the third Berkley symposium on mathematical and statistics probability 1, (1956), 197–206. [2] Inan, D., Combining the Liu-type estimator and the principal component regression estimator. Statistical Papers 56, (2015), 147-156. [3] Rao, C. and Toutenburg, H., Linear Models: Least Squares and Alternatives. New York:Springer-Verlag Inc. 1995. [4] Trenkler, G., Mean Square Error Matrix Comparisons of Estimators in Linear Regression. Communications in Statistics Theory and Methods A.14,( 1985) 2495–2509. [5] Trenkler, G. and Toutenburg, H., Mean squared error matrix comparisons between biased estimators an overview of recent results, Statistical Paper 31 (1990 )165–179. [6] Baksalary, J.K. and Trenkler, G., Nonnegative and positive definiteness of matrices modified by two matrices of rank one, Linear Algebra and Its Application 151, (1991), 169–184. [7] Graybill, F.A., Theory and Application of the Linear Model. Duxbury Press, North Scituate, Massachusetts,1976. [8] Woods, H., Steinour , H.H. and Starke. H.R., Effect of composition of Portland cement on heat evolved during hardening, Industrial and Engineering Chemistry 24, (1932),1207–1214. [9] Kaçıranlar, S., Sakallioglu, S., Akdeniz, F., Styan, G.P.H. and Werner. H.J., A new biased estimator in linear regression and a detailed analysis of the widely-analysed dataset on Portland Cement, Sankhya Indian J Stat 61(B),( 1999), 443–459. [10] Liu, K., Using Liu-type estimator to combat collinearity, Communications in Statistics Theory and Methods 32. (5), (2003),1009–1020. [11] Kibria. B.M.G., Performance of some new ridge regression estimators, Communications in Statistics - Simulation and Computation. 32, (2003),2389-2413.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Nilgün Yıldız

Publication Date March 31, 2018
Acceptance Date March 30, 2018
Published in Issue Year 2018 Volume: 30 Issue: 1

Cite

APA Yıldız, N. (2018). The Research on Biased Estimators Based on Mean Square Error Matrix Criteria. Marmara Fen Bilimleri Dergisi, 30(1), 18-25. https://doi.org/10.7240/marufbd.371450
AMA Yıldız N. The Research on Biased Estimators Based on Mean Square Error Matrix Criteria. MAJPAS. March 2018;30(1):18-25. doi:10.7240/marufbd.371450
Chicago Yıldız, Nilgün. “The Research on Biased Estimators Based on Mean Square Error Matrix Criteria”. Marmara Fen Bilimleri Dergisi 30, no. 1 (March 2018): 18-25. https://doi.org/10.7240/marufbd.371450.
EndNote Yıldız N (March 1, 2018) The Research on Biased Estimators Based on Mean Square Error Matrix Criteria. Marmara Fen Bilimleri Dergisi 30 1 18–25.
IEEE N. Yıldız, “The Research on Biased Estimators Based on Mean Square Error Matrix Criteria”, MAJPAS, vol. 30, no. 1, pp. 18–25, 2018, doi: 10.7240/marufbd.371450.
ISNAD Yıldız, Nilgün. “The Research on Biased Estimators Based on Mean Square Error Matrix Criteria”. Marmara Fen Bilimleri Dergisi 30/1 (March 2018), 18-25. https://doi.org/10.7240/marufbd.371450.
JAMA Yıldız N. The Research on Biased Estimators Based on Mean Square Error Matrix Criteria. MAJPAS. 2018;30:18–25.
MLA Yıldız, Nilgün. “The Research on Biased Estimators Based on Mean Square Error Matrix Criteria”. Marmara Fen Bilimleri Dergisi, vol. 30, no. 1, 2018, pp. 18-25, doi:10.7240/marufbd.371450.
Vancouver Yıldız N. The Research on Biased Estimators Based on Mean Square Error Matrix Criteria. MAJPAS. 2018;30(1):18-25.

Marmara Journal of Pure and Applied Sciences

e-ISSN : 2146-5150