Research Article
BibTex RIS Cite

Automatic Detection And Calculation Of Drusen Areas In Retinal Fundus Fluorescein Angiography Images

Year 2018, Volume: 30 Issue: 2, 126 - 132, 30.06.2018
https://doi.org/10.7240/marufbd.356425

Abstract

Computer aided detection (CAD) systems are widely
used in the analysis of biomedical images. In this paper, we present a novel
CAD system to detect age-related macular degeneration (ARMD) on retinal fundus
fluorescein angiography (FFA) images, and we provide an areal size calculation
of pathogenic drusen regions. The purpose of this study is to enable
identification and areal size calculation of ARMD-affected regions with the
developed CAD system; hence, we aim to discover the condition of the disease as
well as facilitate long-term patient follow-up treatment. With the aid of this
system, assessing the marked regions will take less time for ophthalmologists
and observing the progress of the treatment will be a simpler process. The CAD
system consists of four stages, a) preprocessing stage, b) segmentation stage,
c) region of interest detection and d)feature extraction stage and detection
stage. Detection through CAD and calculation of drusen regions were performed
with a dataset composed of 75 images. The results obtained from the developed
CAD system were examined by a specialist ophthalmologist, and the performance
criteria of the CAD system are reported as conclusions. As a result, with 66
correct detections and 9 incorrect detections, the developed CAD system
achieved an accuracy rate of 88%.

References

  • Edwards, M., Bressler, N., & Raja, S. (1999). Macular disorders-Age-related macular degeneration. Ophthalmology, 1st ed. London, UK: Mosby International Kılınç, D., Borandağ, E., Yücalar, F., Tunalı, V., Şimsek, M., & Özçift, A. (2016). KNN algoritması ve r dili ile metin madenciliği kullanılarak bilimsel makale tasnifi. Coleman, H. R., Chan, C.-C., Ferris, F. L., & Chew, E. Y. (2008). Age-related macular degeneration. The Lancet, 372(9652), 1835-1845. Ding, X., Patel, M., & Chan, C.-C. (2009). Molecular pathology of age-related macular degeneration. Progress in retinal and eye research, 28(1), 1-18. Novotny, H. R., & Alvis, D. L. (1961). A method of photographing fluorescence in circulating blood in the human retina. Circulation, 24(1), 82-86. Kwan, A. S., Barry, C., McAllister, I. L., & Constable, I. (2006). Fluorescein angiography and adverse drug reactions revisited: the Lions Eye experience. Clinical & Experimental ophthalmology, 34(1), 33-38. Geng, L., Shao, Y.-T., Xiao, Z.-T., Zhang, F., Wu, J., Li, M., & Shan, C.-Y. (2014). Fundus optic disc localization and segmentation method based on phase congruency. Bio-medical materials and engineering, 24(6), 3223-3229. Pourreza, R., Pourreza, H., & Banaee, T. (2010). Segmentation of blood vessels in fundus color images by Radon transform and morphological reconstruction. Paper presented at the Advanced Computational Intelligence (IWACI), 2010 Third International Workshop on. Calik, E., Dogan, B., & Ucan, O. N. (2015). Computer Aided Detection of age related macular degeneration in retinal images. Paper presented at the Signal Processing and Communications Applications Conference (SIU), 2015 23th. Soares, J. V., Leandro, J. J., Cesar, R. M., Jelinek, H. F., & Cree, M. J. (2006). Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging, 25(9), 1214-1222. Freund, D. E., Bressler, N., & Burlina, P. (2009). Automated detection of drusen in the macula. Paper presented at the ISBI'09. IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009. Abramoff, M. D., & Niemeijer, M. (2006). The automatic detection of the optic disc location in retinal images using optic disc location regression. Paper presented at the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ yEMBS'06, 2006. . Brandon, L., & Hoover, A. (2003). Drusen detection in a retinal image using multi-level analysis Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003 (pp. 618-625): Springer. Güven, A. (2013). Automatic detection of age-related macular degeneration pathologies in retinal fundus images. Computer methods in biomechanics and biomedical engineering, 16(4), 425-434. Yavuz, Z., & Köse, C. (2011). Retinal blood vessel segmentation using Gabor filter and top-hat transform. Paper presented at the Signal Processing and Communications Applications (SIU), 2011 IEEE 19th Conference on. Joseph, M. S. G. (2015). Automated Drusen Detection and Quantification for Early Identification of Age Related Macular Degeneration in Retinal Images Using Analytical Modelling Algorithms. Vingerling, J. R., Dielemans, I., Hofman, A., Grobbee, D. E., Hijmering, M., Kramer, C. F., & de Jong, P. T. (1995). The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology, 102(2), 205-210. Jonasson, F., Arnarsson, A., Sverrisson, T., Stefánsson, E., Sigurdsson, H., Gislason, I., . . . Bird, A. (2003). 5-year incidence of age-related maculopathy-Reykjavik Eye study. Investigative Ophthalmology & Visual Science, 44(13), 3083-3083. McCormick, B., & Goldbaum, M. (1975). STARE= Structured Analysis of the Retina: Image processing of TV fundus image. Paper presented at the Jet Propulsion Laboratory, Pasadena, CA: USA-Japan Workshop on Image Processing. Dougherty, G. (2009). Digital image processing for medical applications: Cambridge University Press. Dhawan, A. P. (2011). Medical image analysis (Vol. 31): John Wiley & Sons.

Retina Fundus Floresan Anjiyografi Görüntülerinde Drüsen Alanlarının Otomatik Tespiti ve Büyüklüklerinin Hesaplanması

Year 2018, Volume: 30 Issue: 2, 126 - 132, 30.06.2018
https://doi.org/10.7240/marufbd.356425

Abstract



Bilgisayar
destekli tespit (BDT) sistemleri biyomedikal görüntülerin analizinde sıklıkla
kullanılmaktadır. Bu çalışmada retinal fundus anjiyografi görüntüleri üzerinde
yaşa bağlı makula dejenerasyonu (YBMD) hastalığının tespiti için bir BDT
sistemi gerçekleştirilmiş ve patojenik drusen alanlarının büyüklüğünün
hesaplanması sağlanmıştır. Çalışmanın amacı YBMD hastalığının görüldüğü
alanların tespitinin ve büyüklüğünü hesaplamanın yanında hastalığa karşı
uygulanan tedavinin sonucunun takibini de sağlamaktır. Geliştirlen sistemin
yardımıyla optalmoloji uzmanları işaretlenen alanları kısa sürede tespit
edebilirler ve hastalığın tedaviye verdiği cevabı basit bir şekilde
gözlemleyebileceklerdir. Geliştirilen BDT sistemi 4 aşamadan oluşmaktadır, a)
önişleme aşaması, b) bölütleme aşaması, c) ilgi alanı tespiti ve d) öznitelik
çıkarma ve tespit aşaması. Geliştirlen BDT sistemi 75 görüntüden oluşan bir
verisetiyle test edilmiştir. BST sisteminin elde ettiği sonuçlar bir
optalmoloji uzmanıyla karşılaştırılarak sonuç bölümünde sunulmuştur.
Geliştirilen BDT sistemi 66 doğru, 9 hatalı tespit yaparak %88 doğruluk oranı
sağlamıştır. 

References

  • Edwards, M., Bressler, N., & Raja, S. (1999). Macular disorders-Age-related macular degeneration. Ophthalmology, 1st ed. London, UK: Mosby International Kılınç, D., Borandağ, E., Yücalar, F., Tunalı, V., Şimsek, M., & Özçift, A. (2016). KNN algoritması ve r dili ile metin madenciliği kullanılarak bilimsel makale tasnifi. Coleman, H. R., Chan, C.-C., Ferris, F. L., & Chew, E. Y. (2008). Age-related macular degeneration. The Lancet, 372(9652), 1835-1845. Ding, X., Patel, M., & Chan, C.-C. (2009). Molecular pathology of age-related macular degeneration. Progress in retinal and eye research, 28(1), 1-18. Novotny, H. R., & Alvis, D. L. (1961). A method of photographing fluorescence in circulating blood in the human retina. Circulation, 24(1), 82-86. Kwan, A. S., Barry, C., McAllister, I. L., & Constable, I. (2006). Fluorescein angiography and adverse drug reactions revisited: the Lions Eye experience. Clinical & Experimental ophthalmology, 34(1), 33-38. Geng, L., Shao, Y.-T., Xiao, Z.-T., Zhang, F., Wu, J., Li, M., & Shan, C.-Y. (2014). Fundus optic disc localization and segmentation method based on phase congruency. Bio-medical materials and engineering, 24(6), 3223-3229. Pourreza, R., Pourreza, H., & Banaee, T. (2010). Segmentation of blood vessels in fundus color images by Radon transform and morphological reconstruction. Paper presented at the Advanced Computational Intelligence (IWACI), 2010 Third International Workshop on. Calik, E., Dogan, B., & Ucan, O. N. (2015). Computer Aided Detection of age related macular degeneration in retinal images. Paper presented at the Signal Processing and Communications Applications Conference (SIU), 2015 23th. Soares, J. V., Leandro, J. J., Cesar, R. M., Jelinek, H. F., & Cree, M. J. (2006). Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging, 25(9), 1214-1222. Freund, D. E., Bressler, N., & Burlina, P. (2009). Automated detection of drusen in the macula. Paper presented at the ISBI'09. IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009. Abramoff, M. D., & Niemeijer, M. (2006). The automatic detection of the optic disc location in retinal images using optic disc location regression. Paper presented at the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ yEMBS'06, 2006. . Brandon, L., & Hoover, A. (2003). Drusen detection in a retinal image using multi-level analysis Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003 (pp. 618-625): Springer. Güven, A. (2013). Automatic detection of age-related macular degeneration pathologies in retinal fundus images. Computer methods in biomechanics and biomedical engineering, 16(4), 425-434. Yavuz, Z., & Köse, C. (2011). Retinal blood vessel segmentation using Gabor filter and top-hat transform. Paper presented at the Signal Processing and Communications Applications (SIU), 2011 IEEE 19th Conference on. Joseph, M. S. G. (2015). Automated Drusen Detection and Quantification for Early Identification of Age Related Macular Degeneration in Retinal Images Using Analytical Modelling Algorithms. Vingerling, J. R., Dielemans, I., Hofman, A., Grobbee, D. E., Hijmering, M., Kramer, C. F., & de Jong, P. T. (1995). The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology, 102(2), 205-210. Jonasson, F., Arnarsson, A., Sverrisson, T., Stefánsson, E., Sigurdsson, H., Gislason, I., . . . Bird, A. (2003). 5-year incidence of age-related maculopathy-Reykjavik Eye study. Investigative Ophthalmology & Visual Science, 44(13), 3083-3083. McCormick, B., & Goldbaum, M. (1975). STARE= Structured Analysis of the Retina: Image processing of TV fundus image. Paper presented at the Jet Propulsion Laboratory, Pasadena, CA: USA-Japan Workshop on Image Processing. Dougherty, G. (2009). Digital image processing for medical applications: Cambridge University Press. Dhawan, A. P. (2011). Medical image analysis (Vol. 31): John Wiley & Sons.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Önder Demir 0000-0002-4894-0005

Buket Doğan 0000-0003-1062-2439

Esra Çalık Bayezit This is me 0000-0002-7053-3027

Kazım Yıldız 0000-0001-6999-1410

Publication Date June 30, 2018
Acceptance Date June 3, 2018
Published in Issue Year 2018 Volume: 30 Issue: 2

Cite

APA Demir, Ö., Doğan, B., Çalık Bayezit, E., Yıldız, K. (2018). Automatic Detection And Calculation Of Drusen Areas In Retinal Fundus Fluorescein Angiography Images. Marmara Fen Bilimleri Dergisi, 30(2), 126-132. https://doi.org/10.7240/marufbd.356425
AMA Demir Ö, Doğan B, Çalık Bayezit E, Yıldız K. Automatic Detection And Calculation Of Drusen Areas In Retinal Fundus Fluorescein Angiography Images. MFBD. June 2018;30(2):126-132. doi:10.7240/marufbd.356425
Chicago Demir, Önder, Buket Doğan, Esra Çalık Bayezit, and Kazım Yıldız. “Automatic Detection And Calculation Of Drusen Areas In Retinal Fundus Fluorescein Angiography Images”. Marmara Fen Bilimleri Dergisi 30, no. 2 (June 2018): 126-32. https://doi.org/10.7240/marufbd.356425.
EndNote Demir Ö, Doğan B, Çalık Bayezit E, Yıldız K (June 1, 2018) Automatic Detection And Calculation Of Drusen Areas In Retinal Fundus Fluorescein Angiography Images. Marmara Fen Bilimleri Dergisi 30 2 126–132.
IEEE Ö. Demir, B. Doğan, E. Çalık Bayezit, and K. Yıldız, “Automatic Detection And Calculation Of Drusen Areas In Retinal Fundus Fluorescein Angiography Images”, MFBD, vol. 30, no. 2, pp. 126–132, 2018, doi: 10.7240/marufbd.356425.
ISNAD Demir, Önder et al. “Automatic Detection And Calculation Of Drusen Areas In Retinal Fundus Fluorescein Angiography Images”. Marmara Fen Bilimleri Dergisi 30/2 (June 2018), 126-132. https://doi.org/10.7240/marufbd.356425.
JAMA Demir Ö, Doğan B, Çalık Bayezit E, Yıldız K. Automatic Detection And Calculation Of Drusen Areas In Retinal Fundus Fluorescein Angiography Images. MFBD. 2018;30:126–132.
MLA Demir, Önder et al. “Automatic Detection And Calculation Of Drusen Areas In Retinal Fundus Fluorescein Angiography Images”. Marmara Fen Bilimleri Dergisi, vol. 30, no. 2, 2018, pp. 126-32, doi:10.7240/marufbd.356425.
Vancouver Demir Ö, Doğan B, Çalık Bayezit E, Yıldız K. Automatic Detection And Calculation Of Drusen Areas In Retinal Fundus Fluorescein Angiography Images. MFBD. 2018;30(2):126-32.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr