Research Article
BibTex RIS Cite

Lineer Olmayan Dalga Denkleminin Lie Grupları Analizi

Year 2018, Volume: 30 Issue: 2, 133 - 144, 30.06.2018
https://doi.org/10.7240/marufbd.405473

Abstract

Keyfi fonksiyonlar ya da parametreler içeren denklem kümesini,
denklem ailesi olarak adlandırsak, ailenin üyeleri arasında geçişi mümkün kılan
dönüşümler eşdeğerlik dönüşümleri olarak adlandırılır. Eşdeğerlik grupları,
verilen bir diferansiyel denklem ailesini değişmez bırakan dönüşüm grupları olarak
tanımlanır.  Bu nedenle diferansiyel
denklem ailelerinin eşdeğerlik grupları, aynı aileye ait, farklı denklemler
arası mümkün ilişkilerin varlığını inceler ve bu ilişkileri ortaya çıkarır. Böylelikle,
karmaşık bir denklemin kesin çözümü ya da başka deyişle davranışı, aynı aileden
daha basit bir denklem aracılığıyla belirlenebilir.  Bu çalışmada, lineer olmayan tek boyutlu dalga
denkleminin eşdeğerlik grupları, Lie gruplarının bir uygulaması çerçevesinde
incelenmiş ve bazı örnekler ile lineer ve lineer olmayan denklemler arası geçişler
sağlanmış, bazı karmaşık lineer olmayan denklemlerin çözümü belirlenmiştir. Bu
tipte dönüşümlerin varlığı için, sonsuz küçük üreteçler üzerine gelen şartlar elde
edilmiştir. Ayrıca, bu şekilde nokta dönüşümleri aracılığı ile, lineer dalga
denklemine dönüştürülebilen, lineer olmayan denklemlerin asgari fonksiyonel
bağlılıkları da belirlenmiştir.

References

  • [1] De La Rosa, R., Bruzon, M.S. (2018). Dıfferential Invariants Of A Generalized Variable-Coefficient Gardner Equation, Discrete & Continuous Dynamical Systems - Series S, 11(4), 747-757
  • [2] Khabirov, S. V.c(2018). Group analysis of a one-dimensional model of gas filtration. Journal of Applied Mathematics and Mechanics., basımda.
  • [3] Ibragimov, N. H. (2002). Invariants of a remarkable family of nonlinear equations, Nonlinear Dyn30, 155-166.
  • [4] Traciná, R., (2004). Invariants of a family of nonlinear wave equations, Commun Nonlinear Sci Numer Simulat., 9, 127-133.
  • [5] ] Senthilvelan, M., Torrisi, M., ve Valenti, A. (2006). Equivalence transformations and differential invariants of a generalized nonlinear Schrödinger equation, J. Phys. A: Math. Gen., 9, 3703-3713.
  • [6] Sophocleous, C., ve Traciná, R. (2008). Differential invariants for quasi-linear and semi-linear wave-type equations, Applied Mathematics and Computation, 202, 216-228.
  • [7] Huang, D. J., ve Ivanova, N. M. (2016). Algorithmic framework for group analysis of differential equations and its application to generalized Zakharov–Kuznetsov equations. Journal of Differential Equations, 260(3), 2354-2382.
  • [8] Bihlo, A., ve Popovych, R. O. (2017). Group classification of linear evolution equations. Journal of Mathematical Analysis and Applications, 448(2), 982-1005.
  • [9] Long, F. S., Karnbanjong, A., Suriyawichitseranee, A., Grigoriev, Y. N. ve Meleshko, S. V. (2017). Application of a Lie group admitted by a homogeneous equation for group classification of a corresponding inhomogeneous equation. Communications in Nonlinear Science and Numerical Simulation, 48, 350-360.
  • [10] Jhangeer, A. (2018). Group Classification, Reductions and Exact Solutions of a Class of Higher Order Nonlinear Degenerate Parabolic Equation. International Journal of Applied and Computational Mathematics, 4(1), 2.
  • [11] Özer, S. (2018). On the Equivalence Groups for (2+1) dimensional Nonlinear Diffusion Equation, Nonlinear Analysis: Real World Applications, basımda.
  • [12] Huang, D., Zhu, Y., ve Yang, Q. (2016). Reduction operators and exact solutions of variable coefficient nonlinear wave equations with power nonlinearities. Symmetry, 9(1), 3.
  • [13] Moitsheki, R. J., Hayat, T., ve Malik, M. Y. (2010). Some exact solutions of the fin problem with a power law temperature-dependent thermal conductivity. Nonlinear Analysis: Real World Applications, 11(5), 3287-3294.
  • [14] Vaneeva, O. (2012). Lie symmetries and exact solutions of variable coefficient mKdV equations: an equivalence based approach. Communications in Nonlinear Science and Numerical Simulation, 17(2), 611-618.
  • [15] Şuhubi, E. S. (2008). Dış form analizi. Türkiye Bilimler Akademisi.
  • [16] Ovsiannikov, L. V. E. (2014). Group analysis of differential equations. Academic Press.
  • [17] Ibragimov, N. K. (1999). Elementary Lie group analysis and ordinary differential equations (Vol. 197). New York: Wiley.
  • [18] Lisle, I. (1992). Equivalence transformations for classes of differential equations (Doktora Tezi, University of British Columbia).
  • [19] Olver, P. J. (2000). Applications of Lie groups to differential equations (Vol. 107). Springer Science & Business Media.
  • [20] Lie, S. (1897). Uber Integralinvarianten und ihre Verwertung für die Theorie der Differentialgleichungen, Leipz. Berichte, 49, 369-410.
  • [21] Şuhubi, E. S. (2000). Explicit determination of isovector fields of equivalence groups for second order balance equations. International journal of engineering science, 38(7), 715-736.
  • [22] Özer, S. ve Şuhubi, E. (2004). Equivalence transformations for first order balance equations. International journal of engineering science, 42(11-12), 1305-1324.
  • [23] Şuhubi, E. S. (2004). Equivalence groups for balance equations of arbitrary order––Part I. International journal of engineering science, 42(15-16), 1729-1751.
  • [24] Şuhubi, E. S. (2005). Explicit determination of isovector fields of equivalence groups for balance equations of arbitrary order—Part II. International journal of engineering science, 43(1-2), 1-15.
  • [25] Huang, D., Zhu, Y., & Yang, Q. (2016). Reduction operators and exact solutions of variable coefficient nonlinear wave equations with power nonlinearities. Symmetry, 9(1), 3.
  • [26] Şuhubi, E. S. (1998). Equivalence transformations for one-dimensional wave equations of balance form. ARI-An International Journal for Physical and Engineering Sciences, 50(3), 151-160.
  • [27] Harrison, B. K., ve Estabrook, F. B. (1971). Geometric approach to invariance groups and solution of partial differential systems. Journal of Mathematical Physics, 12(4), 653-666.
  • [28] Cartan, E. (1945). Les systèmes différentiels extérieurs et leurs applications géométriques, Hermann, Paris.
  • [29] Edelen, D. G. (2005). Applied exterior calculus. Courier Corporation.
Year 2018, Volume: 30 Issue: 2, 133 - 144, 30.06.2018
https://doi.org/10.7240/marufbd.405473

Abstract

References

  • [1] De La Rosa, R., Bruzon, M.S. (2018). Dıfferential Invariants Of A Generalized Variable-Coefficient Gardner Equation, Discrete & Continuous Dynamical Systems - Series S, 11(4), 747-757
  • [2] Khabirov, S. V.c(2018). Group analysis of a one-dimensional model of gas filtration. Journal of Applied Mathematics and Mechanics., basımda.
  • [3] Ibragimov, N. H. (2002). Invariants of a remarkable family of nonlinear equations, Nonlinear Dyn30, 155-166.
  • [4] Traciná, R., (2004). Invariants of a family of nonlinear wave equations, Commun Nonlinear Sci Numer Simulat., 9, 127-133.
  • [5] ] Senthilvelan, M., Torrisi, M., ve Valenti, A. (2006). Equivalence transformations and differential invariants of a generalized nonlinear Schrödinger equation, J. Phys. A: Math. Gen., 9, 3703-3713.
  • [6] Sophocleous, C., ve Traciná, R. (2008). Differential invariants for quasi-linear and semi-linear wave-type equations, Applied Mathematics and Computation, 202, 216-228.
  • [7] Huang, D. J., ve Ivanova, N. M. (2016). Algorithmic framework for group analysis of differential equations and its application to generalized Zakharov–Kuznetsov equations. Journal of Differential Equations, 260(3), 2354-2382.
  • [8] Bihlo, A., ve Popovych, R. O. (2017). Group classification of linear evolution equations. Journal of Mathematical Analysis and Applications, 448(2), 982-1005.
  • [9] Long, F. S., Karnbanjong, A., Suriyawichitseranee, A., Grigoriev, Y. N. ve Meleshko, S. V. (2017). Application of a Lie group admitted by a homogeneous equation for group classification of a corresponding inhomogeneous equation. Communications in Nonlinear Science and Numerical Simulation, 48, 350-360.
  • [10] Jhangeer, A. (2018). Group Classification, Reductions and Exact Solutions of a Class of Higher Order Nonlinear Degenerate Parabolic Equation. International Journal of Applied and Computational Mathematics, 4(1), 2.
  • [11] Özer, S. (2018). On the Equivalence Groups for (2+1) dimensional Nonlinear Diffusion Equation, Nonlinear Analysis: Real World Applications, basımda.
  • [12] Huang, D., Zhu, Y., ve Yang, Q. (2016). Reduction operators and exact solutions of variable coefficient nonlinear wave equations with power nonlinearities. Symmetry, 9(1), 3.
  • [13] Moitsheki, R. J., Hayat, T., ve Malik, M. Y. (2010). Some exact solutions of the fin problem with a power law temperature-dependent thermal conductivity. Nonlinear Analysis: Real World Applications, 11(5), 3287-3294.
  • [14] Vaneeva, O. (2012). Lie symmetries and exact solutions of variable coefficient mKdV equations: an equivalence based approach. Communications in Nonlinear Science and Numerical Simulation, 17(2), 611-618.
  • [15] Şuhubi, E. S. (2008). Dış form analizi. Türkiye Bilimler Akademisi.
  • [16] Ovsiannikov, L. V. E. (2014). Group analysis of differential equations. Academic Press.
  • [17] Ibragimov, N. K. (1999). Elementary Lie group analysis and ordinary differential equations (Vol. 197). New York: Wiley.
  • [18] Lisle, I. (1992). Equivalence transformations for classes of differential equations (Doktora Tezi, University of British Columbia).
  • [19] Olver, P. J. (2000). Applications of Lie groups to differential equations (Vol. 107). Springer Science & Business Media.
  • [20] Lie, S. (1897). Uber Integralinvarianten und ihre Verwertung für die Theorie der Differentialgleichungen, Leipz. Berichte, 49, 369-410.
  • [21] Şuhubi, E. S. (2000). Explicit determination of isovector fields of equivalence groups for second order balance equations. International journal of engineering science, 38(7), 715-736.
  • [22] Özer, S. ve Şuhubi, E. (2004). Equivalence transformations for first order balance equations. International journal of engineering science, 42(11-12), 1305-1324.
  • [23] Şuhubi, E. S. (2004). Equivalence groups for balance equations of arbitrary order––Part I. International journal of engineering science, 42(15-16), 1729-1751.
  • [24] Şuhubi, E. S. (2005). Explicit determination of isovector fields of equivalence groups for balance equations of arbitrary order—Part II. International journal of engineering science, 43(1-2), 1-15.
  • [25] Huang, D., Zhu, Y., & Yang, Q. (2016). Reduction operators and exact solutions of variable coefficient nonlinear wave equations with power nonlinearities. Symmetry, 9(1), 3.
  • [26] Şuhubi, E. S. (1998). Equivalence transformations for one-dimensional wave equations of balance form. ARI-An International Journal for Physical and Engineering Sciences, 50(3), 151-160.
  • [27] Harrison, B. K., ve Estabrook, F. B. (1971). Geometric approach to invariance groups and solution of partial differential systems. Journal of Mathematical Physics, 12(4), 653-666.
  • [28] Cartan, E. (1945). Les systèmes différentiels extérieurs et leurs applications géométriques, Hermann, Paris.
  • [29] Edelen, D. G. (2005). Applied exterior calculus. Courier Corporation.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Saadet Özer 0000-0002-5855-5039

Publication Date June 30, 2018
Acceptance Date May 5, 2018
Published in Issue Year 2018 Volume: 30 Issue: 2

Cite

APA Özer, S. (2018). Lineer Olmayan Dalga Denkleminin Lie Grupları Analizi. Marmara Fen Bilimleri Dergisi, 30(2), 133-144. https://doi.org/10.7240/marufbd.405473
AMA Özer S. Lineer Olmayan Dalga Denkleminin Lie Grupları Analizi. MFBD. June 2018;30(2):133-144. doi:10.7240/marufbd.405473
Chicago Özer, Saadet. “Lineer Olmayan Dalga Denkleminin Lie Grupları Analizi”. Marmara Fen Bilimleri Dergisi 30, no. 2 (June 2018): 133-44. https://doi.org/10.7240/marufbd.405473.
EndNote Özer S (June 1, 2018) Lineer Olmayan Dalga Denkleminin Lie Grupları Analizi. Marmara Fen Bilimleri Dergisi 30 2 133–144.
IEEE S. Özer, “Lineer Olmayan Dalga Denkleminin Lie Grupları Analizi”, MFBD, vol. 30, no. 2, pp. 133–144, 2018, doi: 10.7240/marufbd.405473.
ISNAD Özer, Saadet. “Lineer Olmayan Dalga Denkleminin Lie Grupları Analizi”. Marmara Fen Bilimleri Dergisi 30/2 (June 2018), 133-144. https://doi.org/10.7240/marufbd.405473.
JAMA Özer S. Lineer Olmayan Dalga Denkleminin Lie Grupları Analizi. MFBD. 2018;30:133–144.
MLA Özer, Saadet. “Lineer Olmayan Dalga Denkleminin Lie Grupları Analizi”. Marmara Fen Bilimleri Dergisi, vol. 30, no. 2, 2018, pp. 133-44, doi:10.7240/marufbd.405473.
Vancouver Özer S. Lineer Olmayan Dalga Denkleminin Lie Grupları Analizi. MFBD. 2018;30(2):133-44.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr