Research Article
BibTex RIS Cite

Implementation of Simulation for the Improvement of Emergency Service Quality by High-Educated Specialist Nurses Employment: Turkish Health System

Year 2018, Volume: 30 Issue: 4, 318 - 338, 31.12.2018
https://doi.org/10.7240/marufbd.395255

Abstract










Emergency departments
are the cornerstone of health care systems. In this study, the work of the
emergency services system in Turkey were examined. The intensities of the
emergency services are becoming immeasurable in the present situation. This is
mainly due to the fact that the majority of patients who come to emergency
services are not urgent in emergency departments. This study suggests that
patients who are not urgent or outpatient in emergency services should be
treated by highly-educated specialist nurses (YSN). In this case, it is
aimed to treat more patients, to reduce the waiting time of the patients and
therefore the duration of the patients' stay in the emergency services. It is
also aimed to increase the efficiency of the resources employed in emergency
services. According to the simulation example applied on 1/24 and 7/24 basis,
it was observed that the number of patients treated by providing employment of
YUH was increased by 26,71% on the basis of 1/24 and 15,13% on the basis of
7/24. The waiting time for treatment was reduced by 38.67% on 1/24 basis and
53.66% on 7/24 basis, respectively, from the time the patients were enrolled in
emergency services. Likewise, the time required for a patient to be treated in
emergency services for treatment was reduced from an average of 82.46 minutes
to 53.97 minutes. Among the findings, it has been seen that the efficiency of
the employment of YUH has provided a balance in the efficiency rates of the
resources by not getting the efficiency as high as the resources employed in
the emergency services. In addition, it has been found that the employment
intensity of physicians decreases with the employment of YUH.
    

References

  • 1. Agarana, M., & Olokunde, T. (2015). Optimization of Healthcare Pathways in Covenant University Health Centre Using Linear Programming Model. Far East Journal of Applied Mathematics, 91(3), 215.
  • 2. Ahmed, M. A., & Alkhamis, T. M. (2009). Simulation optimization for an emergency department healthcare unit in Kuwait. European journal of operational research, 198(3), 936-942.
  • 3. Al-Abri, R., & Al-Balushi, A. (2014). Patient Satisfaction Survey as a Tool Towards Quality Improvement. Oman Medical Journal, 29(1), 3-7. doi:10.5001/omj.2014.02.
  • 4. Ali, Z., & Bhaskar, S. B. (2016). Basic statistical tools in research and data analysis. Indian Journal of Anaesthesia, 60(9), 662-669. doi:10.4103/0019-5049.190623.
  • 5. Andel, C., Davidow, S. L., Hollander, M., & Moreno, D. A. (2012). The economics of health care quality and medical errors. Journal of health care finance, 39(1), 39.
  • 6. Anhang Price, R., Elliott, M. N., Zaslavsky, A. M., Hays, R. D., Lehrman, W. G., Rybowski, L., .. . Cleary, P. D. (2014). Examining the Role of Patient Experience Surveys in Measuring Health Care Quality. Medical care research and review : MCRR, 71(5), 522-554. doi:10.1177/1077558714541480.
  • 7. Atalan, A. (2014). Central Composite Design Optimization Using Computer Simulation Approach. Flexsim Quarterly Publication, 5-19.
  • 8. Austin, A., & Wetle, V. (2012). The United States Health Care System: Combining Business, Health, and Delivery (M. Cohen Ed. 2 ed.): Pearson.
  • 9. Baesler, F. F., & Sepúlveda, J. A. (2001). Healthcare II: multi-objective simulation optimization for a cancer treatment center. Paper presented at the Proceedings of the 33nd conference on Winter simulation.
  • 10. Batun, S., & Begen, M. A. (2013). Optimization in healthcare delivery modeling: Methods and applications. In Handbook of Healthcare Operations Management (pp. 75-119): Springer.
  • 11. Binu, V. S., Mayya, S. S., & Dhar, M. (2014). Some basic aspects of statistical methods and sample size determination in health science research. Ayu, 35(2), 119-123. doi:10.4103/0974-8520.146202.
  • 12. Blake, J. T., Carter, M. W., & Richardson, S. (1996). An analysis of emergency room wait time issues via computer simulation. INFOR: Information Systems and Operational Research, 34(4), 263-273.
  • 13. Bleustein, C., B Rothschild, D., Valen, A., Valatis, E., Schweitzer, L., & Jones, R. (2014). Wait Times, Patient Satisfaction Scores, and the Perception of Care (Vol. 20).
  • 14. Brailsford, S., & Schmidt, B. (2003). Towards incorporating human behaviour in models of health care systems: An approach using discrete event simulation. European journal of operational research, 150(1), 19-31. doi:https://doi.org/10.1016/S0377-2217(02)00778-6.
  • 15. Briggs, A., & Gray, A. (1999). Handling uncertainty when performing economic evaluation of healthcare interventions. Health Technol Assess, 3(2), 1-134.
  • 16. Cabrera, E., Luque, E., Taboada, M., Epelde, F., & Iglesias, M. L. (2012). ABMS optimization for emergency departments. Paper presented at the Proceedings of the winter simulation conference.
  • 17. Cabrera, E., Taboada, M., Iglesias, M. L., Epelde, F., & Luque, E. (2011). Optimization of healthcare emergency departments by agent-based simulation. Procedia computer science, 4, 1880-1889.
  • 18. Caro, J. J. (2005). Pharmacoeconomic analyses using discrete event simulation. Pharmacoeconomics, 23(4), 323-332.
  • 19. Ceglowski, R., Churilov, L., & Wasserthiel, J. (2007). Combining data mining and discrete event simulation for a value-added view of a hospital emergency department. Journal of the operational research society, 58(2), 246-254.
  • 20. Chassin, M. R., & Galvin, R. W. (1998). The urgent need to improve health care quality: Institute of Medicine National Roundtable on Health Care Quality. Jama, 280(11), 1000-1005.
  • 21. CHSRF. (2010). Myth: Emergency room overcrowding is caused by non-urgent cases. Journal of Health Services Research & Policy, 15(3), 188-189. doi:10.1258/jhsrp.2010.010310.
  • 22. Connelly, L. G., & Bair, A. E. (2004). Discrete event simulation of emergency department activity: A platform for system‐level operations research. Academic Emergency Medicine, 11(11), 1177-1185.
  • 23. Denton, B. T. (2013). Handbook of healthcare operations management: Springer.
  • 24. Donabedian, A. (1985). The Methods and Findings of Quality Assessment and Monitoring: an Illustrated Analysis. Journal for Healthcare Quality, 7(3), 15.
  • 25. Duguay, C., & Chetouane, F. (2007). Modeling and improving emergency department systems using discrete event simulation. Simulation, 83(4), 311-320.
  • 26. Durand, A.-C., Palazzolo, S., Tanti-Hardouin, N., Gerbeaux, P., Sambuc, R., & Gentile, S. (2012). Nonurgent patients in emergency departments: rational or irresponsible consumers? Perceptions of professionals and patients. BMC Research Notes, 5, 525-525. doi:10.1186/1756-0500-5-525.
  • 27. Ely, E. W., Stephens, R. K., Jackson, J. C., Thomason, J. W. W., Truman, B., Gordon, S., . . . Bernard, G. R. (2004). Current opinions regarding the importance, diagnosis, and management of delirium in the intensive care unit: A survey of 912 healthcare professionals*. Critical Care Medicine, 32(1).
  • 28. England, W., & Roberts, S. D. (1978). Applications of computer simulation in health care. Paper presented at the Proceedings of the 10th conference on Winter simulation - Volume 2, Miami Beach, FL.
  • 29. Fenton, J. J., Jerant, A. F., Bertakis, K. D., & Franks, P. (2012). The cost of satisfaction: a national study of patient satisfaction, health care utilization, expenditures, and mortality. Archives of internal medicine, 172(5), 405-411.
  • 30. Goodman, S. N., Altman, D. G., & George, S. L. (1998). Statistical Reviewing Policies of Medical Journals: Caveat Lector? Journal of General Internal Medicine, 13(11), 753-756. doi:10.1046/j.1525-1497.1998.00227.x
  • 31. Graban, M. (2011). Statistics on healthcare quality and patient safety problems-errors & harm. Retrieved May, 26, 2011.
  • 32. Günal, M. M., & Pidd, M. (2010). Discrete event simulation for performance modelling in health care: a review of the literature. Journal of Simulation, 4(1), 42-51.
  • 33. Gupta, D., & Denton, B. (2008). Appointment scheduling in health care: Challenges and opportunities. IIE Transactions, 40(9), 800-819. doi:10.1080/07408170802165880.
  • 34. Hart, A. (2001). Making sense of statistics in healthcare: Radcliffe Publishing.
  • 35. Hung, G. R., Whitehouse, S. R., O'neill, C., Gray, A. P., & Kissoon, N. (2007). Computer modeling of patient flow in a pediatric emergency department using discrete event simulation. Pediatric emergency care, 23(1), 5-10.
  • 36. Jun, J., Jacobson, S. H., & Swisher, J. R. (1999). Application of discrete-event simulation in health care clinics: A survey. Journal of the operational research society, 109-123.
  • 37. Keck, M. (2003). Hospital emergency department resource utilization and optimization system. In: Google Patents.
  • 38. Kim, S. E., Kim, C. W., Lee, S. J., Oh, J. H., Lee, D. H., Lim, T. H., . . . Jung, J. H. (2015). A questionnaire survey exploring healthcare professionals' attitudes towards teamwork and safety in acute care areas in South Korea. BMJ Open, 5(7).
  • 39. Komashie, A., & Mousavi, A. (2005). Modeling emergency departments using discrete event simulation techniques. Paper presented at the Proceedings of the 37th conference on Winter simulation.
  • 40. Köse, A., Köse, B., Öncü, M. R., & Tuğrul, F. (2010). Bir devlet hastanesi acil servisine başvuran hastaların profili ve başvurunun uygunluğu. Gaziantep Medical Journal, 17(2), 57-62.
  • 41. Larimer, M. E., Malone, D. K., Garner, M. D., Atkins, D. C., Burlingham, B., Lonczak, H. S., . . . Hobson, W. G. (2009). Health care and public service use and costs before and after provision of housing for chronically homeless persons with severe alcohol problems. Jama, 301(13), 1349-1357.
  • 42. Lichtenstein, R. L. (1993). The United States' health care system: Problems and solutions. Survey of Ophthalmology, 38(3), 310-316. doi:10.1016/0039-6257(93)90080-Q
  • 43. Mancilla, C., & Storer, R. H. (2013). Stochastic Integer Programming in Healthcare Delivery. In P. M. Pardalos, P. G. Georgiev, P. Papajorgji, & B. Neugaard (Eds.), Systems Analysis Tools for Better Health Care Delivery (pp. 37-48). New York, NY: Springer New York.
  • 44. Mandahawi, N., Al-Shihabi, S., Abdallah, A. A., & Alfarah, Y. M. (2010). Reducing waiting time at an emergency department using design for Six Sigma and discrete event simulation. International Journal of Six Sigma and Competitive Advantage, 6(1-2), 91-104.
  • 45. Mohamed, A. W. (2017). Solving stochastic programming problems using new approach to Differential Evolution algorithm. Egyptian Informatics Journal, 18(2), 75-86. doi:https://doi.org/10.1016/j.eij.2016.09.002
  • 46. Munro, B. H. (2005). Statistical methods for health care research (Vol. 1): Lippincott Williams & Wilkins.
  • 47. Raunak, M., Osterweil, L., Wise, A., Clarke, L., & Henneman, P. (2009). Simulating patient flow through an emergency department using process-driven discrete event simulation. Paper presented at the Proceedings of the 2009 ICSE Workshop on Software Engineering in Health Care.
  • 48. Salway, R. J., Valenzuela, R., Shoenberger, J. M., Mallon, W. K., & Viccellio, A. (2017). Emergency Department (Ed) Overcrowding: Evidence-Based Answers to Frequently Asked Questions. Revista Médica Clínica Las Condes, 28(2), 213-219. doi:https://doi.org/10.1016/j.rmclc.2017.04.008.
  • 49. Schuur , J. D., & Venkatesh , A. K. (2012). The Growing Role of Emergency Departments in Hospital Admissions. New England Journal of Medicine, 367(5), 391-393. doi:10.1056/NEJMp1204431
  • 50. Scott, I., & Mazhindu, D. (2014). Statistics for healthcare professionals: An introduction: Sage.
  • 51. Sheingold, B. H., & Hahn, J. A. (2014). The history of healthcare quality: The first 100 years 1860-1960. International Journal of Africa Nursing Sciences, 1, 18-22. doi:https://doi.org/10.1016/j.ijans.2014.05.002.
  • 52. Spadaro, S., Karbing, D. S., Fogagnolo, A., Ragazzi, R., Mojoli, F., Astolfi, L., . . . Volta, C. A. (2017). Simulation Training for Residents Focused on Mechanical Ventilation: A Randomized Trial Using Mannequin-Based Versus Computer-Based Simulation. Simulation in Healthcare, 12(6), 349-355. doi:10.1097/sih.0000000000000249.
  • 53. Swisher, J. R., & Jacobson, S. H. (2002). Evaluating the design of a family practice healthcare clinic using discrete-event simulation. Health Care Management Science, 5(2), 75-88.
  • 54. Tsai, J. C.-H., Liang, Y.-W., & Pearson, W. S. (2010). Utilization of Emergency Department in Patients With Non-urgent Medical Problems: Patient Preference and Emergency Department Convenience. Journal of the Formosan Medical Association, 109(7), 533-542. doi:https://doi.org/10.1016/S0929-6646(10)60088-5.
  • 55. Türk-Tabibleri-Birliği. (2007). Hemşirelik Kanunu- 6283. Retrieved from http://www.ttb.org.tr/mevzuat/index.phpoption=com_content&task=view&id=502&Itemid=28
  • 56. Unwin, M., Kinsman, L., & Rigby, S. (2016). Why are we waiting? Patients' perspectives for accessing emergency department services with non-urgent complaints. International Emergency Nursing, 29, 3-8. doi:https://doi.org/10.1016/j.ienj.2016.09.003.
  • 57. Uscher-Pines, L., Pines, J., Kellermann, A., Gillen, E., & Mehrotra, A. (2013). Deciding to Visit the Emergency Department for Non-Urgent Conditions: A Systematic Review of the Literature. The American journal of managed care, 19(1), 47-59.
  • 58. van Gestel, A., Severens, J. L., Webers, C. A. B., Beckers, H. J. M., Jansonius, N. M., & Schouten, J. S. A. G. (2010). Modeling Complex Treatment Strategies: Construction and Validation of a Discrete Event Simulation Model for Glaucoma. Value in Health, 13(4), 358-367. doi:https://doi.org/10.1111/j.1524-4733.2009.00678.x
  • 59. Wang, T., Guinet, A., Belaidi, A., & Besombes, B. (2009). Modelling and simulation of emergency services with ARIS and Arena. Case study: the emergency department of Saint Joseph and Saint Luc Hospital. Production Planning and Control, 20(6), 484-495.
  • 60. Wickramasinghe, N., Bali, R. K., Gibbons, M. C., Choi, J., & Schaffer, J. L. (2009). A systematic approach: optimization of healthcare operations with knowledge management. Journal of healthcare information management: JHIM, 23(3), 44-50.
  • 61. Wiler, J. L., Gentle, C., Halfpenny, J. M., Heins, A., Mehrotra, A., Mikhail, M. G., & Fite, D. (2010). Optimizing emergency department front-end operations. Annals of emergency medicine, 55(2), 142-160. e141.
  • 62. Yates, K., Kelly, J., Lindsay, D., & Usher, K. (2012). The experience of rural midwives in dual roles as nurse and midwife: "I'd prefer midwifery but I chose to live here". Women and Birth, 26(1), 60-64. doi:10.1016/j.wombi.2012.03.003
  • 63. Young Ik, C., Timothy, P. J., & Jonathan, B. V. (2013). Enhancing Surveys of Health Care Professionals: A Meta-Analysis of Techniques to Improve Response. Evaluation & the Health Professions, 36(3), 382-407. doi:10.1177/0163278713496425.

Yüksek-Eğitimli Uzman Hemşire İstihdamı ile Acil Servis Kalitesinin Yükseltilmesi için Simülasyon Uygulaması: Türkiye Sağlık Sistemi

Year 2018, Volume: 30 Issue: 4, 318 - 338, 31.12.2018
https://doi.org/10.7240/marufbd.395255

Abstract










Acil servisler sağlık sistemlerin
temel taşını oluşturmaktadırlar. Bu çalışmada, Türkiye’deki acil servislerin
çalışma sistemleri incelenmiştir. Mevcut durumdaki acil servislere ait
yoğunluklar ölçülemez hale gelmektedir. Bunun başlıca nedeni acil durumda
olmayan hastaların acil servisleri meşgul etmesidir.  Bu çalışma ile acil servislerde acil olmayan
ya da ayakta tedavi edilebilecek olan hastaların yüksek-eğitimli uzman hemşireler
(YUH) tarafından tedavi edilmesi önerilmiştir. Bu durumda daha fazla hasta
tedavi edilmesi, hastaların bekleme sürelerinin ve dolayısıyla hastaların acil
servislerde kalma sürelerinin azaltılması amaçlanmıştır. Ayrıca acil
servislerde istihdam edilen kaynakların verimliliğinin arttırılması
hedeflenmiştir. 1/24 ve 7/24 esasına göre uygulanan simülasyon örneği ile YUH
istihdamı sağlanarak tedavi edilen hasta sayısında 1/24 esasına göre %26,71 ve
7/24 esasına göre %15,13 oranında artış sağlandığı görülmüştür. Hastaların acil
servise kayıt yaptıkları andan itibaren tedavi olmak için bekledikleri süre
1/24 esasına göre %38,67 ve 7/24 esasına göre %53,66 oranlarında iyileşme
sağlanarak bekleme zamanı düşürülmüştür. Aynı şekilde bir hastanın tedavi olmak
için acil servislerde geçirmesi gereken süre ortalama 82,46 dakikadan 53,97
dakikaya düşürülmüştür. Bulgular arasında, acil servislerde istihdam edilen
kaynaklardan yeteri kadar verim alınamamasıyla YUH istihdamı sayesinde
kaynaklara ait verimlilik oranlarında bir denge sağlandığı görülmüştür. Ek
olarak, YUH istihdamı ile doktorların çalışma yoğunluklarının azaldığı tespit
edilmiştir.

References

  • 1. Agarana, M., & Olokunde, T. (2015). Optimization of Healthcare Pathways in Covenant University Health Centre Using Linear Programming Model. Far East Journal of Applied Mathematics, 91(3), 215.
  • 2. Ahmed, M. A., & Alkhamis, T. M. (2009). Simulation optimization for an emergency department healthcare unit in Kuwait. European journal of operational research, 198(3), 936-942.
  • 3. Al-Abri, R., & Al-Balushi, A. (2014). Patient Satisfaction Survey as a Tool Towards Quality Improvement. Oman Medical Journal, 29(1), 3-7. doi:10.5001/omj.2014.02.
  • 4. Ali, Z., & Bhaskar, S. B. (2016). Basic statistical tools in research and data analysis. Indian Journal of Anaesthesia, 60(9), 662-669. doi:10.4103/0019-5049.190623.
  • 5. Andel, C., Davidow, S. L., Hollander, M., & Moreno, D. A. (2012). The economics of health care quality and medical errors. Journal of health care finance, 39(1), 39.
  • 6. Anhang Price, R., Elliott, M. N., Zaslavsky, A. M., Hays, R. D., Lehrman, W. G., Rybowski, L., .. . Cleary, P. D. (2014). Examining the Role of Patient Experience Surveys in Measuring Health Care Quality. Medical care research and review : MCRR, 71(5), 522-554. doi:10.1177/1077558714541480.
  • 7. Atalan, A. (2014). Central Composite Design Optimization Using Computer Simulation Approach. Flexsim Quarterly Publication, 5-19.
  • 8. Austin, A., & Wetle, V. (2012). The United States Health Care System: Combining Business, Health, and Delivery (M. Cohen Ed. 2 ed.): Pearson.
  • 9. Baesler, F. F., & Sepúlveda, J. A. (2001). Healthcare II: multi-objective simulation optimization for a cancer treatment center. Paper presented at the Proceedings of the 33nd conference on Winter simulation.
  • 10. Batun, S., & Begen, M. A. (2013). Optimization in healthcare delivery modeling: Methods and applications. In Handbook of Healthcare Operations Management (pp. 75-119): Springer.
  • 11. Binu, V. S., Mayya, S. S., & Dhar, M. (2014). Some basic aspects of statistical methods and sample size determination in health science research. Ayu, 35(2), 119-123. doi:10.4103/0974-8520.146202.
  • 12. Blake, J. T., Carter, M. W., & Richardson, S. (1996). An analysis of emergency room wait time issues via computer simulation. INFOR: Information Systems and Operational Research, 34(4), 263-273.
  • 13. Bleustein, C., B Rothschild, D., Valen, A., Valatis, E., Schweitzer, L., & Jones, R. (2014). Wait Times, Patient Satisfaction Scores, and the Perception of Care (Vol. 20).
  • 14. Brailsford, S., & Schmidt, B. (2003). Towards incorporating human behaviour in models of health care systems: An approach using discrete event simulation. European journal of operational research, 150(1), 19-31. doi:https://doi.org/10.1016/S0377-2217(02)00778-6.
  • 15. Briggs, A., & Gray, A. (1999). Handling uncertainty when performing economic evaluation of healthcare interventions. Health Technol Assess, 3(2), 1-134.
  • 16. Cabrera, E., Luque, E., Taboada, M., Epelde, F., & Iglesias, M. L. (2012). ABMS optimization for emergency departments. Paper presented at the Proceedings of the winter simulation conference.
  • 17. Cabrera, E., Taboada, M., Iglesias, M. L., Epelde, F., & Luque, E. (2011). Optimization of healthcare emergency departments by agent-based simulation. Procedia computer science, 4, 1880-1889.
  • 18. Caro, J. J. (2005). Pharmacoeconomic analyses using discrete event simulation. Pharmacoeconomics, 23(4), 323-332.
  • 19. Ceglowski, R., Churilov, L., & Wasserthiel, J. (2007). Combining data mining and discrete event simulation for a value-added view of a hospital emergency department. Journal of the operational research society, 58(2), 246-254.
  • 20. Chassin, M. R., & Galvin, R. W. (1998). The urgent need to improve health care quality: Institute of Medicine National Roundtable on Health Care Quality. Jama, 280(11), 1000-1005.
  • 21. CHSRF. (2010). Myth: Emergency room overcrowding is caused by non-urgent cases. Journal of Health Services Research & Policy, 15(3), 188-189. doi:10.1258/jhsrp.2010.010310.
  • 22. Connelly, L. G., & Bair, A. E. (2004). Discrete event simulation of emergency department activity: A platform for system‐level operations research. Academic Emergency Medicine, 11(11), 1177-1185.
  • 23. Denton, B. T. (2013). Handbook of healthcare operations management: Springer.
  • 24. Donabedian, A. (1985). The Methods and Findings of Quality Assessment and Monitoring: an Illustrated Analysis. Journal for Healthcare Quality, 7(3), 15.
  • 25. Duguay, C., & Chetouane, F. (2007). Modeling and improving emergency department systems using discrete event simulation. Simulation, 83(4), 311-320.
  • 26. Durand, A.-C., Palazzolo, S., Tanti-Hardouin, N., Gerbeaux, P., Sambuc, R., & Gentile, S. (2012). Nonurgent patients in emergency departments: rational or irresponsible consumers? Perceptions of professionals and patients. BMC Research Notes, 5, 525-525. doi:10.1186/1756-0500-5-525.
  • 27. Ely, E. W., Stephens, R. K., Jackson, J. C., Thomason, J. W. W., Truman, B., Gordon, S., . . . Bernard, G. R. (2004). Current opinions regarding the importance, diagnosis, and management of delirium in the intensive care unit: A survey of 912 healthcare professionals*. Critical Care Medicine, 32(1).
  • 28. England, W., & Roberts, S. D. (1978). Applications of computer simulation in health care. Paper presented at the Proceedings of the 10th conference on Winter simulation - Volume 2, Miami Beach, FL.
  • 29. Fenton, J. J., Jerant, A. F., Bertakis, K. D., & Franks, P. (2012). The cost of satisfaction: a national study of patient satisfaction, health care utilization, expenditures, and mortality. Archives of internal medicine, 172(5), 405-411.
  • 30. Goodman, S. N., Altman, D. G., & George, S. L. (1998). Statistical Reviewing Policies of Medical Journals: Caveat Lector? Journal of General Internal Medicine, 13(11), 753-756. doi:10.1046/j.1525-1497.1998.00227.x
  • 31. Graban, M. (2011). Statistics on healthcare quality and patient safety problems-errors & harm. Retrieved May, 26, 2011.
  • 32. Günal, M. M., & Pidd, M. (2010). Discrete event simulation for performance modelling in health care: a review of the literature. Journal of Simulation, 4(1), 42-51.
  • 33. Gupta, D., & Denton, B. (2008). Appointment scheduling in health care: Challenges and opportunities. IIE Transactions, 40(9), 800-819. doi:10.1080/07408170802165880.
  • 34. Hart, A. (2001). Making sense of statistics in healthcare: Radcliffe Publishing.
  • 35. Hung, G. R., Whitehouse, S. R., O'neill, C., Gray, A. P., & Kissoon, N. (2007). Computer modeling of patient flow in a pediatric emergency department using discrete event simulation. Pediatric emergency care, 23(1), 5-10.
  • 36. Jun, J., Jacobson, S. H., & Swisher, J. R. (1999). Application of discrete-event simulation in health care clinics: A survey. Journal of the operational research society, 109-123.
  • 37. Keck, M. (2003). Hospital emergency department resource utilization and optimization system. In: Google Patents.
  • 38. Kim, S. E., Kim, C. W., Lee, S. J., Oh, J. H., Lee, D. H., Lim, T. H., . . . Jung, J. H. (2015). A questionnaire survey exploring healthcare professionals' attitudes towards teamwork and safety in acute care areas in South Korea. BMJ Open, 5(7).
  • 39. Komashie, A., & Mousavi, A. (2005). Modeling emergency departments using discrete event simulation techniques. Paper presented at the Proceedings of the 37th conference on Winter simulation.
  • 40. Köse, A., Köse, B., Öncü, M. R., & Tuğrul, F. (2010). Bir devlet hastanesi acil servisine başvuran hastaların profili ve başvurunun uygunluğu. Gaziantep Medical Journal, 17(2), 57-62.
  • 41. Larimer, M. E., Malone, D. K., Garner, M. D., Atkins, D. C., Burlingham, B., Lonczak, H. S., . . . Hobson, W. G. (2009). Health care and public service use and costs before and after provision of housing for chronically homeless persons with severe alcohol problems. Jama, 301(13), 1349-1357.
  • 42. Lichtenstein, R. L. (1993). The United States' health care system: Problems and solutions. Survey of Ophthalmology, 38(3), 310-316. doi:10.1016/0039-6257(93)90080-Q
  • 43. Mancilla, C., & Storer, R. H. (2013). Stochastic Integer Programming in Healthcare Delivery. In P. M. Pardalos, P. G. Georgiev, P. Papajorgji, & B. Neugaard (Eds.), Systems Analysis Tools for Better Health Care Delivery (pp. 37-48). New York, NY: Springer New York.
  • 44. Mandahawi, N., Al-Shihabi, S., Abdallah, A. A., & Alfarah, Y. M. (2010). Reducing waiting time at an emergency department using design for Six Sigma and discrete event simulation. International Journal of Six Sigma and Competitive Advantage, 6(1-2), 91-104.
  • 45. Mohamed, A. W. (2017). Solving stochastic programming problems using new approach to Differential Evolution algorithm. Egyptian Informatics Journal, 18(2), 75-86. doi:https://doi.org/10.1016/j.eij.2016.09.002
  • 46. Munro, B. H. (2005). Statistical methods for health care research (Vol. 1): Lippincott Williams & Wilkins.
  • 47. Raunak, M., Osterweil, L., Wise, A., Clarke, L., & Henneman, P. (2009). Simulating patient flow through an emergency department using process-driven discrete event simulation. Paper presented at the Proceedings of the 2009 ICSE Workshop on Software Engineering in Health Care.
  • 48. Salway, R. J., Valenzuela, R., Shoenberger, J. M., Mallon, W. K., & Viccellio, A. (2017). Emergency Department (Ed) Overcrowding: Evidence-Based Answers to Frequently Asked Questions. Revista Médica Clínica Las Condes, 28(2), 213-219. doi:https://doi.org/10.1016/j.rmclc.2017.04.008.
  • 49. Schuur , J. D., & Venkatesh , A. K. (2012). The Growing Role of Emergency Departments in Hospital Admissions. New England Journal of Medicine, 367(5), 391-393. doi:10.1056/NEJMp1204431
  • 50. Scott, I., & Mazhindu, D. (2014). Statistics for healthcare professionals: An introduction: Sage.
  • 51. Sheingold, B. H., & Hahn, J. A. (2014). The history of healthcare quality: The first 100 years 1860-1960. International Journal of Africa Nursing Sciences, 1, 18-22. doi:https://doi.org/10.1016/j.ijans.2014.05.002.
  • 52. Spadaro, S., Karbing, D. S., Fogagnolo, A., Ragazzi, R., Mojoli, F., Astolfi, L., . . . Volta, C. A. (2017). Simulation Training for Residents Focused on Mechanical Ventilation: A Randomized Trial Using Mannequin-Based Versus Computer-Based Simulation. Simulation in Healthcare, 12(6), 349-355. doi:10.1097/sih.0000000000000249.
  • 53. Swisher, J. R., & Jacobson, S. H. (2002). Evaluating the design of a family practice healthcare clinic using discrete-event simulation. Health Care Management Science, 5(2), 75-88.
  • 54. Tsai, J. C.-H., Liang, Y.-W., & Pearson, W. S. (2010). Utilization of Emergency Department in Patients With Non-urgent Medical Problems: Patient Preference and Emergency Department Convenience. Journal of the Formosan Medical Association, 109(7), 533-542. doi:https://doi.org/10.1016/S0929-6646(10)60088-5.
  • 55. Türk-Tabibleri-Birliği. (2007). Hemşirelik Kanunu- 6283. Retrieved from http://www.ttb.org.tr/mevzuat/index.phpoption=com_content&task=view&id=502&Itemid=28
  • 56. Unwin, M., Kinsman, L., & Rigby, S. (2016). Why are we waiting? Patients' perspectives for accessing emergency department services with non-urgent complaints. International Emergency Nursing, 29, 3-8. doi:https://doi.org/10.1016/j.ienj.2016.09.003.
  • 57. Uscher-Pines, L., Pines, J., Kellermann, A., Gillen, E., & Mehrotra, A. (2013). Deciding to Visit the Emergency Department for Non-Urgent Conditions: A Systematic Review of the Literature. The American journal of managed care, 19(1), 47-59.
  • 58. van Gestel, A., Severens, J. L., Webers, C. A. B., Beckers, H. J. M., Jansonius, N. M., & Schouten, J. S. A. G. (2010). Modeling Complex Treatment Strategies: Construction and Validation of a Discrete Event Simulation Model for Glaucoma. Value in Health, 13(4), 358-367. doi:https://doi.org/10.1111/j.1524-4733.2009.00678.x
  • 59. Wang, T., Guinet, A., Belaidi, A., & Besombes, B. (2009). Modelling and simulation of emergency services with ARIS and Arena. Case study: the emergency department of Saint Joseph and Saint Luc Hospital. Production Planning and Control, 20(6), 484-495.
  • 60. Wickramasinghe, N., Bali, R. K., Gibbons, M. C., Choi, J., & Schaffer, J. L. (2009). A systematic approach: optimization of healthcare operations with knowledge management. Journal of healthcare information management: JHIM, 23(3), 44-50.
  • 61. Wiler, J. L., Gentle, C., Halfpenny, J. M., Heins, A., Mehrotra, A., Mikhail, M. G., & Fite, D. (2010). Optimizing emergency department front-end operations. Annals of emergency medicine, 55(2), 142-160. e141.
  • 62. Yates, K., Kelly, J., Lindsay, D., & Usher, K. (2012). The experience of rural midwives in dual roles as nurse and midwife: "I'd prefer midwifery but I chose to live here". Women and Birth, 26(1), 60-64. doi:10.1016/j.wombi.2012.03.003
  • 63. Young Ik, C., Timothy, P. J., & Jonathan, B. V. (2013). Enhancing Surveys of Health Care Professionals: A Meta-Analysis of Techniques to Improve Response. Evaluation & the Health Professions, 36(3), 382-407. doi:10.1177/0163278713496425.
There are 63 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Abdulkadir Atalan 0000-0003-0924-3685

Cem Çağrı Dönmez

Yasemin Ayaz Atalan

Publication Date December 31, 2018
Acceptance Date December 11, 2018
Published in Issue Year 2018 Volume: 30 Issue: 4

Cite

APA Atalan, A., Dönmez, C. Ç., & Ayaz Atalan, Y. (2018). Yüksek-Eğitimli Uzman Hemşire İstihdamı ile Acil Servis Kalitesinin Yükseltilmesi için Simülasyon Uygulaması: Türkiye Sağlık Sistemi. Marmara Fen Bilimleri Dergisi, 30(4), 318-338. https://doi.org/10.7240/marufbd.395255
AMA Atalan A, Dönmez CÇ, Ayaz Atalan Y. Yüksek-Eğitimli Uzman Hemşire İstihdamı ile Acil Servis Kalitesinin Yükseltilmesi için Simülasyon Uygulaması: Türkiye Sağlık Sistemi. MFBD. December 2018;30(4):318-338. doi:10.7240/marufbd.395255
Chicago Atalan, Abdulkadir, Cem Çağrı Dönmez, and Yasemin Ayaz Atalan. “Yüksek-Eğitimli Uzman Hemşire İstihdamı Ile Acil Servis Kalitesinin Yükseltilmesi için Simülasyon Uygulaması: Türkiye Sağlık Sistemi”. Marmara Fen Bilimleri Dergisi 30, no. 4 (December 2018): 318-38. https://doi.org/10.7240/marufbd.395255.
EndNote Atalan A, Dönmez CÇ, Ayaz Atalan Y (December 1, 2018) Yüksek-Eğitimli Uzman Hemşire İstihdamı ile Acil Servis Kalitesinin Yükseltilmesi için Simülasyon Uygulaması: Türkiye Sağlık Sistemi. Marmara Fen Bilimleri Dergisi 30 4 318–338.
IEEE A. Atalan, C. Ç. Dönmez, and Y. Ayaz Atalan, “Yüksek-Eğitimli Uzman Hemşire İstihdamı ile Acil Servis Kalitesinin Yükseltilmesi için Simülasyon Uygulaması: Türkiye Sağlık Sistemi”, MFBD, vol. 30, no. 4, pp. 318–338, 2018, doi: 10.7240/marufbd.395255.
ISNAD Atalan, Abdulkadir et al. “Yüksek-Eğitimli Uzman Hemşire İstihdamı Ile Acil Servis Kalitesinin Yükseltilmesi için Simülasyon Uygulaması: Türkiye Sağlık Sistemi”. Marmara Fen Bilimleri Dergisi 30/4 (December 2018), 318-338. https://doi.org/10.7240/marufbd.395255.
JAMA Atalan A, Dönmez CÇ, Ayaz Atalan Y. Yüksek-Eğitimli Uzman Hemşire İstihdamı ile Acil Servis Kalitesinin Yükseltilmesi için Simülasyon Uygulaması: Türkiye Sağlık Sistemi. MFBD. 2018;30:318–338.
MLA Atalan, Abdulkadir et al. “Yüksek-Eğitimli Uzman Hemşire İstihdamı Ile Acil Servis Kalitesinin Yükseltilmesi için Simülasyon Uygulaması: Türkiye Sağlık Sistemi”. Marmara Fen Bilimleri Dergisi, vol. 30, no. 4, 2018, pp. 318-3, doi:10.7240/marufbd.395255.
Vancouver Atalan A, Dönmez CÇ, Ayaz Atalan Y. Yüksek-Eğitimli Uzman Hemşire İstihdamı ile Acil Servis Kalitesinin Yükseltilmesi için Simülasyon Uygulaması: Türkiye Sağlık Sistemi. MFBD. 2018;30(4):318-3.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr