BibTex RIS Cite

SUPEROXIDE RADICAL GENERATION IN RAT STRIATAL SLICES EFFECTS OF DEPOLARIZATION AND CALCIUM ION DEFICIENCY CONDITIONS

Year 2000, Volume: 13 Issue: 1, 11 - 14, 03.12.2016

Abstract

Objective: Oxidative stress is thought to be responsible for neurotoxicity through the generation of oxygen radicals. The aim of the current study was to determine the generation of superoxide radicals under depolarization conditions in rat striatal slices. We also investigated the effect of intracellular and extracellular calcium ion concentrations on superoxide radical formation.
Methods: Striatal slices were obtained using a vibroslicer and after incubation of slices in appropriate incubation media the formation of superoxide radicals was detected by the chemiluminescence technique using a luminometer.
Results: Depolarization conditions (50 mM-K+) were used to induce superoxide radical generation in striatal slices. Under depolarization conditions lactate dehydrogenase activity (LDH) was also increased. Incubation of striatal slices in calcium chelator EGTA and intracellular calcium release blocker ryanodine increased superoxide generation compared to depolarization conditions.
Conclusion: Under calcium ion deficiency conditions, increased superoxide generation may be related with the suppression of LTD in striatum. Suppression of free radical generation from different sources in the neuron may help to develop new therapeutical approaches and can prevent neurodegeneration in the striatum.
Key Words: Striatal slices, superoxide radical, chemiluminescence recording, calcium ion deficiency

References

  • Calabresi P, Pisani A, Mercury ÎÏB, Bernardi G. Postsynaptic mechanisms underlying striatal long-term depression. J Heurosci 1994; 14:4871-4881.
  • Jiang Z-G, Horth RA. Membrane properties and synaptic responses of rat striatal neurons in vitro. J Phys 1991;443:533-553.
  • Monoghan DT, Holds VR, Toy DW, Cotman CW. Anatomical distributions of four pharmacologically distinct 3H-L-glutamate binding sites, nature 1983;306:176-179
  • Sladeczek P, Pin JP, Recasens M, Bockaert J, Weiss
  • S. Glutamate stimulates inositol trisphosphate formation in striatal neurons. nature 1985;317:717-719.
  • Bashir Zi, Bortolotto ZA, Davies CPI et al. Induction of the LTP in hippocampus needs synaptic
  • activation of glutamate metabotropic receptors, nature 1993;363:347-350.
  • Bliss TVP, Collingridge GL. A synaptic model of
  • memory: Long-term potentiation in the
  • hippocampus, nature 1993;361 -.31-39.
  • Patel M, Day BJ, Crapo JD, Fridovich I, Mcnamara JO. Requirement for superoxide in excitotoxic cell death, neuron 1996; 16:345-355.
  • Liu J, Shigenaga MR, Mori A, Ames B. Free radicals
  • and neurodegenerative diseases: Stress and
  • oxidative damage. In: Packer L, fliramatsu M, Yoshikawa T, eds. Free Radicals in Brain Physiology and Disorders, new York: Academic Press,
  • :403-407.
  • Harris ME, Carney JM, Cole PS, et al. jl-Amyloid peptide-derived, oxygen-dependent free radicals inhibit glutamate uptake in cultured astrocytes: implications for Alzheimer's disease, neuro Report 1995;6:1875-1879.
  • Reiderer P, Sofic E, Reusch W-D, et al. Transition metals, ferritin, glutathione and ascorbic acid in Parkinson s disease. J Meurochem 1989;52:381 -
  • Yalçın /İS, Haklar G, Küçükkaya B, Yüksel M, Dalaman G. Chemiluminescence measurements for the detection of free radical species. In: Özben T, ed. Free Radicals, Oxidative Stress, and Antioxidants, new York: Plenum Press, 1998:385-
  • Calabresi P, Mercury nB, Bernardi G. Synaptic and intrinsic control of membrane excitability of striata! neurons. II. An in vitro analysis. J neurophys 1990;63:663-675.
  • Miller RJ. Calcium signalling in neurons. Tins 1988,11:415-419.
  • Lovinger DM, Tyler EC, Merritt A. Short- and longterm synaptic depression in rat neostriatum. J neurophys 1993; 70:1937-1949.
  • Calabresi P, Pisani A, Mercury nB, Bernardi G. Lithium treatment blocks long-term synaptic depression in the striatum, neuron 1993; 10:955- 962.
  • Calabresi P, Maj R, Pisani A, Mercury nB, Bernardi G. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J neurosci 1992,12:4224-4233.
  • Ehrlich BE, Kaftan E, Bezprozvannaya S, Bezprozvanny I. The pharmacology of intracellular calcium release channels. TIPS 1994;15:145-149.
  • Llano I, Dipolo R, Marty A. Calcium induced calcium release in cerebellar Purkinje cells, neuron 1994,12:663-673.
  • Lan J, Jiang D H. Excessive iron accumulation in the
  • brain: a possible potential risk of
  • neurodegeneration in Parkinson's disease. J neurol Transm, 199 7; 104:649-660.
  • Kita H, Kita T, Kitai ST. Active membrane properties of rat neostriatal neurons in an in vitro slice preparation. Exp Brain Res 1985;60:54-62.
Year 2000, Volume: 13 Issue: 1, 11 - 14, 03.12.2016

Abstract

References

  • Calabresi P, Pisani A, Mercury ÎÏB, Bernardi G. Postsynaptic mechanisms underlying striatal long-term depression. J Heurosci 1994; 14:4871-4881.
  • Jiang Z-G, Horth RA. Membrane properties and synaptic responses of rat striatal neurons in vitro. J Phys 1991;443:533-553.
  • Monoghan DT, Holds VR, Toy DW, Cotman CW. Anatomical distributions of four pharmacologically distinct 3H-L-glutamate binding sites, nature 1983;306:176-179
  • Sladeczek P, Pin JP, Recasens M, Bockaert J, Weiss
  • S. Glutamate stimulates inositol trisphosphate formation in striatal neurons. nature 1985;317:717-719.
  • Bashir Zi, Bortolotto ZA, Davies CPI et al. Induction of the LTP in hippocampus needs synaptic
  • activation of glutamate metabotropic receptors, nature 1993;363:347-350.
  • Bliss TVP, Collingridge GL. A synaptic model of
  • memory: Long-term potentiation in the
  • hippocampus, nature 1993;361 -.31-39.
  • Patel M, Day BJ, Crapo JD, Fridovich I, Mcnamara JO. Requirement for superoxide in excitotoxic cell death, neuron 1996; 16:345-355.
  • Liu J, Shigenaga MR, Mori A, Ames B. Free radicals
  • and neurodegenerative diseases: Stress and
  • oxidative damage. In: Packer L, fliramatsu M, Yoshikawa T, eds. Free Radicals in Brain Physiology and Disorders, new York: Academic Press,
  • :403-407.
  • Harris ME, Carney JM, Cole PS, et al. jl-Amyloid peptide-derived, oxygen-dependent free radicals inhibit glutamate uptake in cultured astrocytes: implications for Alzheimer's disease, neuro Report 1995;6:1875-1879.
  • Reiderer P, Sofic E, Reusch W-D, et al. Transition metals, ferritin, glutathione and ascorbic acid in Parkinson s disease. J Meurochem 1989;52:381 -
  • Yalçın /İS, Haklar G, Küçükkaya B, Yüksel M, Dalaman G. Chemiluminescence measurements for the detection of free radical species. In: Özben T, ed. Free Radicals, Oxidative Stress, and Antioxidants, new York: Plenum Press, 1998:385-
  • Calabresi P, Mercury nB, Bernardi G. Synaptic and intrinsic control of membrane excitability of striata! neurons. II. An in vitro analysis. J neurophys 1990;63:663-675.
  • Miller RJ. Calcium signalling in neurons. Tins 1988,11:415-419.
  • Lovinger DM, Tyler EC, Merritt A. Short- and longterm synaptic depression in rat neostriatum. J neurophys 1993; 70:1937-1949.
  • Calabresi P, Pisani A, Mercury nB, Bernardi G. Lithium treatment blocks long-term synaptic depression in the striatum, neuron 1993; 10:955- 962.
  • Calabresi P, Maj R, Pisani A, Mercury nB, Bernardi G. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J neurosci 1992,12:4224-4233.
  • Ehrlich BE, Kaftan E, Bezprozvannaya S, Bezprozvanny I. The pharmacology of intracellular calcium release channels. TIPS 1994;15:145-149.
  • Llano I, Dipolo R, Marty A. Calcium induced calcium release in cerebellar Purkinje cells, neuron 1994,12:663-673.
  • Lan J, Jiang D H. Excessive iron accumulation in the
  • brain: a possible potential risk of
  • neurodegeneration in Parkinson's disease. J neurol Transm, 199 7; 104:649-660.
  • Kita H, Kita T, Kitai ST. Active membrane properties of rat neostriatal neurons in an in vitro slice preparation. Exp Brain Res 1985;60:54-62.
There are 29 citations in total.

Details

Journal Section Original Research
Authors

Hale Saybaşılı This is me

Meral Yüksel This is me

Goncagül Haklar This is me

Süha Yalçın This is me

Publication Date December 3, 2016
Published in Issue Year 2000 Volume: 13 Issue: 1

Cite

APA Saybaşılı, H., Yüksel, M., Haklar, G., Yalçın, S. (2016). SUPEROXIDE RADICAL GENERATION IN RAT STRIATAL SLICES EFFECTS OF DEPOLARIZATION AND CALCIUM ION DEFICIENCY CONDITIONS. Marmara Medical Journal, 13(1), 11-14.
AMA Saybaşılı H, Yüksel M, Haklar G, Yalçın S. SUPEROXIDE RADICAL GENERATION IN RAT STRIATAL SLICES EFFECTS OF DEPOLARIZATION AND CALCIUM ION DEFICIENCY CONDITIONS. Marmara Med J. June 2016;13(1):11-14.
Chicago Saybaşılı, Hale, Meral Yüksel, Goncagül Haklar, and Süha Yalçın. “SUPEROXIDE RADICAL GENERATION IN RAT STRIATAL SLICES EFFECTS OF DEPOLARIZATION AND CALCIUM ION DEFICIENCY CONDITIONS”. Marmara Medical Journal 13, no. 1 (June 2016): 11-14.
EndNote Saybaşılı H, Yüksel M, Haklar G, Yalçın S (June 1, 2016) SUPEROXIDE RADICAL GENERATION IN RAT STRIATAL SLICES EFFECTS OF DEPOLARIZATION AND CALCIUM ION DEFICIENCY CONDITIONS. Marmara Medical Journal 13 1 11–14.
IEEE H. Saybaşılı, M. Yüksel, G. Haklar, and S. Yalçın, “SUPEROXIDE RADICAL GENERATION IN RAT STRIATAL SLICES EFFECTS OF DEPOLARIZATION AND CALCIUM ION DEFICIENCY CONDITIONS”, Marmara Med J, vol. 13, no. 1, pp. 11–14, 2016.
ISNAD Saybaşılı, Hale et al. “SUPEROXIDE RADICAL GENERATION IN RAT STRIATAL SLICES EFFECTS OF DEPOLARIZATION AND CALCIUM ION DEFICIENCY CONDITIONS”. Marmara Medical Journal 13/1 (June 2016), 11-14.
JAMA Saybaşılı H, Yüksel M, Haklar G, Yalçın S. SUPEROXIDE RADICAL GENERATION IN RAT STRIATAL SLICES EFFECTS OF DEPOLARIZATION AND CALCIUM ION DEFICIENCY CONDITIONS. Marmara Med J. 2016;13:11–14.
MLA Saybaşılı, Hale et al. “SUPEROXIDE RADICAL GENERATION IN RAT STRIATAL SLICES EFFECTS OF DEPOLARIZATION AND CALCIUM ION DEFICIENCY CONDITIONS”. Marmara Medical Journal, vol. 13, no. 1, 2016, pp. 11-14.
Vancouver Saybaşılı H, Yüksel M, Haklar G, Yalçın S. SUPEROXIDE RADICAL GENERATION IN RAT STRIATAL SLICES EFFECTS OF DEPOLARIZATION AND CALCIUM ION DEFICIENCY CONDITIONS. Marmara Med J. 2016;13(1):11-4.