Research Article
BibTex RIS Cite

Palmitic Acid Induces Endoplasmic Reticulum Stress In AML12 Liver Cells

Year 2018, Volume: 31 Issue: 1, 40 - 46, 28.01.2018
https://doi.org/10.5472/marumj.362169

Abstract

Objectives: Nonalcoholic fatty liver disease (NAFLD) is characterized by increased fatty acid levels in
serum and liver. The mechanism of NAFLD is unclear. The role of endoplasmic
reticulum (ER) stress attracts attention. First aim of this study was to design
an in vitro
NAFLD model. The effects of palmitic acid (PA) alone or combination with
oleic acid (OA) on intracellular reactive oxygen species (ROS) production and
ER stress in liver cells were investigated as a second aim.

         
Materials and Methods:
AML12 cells were exposed to PA and/or OA with
different concentrations and combinations.
Intracellular lipids and cell viability were detected with Oil red O staining
and WST-1 assay respectively. Intracellular ROS accumulation was measured by flow
cytometry analysis. E
xpression of ER stress proteins, BiP and IRE1, were
evaluated with western blot analysis.

       Results: Intracellular lipid content was increased in all
treated groups. Cell viability was decreased whereas ROS generation and
expression of the ER stress proteins were increased in cells treated with PA. However
these effects were not observed in the cells treated with OA+PA combination.







       Conclusion: PA
induces ROS generation and the ER stress pathway that
is mediated by IRE1 in liver cells. Addition of OA enhances these
effects. 

References

  • Ibrahim SH, Kohli R, Gores GJ. Mechanisms of lipotoxicity in NAFLD and clinical implications. J Pediatr Gastroenterol Nutr. 2011;53(2):131-40. doi: 10.1097/MPG.0b013e31822578db.
  • Polyzos SA, Kountouras J, Mantzoros CS. Adipose tissue, obesity and non-alcoholic fatty liver disease. Minerva Endocrinol. 2017;42(2):92-108. doi: 10.23736/S0391-1977.16.02563-3.
  • Liu W, Baker RD, Bhatia T, et al. Pathogenesis of nonalcoholic steatohepatitis. Cell Mol Life Sci. 2016;73(10):1969-87. doi: 10.1007/s00018-016-2161-x.
  • Bozaykut P, Sahin A, Karademir B, et al. Endoplasmic reticulum stress related molecular mechanisms in nonalcoholic steatohepatitis. Mech Ageing Dev. 2016;157:17-29. doi: 10.1016/j.mad.2016.07.001.
  • Guo B, Li Z. Endoplasmic reticulum stress in hepatic steatosis and inflammatory bowel diseases. Front Genet. 2014;25;5:242. doi: 10.3389/fgene.2014.00242.
  • Gambino R, Bugianesi E, Rosso C, et al. Different Serum Free Fatty Acid Profiles in NAFLD Subjects and Healthy Controls after Oral Fat Load. Int J Mol Sci. 2016;31;17(4):479. doi: 10.3390/ijms17040479.
  • Ricchi M, Odoardi MR, Carulli L, et al. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol. 2009;24(5):830-40. doi: 10.1111/j.1440-1746.2008.05733.x.
  • Cui W, Chen SL, Hu KQ. Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. Am J Transl Res. 2010;1;2(1):95-104.
  • Gao D, Nong S, Huang X, et al. The effects of palmitate on hepatic insulin resistance are mediated by NADPH Oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. J Biol Chem. 2010;24;285(39):29965-73. doi: 10.1074/jbc.M110.128694.
  • Cao J, Dai DL, Yao L, et al. Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol Cell Biochem. 2012;364(1-2):115-29. doi: 10.1007/s11010-011-1211-9.
  • Chavez-Tapia NC, Rosso N, Tiribelli C. Effect of intracellular lipid accumulation in a new model of non-alcoholic fatty liver disease. BMC Gastroenterol. 2012;1;12:20. doi: 10.1186/1471-230X-12-20.
  • Egnatchik RA, Leamy AK, Noguchi Y, et al. Palmitate-induced activation of mitochondrial metabolism promotes oxidative stress and apoptosis in H4IIEC3 rat hepatocytes. Metabolism. 2014;63(2):283-95. doi: 10.1016/j.metabol.2013.10.009.
  • Oh JM, Choi JM, Lee JY, et al. Effects of palmitic acid on TNF-α-induced cytotoxicity in SK-Hep-1 cells. Toxicol In Vitro. 2012;26(6):783-90. doi: 10.1016/j.tiv.2012.05.013.
  • Justina WC, Glenn M, Nelson F. Establishment and characterization of differentiated nontransformed hepatocyte cell lines derived from mice transgenic for transforming growth factor α. Proceedings of the National Academy of Sciences 1993;91:674-8.
  • Ashraf NU, Sheikh TA. Endoplasmic reticulum stress and Oxidative stress in the pathogenesis of Non-alcoholic fatty liver disease. Free Radic Res. 2015;49(12):1405-18. doi: 10.3109/10715762.2015.1078461.
  • Moravcova A, Červinková Z, Kučera O, et al. The effect of oleic and palmitic acid on induction of steatosis and cytotoxicity on rat hepatocytes in primary culture. Physiol Res. 2015;64 Suppl 5:S627-36.
  • Takaki A, Kawai D, Yamamoto K. Molecular mechanisms and new treatment strategies for non-alcoholic steatohepatitis (NASH). Int J Mol Sci. 2014;29;15(5):7352-79. doi: 10.3390/ijms15057352.
  • Szegezdi E, Logue SE, Gorman AM, et al. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7(9):880-5.
  • Gu X, Li K, Laybutt DR, et al. Bip overexpression, but not CHOP inhibition, attenuates fatty-acid-induced endoplasmic reticulum stress and apoptosis in HepG2 liver cells. Life Sci. 2010;18;87(23-26):724-32. doi: 10.1016/j.lfs.2010.10.012.
  • Kammoun HL, Chabanon H, Hainault I, et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest. 2009;119(5):1201-15. doi: 10.1172/JCI37007.
  • Dara L, Ji C, Kaplowitz N. The contribution of endoplasmic reticulum stress to liver diseases. Hepatology. 2011;53(5):1752-63. doi: 10.1002/hep.24279.
  • Zhang K, Wang S, Malhotra J, et al. The unfolded protein response transducer IRE1α prevents ER stress-induced hepatic steatosis. EMBO J. 2011;6;30(7):1357-75. doi: 10.1038/emboj.2011.52.

Palmitik Asit AML12 Karaciğer Hücrelerinde Endoplazmik Retikulum Stresi Uyarır

Year 2018, Volume: 31 Issue: 1, 40 - 46, 28.01.2018
https://doi.org/10.5472/marumj.362169

Abstract

Amaçlar: Nonalkolik yağlı karaciğer hastalığı (NAYKH),
serum ve karaciğerde artmış yağ asit seviyeleri ile karakterizedir. NAYKH’nin mekanizması
net değildir. Endoplazmik retikulum (ER) stresin rolü dikkat çekmektedir. Bu çalışmanın ilk amacı, bir in vitro NAYKH modeli dizayn etmekti.
İkinci hedef olarak, palmitik asid (PA)’in yalnız veya oleik asit (OA) ile
kombinasyonunun, karaciğer hücrelerinde, reaktif oksijen türleri (ROT) oluşumu ve
ER stresi üzerindeki etkileri araştırıldı.

        Gereçler ve Yöntemler:
AML12 hücreleri, farklı
konsantrasyon ve kombinasyonlarda, OA ve PA ile muamele edildi. Hücre içi
lipidler ve hücre canlılığı, sırasıyla Oil red O boyaması ve WST-1 analiziyle saptandı.
Hücre içi ROT birikimi akış sitometrisi ile ölçüldü. ER stres proteinleri, BiP
ve IRE1, western blot analizi ile değerlendirildi.

       Bulgular: Hücre içi lipit içeriği tüm uygulamaya maruz kalmış
gruplarda arttı. PA ile muamele edilmiş hücrelerde, hücre canlılığı azaldı ve ROT
üretimi  ve ER stres proteinlerin
ekspresyonu arttı. Ancak bu etkiler OA+PA kombinasyonu ile muamele edilmiş  hücrelerde gözlenmedi.







       Sonuç: PA, karaciğer hücrelerinde, ROS üretimini ve IRE1
aracılı ER stres yolağını indükler. Ama OA eklenmesi bu etkileri iyileştirir.

References

  • Ibrahim SH, Kohli R, Gores GJ. Mechanisms of lipotoxicity in NAFLD and clinical implications. J Pediatr Gastroenterol Nutr. 2011;53(2):131-40. doi: 10.1097/MPG.0b013e31822578db.
  • Polyzos SA, Kountouras J, Mantzoros CS. Adipose tissue, obesity and non-alcoholic fatty liver disease. Minerva Endocrinol. 2017;42(2):92-108. doi: 10.23736/S0391-1977.16.02563-3.
  • Liu W, Baker RD, Bhatia T, et al. Pathogenesis of nonalcoholic steatohepatitis. Cell Mol Life Sci. 2016;73(10):1969-87. doi: 10.1007/s00018-016-2161-x.
  • Bozaykut P, Sahin A, Karademir B, et al. Endoplasmic reticulum stress related molecular mechanisms in nonalcoholic steatohepatitis. Mech Ageing Dev. 2016;157:17-29. doi: 10.1016/j.mad.2016.07.001.
  • Guo B, Li Z. Endoplasmic reticulum stress in hepatic steatosis and inflammatory bowel diseases. Front Genet. 2014;25;5:242. doi: 10.3389/fgene.2014.00242.
  • Gambino R, Bugianesi E, Rosso C, et al. Different Serum Free Fatty Acid Profiles in NAFLD Subjects and Healthy Controls after Oral Fat Load. Int J Mol Sci. 2016;31;17(4):479. doi: 10.3390/ijms17040479.
  • Ricchi M, Odoardi MR, Carulli L, et al. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol. 2009;24(5):830-40. doi: 10.1111/j.1440-1746.2008.05733.x.
  • Cui W, Chen SL, Hu KQ. Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. Am J Transl Res. 2010;1;2(1):95-104.
  • Gao D, Nong S, Huang X, et al. The effects of palmitate on hepatic insulin resistance are mediated by NADPH Oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. J Biol Chem. 2010;24;285(39):29965-73. doi: 10.1074/jbc.M110.128694.
  • Cao J, Dai DL, Yao L, et al. Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol Cell Biochem. 2012;364(1-2):115-29. doi: 10.1007/s11010-011-1211-9.
  • Chavez-Tapia NC, Rosso N, Tiribelli C. Effect of intracellular lipid accumulation in a new model of non-alcoholic fatty liver disease. BMC Gastroenterol. 2012;1;12:20. doi: 10.1186/1471-230X-12-20.
  • Egnatchik RA, Leamy AK, Noguchi Y, et al. Palmitate-induced activation of mitochondrial metabolism promotes oxidative stress and apoptosis in H4IIEC3 rat hepatocytes. Metabolism. 2014;63(2):283-95. doi: 10.1016/j.metabol.2013.10.009.
  • Oh JM, Choi JM, Lee JY, et al. Effects of palmitic acid on TNF-α-induced cytotoxicity in SK-Hep-1 cells. Toxicol In Vitro. 2012;26(6):783-90. doi: 10.1016/j.tiv.2012.05.013.
  • Justina WC, Glenn M, Nelson F. Establishment and characterization of differentiated nontransformed hepatocyte cell lines derived from mice transgenic for transforming growth factor α. Proceedings of the National Academy of Sciences 1993;91:674-8.
  • Ashraf NU, Sheikh TA. Endoplasmic reticulum stress and Oxidative stress in the pathogenesis of Non-alcoholic fatty liver disease. Free Radic Res. 2015;49(12):1405-18. doi: 10.3109/10715762.2015.1078461.
  • Moravcova A, Červinková Z, Kučera O, et al. The effect of oleic and palmitic acid on induction of steatosis and cytotoxicity on rat hepatocytes in primary culture. Physiol Res. 2015;64 Suppl 5:S627-36.
  • Takaki A, Kawai D, Yamamoto K. Molecular mechanisms and new treatment strategies for non-alcoholic steatohepatitis (NASH). Int J Mol Sci. 2014;29;15(5):7352-79. doi: 10.3390/ijms15057352.
  • Szegezdi E, Logue SE, Gorman AM, et al. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7(9):880-5.
  • Gu X, Li K, Laybutt DR, et al. Bip overexpression, but not CHOP inhibition, attenuates fatty-acid-induced endoplasmic reticulum stress and apoptosis in HepG2 liver cells. Life Sci. 2010;18;87(23-26):724-32. doi: 10.1016/j.lfs.2010.10.012.
  • Kammoun HL, Chabanon H, Hainault I, et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest. 2009;119(5):1201-15. doi: 10.1172/JCI37007.
  • Dara L, Ji C, Kaplowitz N. The contribution of endoplasmic reticulum stress to liver diseases. Hepatology. 2011;53(5):1752-63. doi: 10.1002/hep.24279.
  • Zhang K, Wang S, Malhotra J, et al. The unfolded protein response transducer IRE1α prevents ER stress-induced hepatic steatosis. EMBO J. 2011;6;30(7):1357-75. doi: 10.1038/emboj.2011.52.
There are 22 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Articles
Authors

Tugce Demirel This is me

Saime Batirel This is me

Publication Date January 28, 2018
Published in Issue Year 2018 Volume: 31 Issue: 1

Cite

APA Demirel, T., & Batirel, S. (2018). Palmitic Acid Induces Endoplasmic Reticulum Stress In AML12 Liver Cells. Marmara Medical Journal, 31(1), 40-46. https://doi.org/10.5472/marumj.362169
AMA Demirel T, Batirel S. Palmitic Acid Induces Endoplasmic Reticulum Stress In AML12 Liver Cells. Marmara Med J. January 2018;31(1):40-46. doi:10.5472/marumj.362169
Chicago Demirel, Tugce, and Saime Batirel. “Palmitic Acid Induces Endoplasmic Reticulum Stress In AML12 Liver Cells”. Marmara Medical Journal 31, no. 1 (January 2018): 40-46. https://doi.org/10.5472/marumj.362169.
EndNote Demirel T, Batirel S (January 1, 2018) Palmitic Acid Induces Endoplasmic Reticulum Stress In AML12 Liver Cells. Marmara Medical Journal 31 1 40–46.
IEEE T. Demirel and S. Batirel, “Palmitic Acid Induces Endoplasmic Reticulum Stress In AML12 Liver Cells”, Marmara Med J, vol. 31, no. 1, pp. 40–46, 2018, doi: 10.5472/marumj.362169.
ISNAD Demirel, Tugce - Batirel, Saime. “Palmitic Acid Induces Endoplasmic Reticulum Stress In AML12 Liver Cells”. Marmara Medical Journal 31/1 (January 2018), 40-46. https://doi.org/10.5472/marumj.362169.
JAMA Demirel T, Batirel S. Palmitic Acid Induces Endoplasmic Reticulum Stress In AML12 Liver Cells. Marmara Med J. 2018;31:40–46.
MLA Demirel, Tugce and Saime Batirel. “Palmitic Acid Induces Endoplasmic Reticulum Stress In AML12 Liver Cells”. Marmara Medical Journal, vol. 31, no. 1, 2018, pp. 40-46, doi:10.5472/marumj.362169.
Vancouver Demirel T, Batirel S. Palmitic Acid Induces Endoplasmic Reticulum Stress In AML12 Liver Cells. Marmara Med J. 2018;31(1):40-6.